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Abstract
SoC-Cluster, a novel server architecture composed of mas-
sive mobile system-on-chips (SoCs), is gaining popularity in
industrial edge computing due to its energy efficiency and
compatibility with existing mobile applications. However,
we observe that the deployed SoC-Cluster servers are not
fully utilized, because the hosted workloads are mostly user-
triggered and have significant tidal phenomena. To harvest
the free cycles, we propose to co-locate deep learning tasks
on them.
We present SoCFlow, the first framework that can effi-

ciently train deep learning models on SoC-Cluster. To deal
with the intrinsic inadequacy of commercial SoC-Cluster
servers, SoCFlow incorporates two novel techniques: (1) the
group-wise parallelism with delayed aggregation that can
train deep learning models fast and scalably without being
influenced by the network bottleneck; (2) the data-parallel
mixed-precision training algorithm that can fully unleash
the heterogeneous processors’ capability of mobile SoCs.
We have fully implemented SoCFlow and demonstrated its
effectiveness through extensive experiments. The experi-
ments show that SoCFlow significantly and consistently out-
performs all baselines regarding the training speed while
preserving the convergence accuracy, e.g., 1.6×–740× con-
vergence speedup with 32 SoCs. Compared to commodity
GPU (NVIDIA V100) under the same power budget, SoCFlow
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achieves comparable training speed but reduces energy con-
sumption by 2.31×–10.23× with the same convergence accu-
racy.
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1 Introduction
SoC-Cluster, a new form of server that comprises massive
mobile system-on-chips (SoCs), is emerging in the edge com-
puting [14, 110]. Compared to traditional servers deployed in
cloud/edge datacenters, SoC-Cluster servers deliver denser
computing capacity (e.g., 60x Snapdragon 865, thus 480x
physical cores in a 2U rack, details in §2.1), higher energy
efficiency, and more importantly, the ability to run native
mobile applications without any modification. As a result,
millions of such SoC-Clusters have been deployed in edge
clouds to serve mobile applications, such as cloud gaming [4–
7, 13] and live streaming [12].

However, as shown in §2, the traces that we collected
from thousands of SoC-Cluster servers in a real-world de-
ployment reveal that they are severely under-utilized, e.g.,
the average CPU usage of more than 95% SoCs is under 20%.
A primary reason for this is that the applications hosted on
those servers are mostly triggered by user interaction activi-
ties, resulting in significant fluctuations in resource usage
(e.g., tidal phenomenon). For instance, the CPU usage of the
SoCs is approximately 50× lower at midnight compared to
peak hours.

https://doi.org/10.1145/3617232.3624847
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Figure 1. SoCFlow improves SoC-Cluster resource uti-
lization by interleaving DNN training and existing user-
triggered workloads.

To harvest such free cycles, this paper proposes to per-
form deep learning (DL) training tasks on idle SoCs, as
shown in Figure 1. We use DL training to fill the usage gap
of SoC-Cluster for three reasons. (i) Training DNN mod-
els on edge clouds is increasingly promising and perva-
sive [9, 24, 40, 57, 95, 101, 103]. Edge clouds are where mobile
user data can converge. Compared to training models on a
centralized data center, it cuts down the network route be-
tween data and training infrastructure, thus reducing the
network pressure of the backbone network. Furthermore,
training on edge clouds also mitigates privacy concerns by
early consuming the data. It also allows model training to
be personalized geographically, e.g., item recommendation
tasks [39, 66, 91]. (ii) DL training is a relatively predictable,
delay-tolerable workload that complements existing work-
loads on SoC-Cluster. For instance, an input method predic-
tion model [103] could be periodically (e.g., per month) up-
dated on each region’s edge cloud within one midnight and
dispatched to mobile clients the next morning. (iii) In recent
years, significant research efforts have demonstrated that
mobile SoCs with on-chip accelerators (e.g., DSPs and NPUs)
can achieve remarkable capabilities in executing deep learn-
ing tasks [37, 47, 51, 56, 60, 61, 89]. Meanwhile, algorithm
foundations for low-precision training that fit into on-chip
accelerator data format have been established [94, 114, 123]
for important machine learning tasks, particularly those rel-
atively small models and simple computer vision tasks that
SoCFlow targets. Consequently, this research landscape has
made on-SoC training a practical endeavor [101].
Unfortunately, our initial experiments in §2.3 show that

a single SoC is insufficient to train a medium-sized model
within a reasonable time frame. For instance, training VGG-
11 [86] on CIFAR-10 takes 29.1 hours on Snapdragon 865
CPU, or 7.5 hours on NPU in INT8 data format with 2.7% ac-
curacy loss. This prolonged training time not only delays the
deployment of the updated model to users but also compli-
cates the software design as training needs to span multiple
idle periods.

Intuitively, like model training on cloud servers, we can
orchestrate multiple SoCs to accelerate DNN training, i.e.,
distributed training. While this technique has been exten-
sively explored in datacenters [54, 65, 76, 83–85, 87, 92, 109],
our experimental in §2.3 reveal two distinct challenges spe-
cific to the SoC-Cluster.

• Scarce network bandwidth.While datacenter networks
offer up to 100Gbps bandwidth [76], the cross-SoC network
in a typical SoC-Cluster server is restricted to only 1Gbps.
To make matters worse, such scarce network capacity is
shared by tens of SoCs. This is attributed to the underly-
ing SoC board design, where all cross-SoC network traffic
goes through a single centralized network switch. Indeed,
it is enough to support applications like cloud gaming, yet
easily bottlenecks with intensive cross-SoC network traffic.
As a result, we find existing network topologies deployed
in datacenters for distributed training, such as parameter
server [54] or Ring-AllReduce [85], are unable to scale the
training speed with more participate SoCs.

•Heterogeneous processors withmixed data formats.Domain-
specific accelerators are commonly used to speed up DL
workloads. Mobile SoCs are heterogeneous as well, but: (i)
mobile GPUs are demonstrated to be inefficient for train-
ing tasks [25, 33, 111]; (ii) mobile NPUs operate on low-
precision format, e.g., INT8, and speed up training at the
price of accuracy degradation [101]. Consequently, we need
a mixed-precision training algorithm and an aggregation
scheme across mobile CPUs and NPUs, well to balance the
training speed and DNN convergence accuracy.

In this paper, we present SoCFlow, the first framework that
can efficiently train DNNmodels on SoC-Cluster servers. The
main design goal of SoCFlow is to scale the training speed
with the number of participant SoCs, particularly for small-
to-medium-sized models that edge cloud needs. We design
two novel techniques to address the above challenges.
Group-wise parallelism with delayed aggregation

(§3.1). Inspired by the prior efforts on communication-efficient
distributed training [28, 74, 97, 107, 115] and federated learn-
ing protocols [24], SoCFlow employs a hierarchical network
topology to mitigate the network bottleneck. Specifically,
SoCFlow divides the SoCs into groups: within a group, the
SoCs form a Ring-AllReduce topology and exchange their
weight updates frequently (e.g., per batch); across groups,
the weights are aggregated in a delayed manner (e.g., per
epoch) akin to federated learning. To fully unleash the SoC
parallelism, SoCFlow incorporates three steps in determining
the concrete topology and runtime strategy: (1) determining
a proper group size through a novel utility function that
jointly considers the training speed and cross-group data
distribution gap; (2) judiciously mapping the logical hier-
archical topology into the concrete physical SoC-Cluster
architecture with an integrity-greedy mapping algorithm,
seeking to minimize the communication overhead; and (3)
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carefully ordering the group-wise communication at runtime
to reduce network contention.

Data-parallelmixed-precision training (§3.2). SoCFlow
leverages mobile CPU and NPU for data-parallel training
with weights/gradients in FP32 and INT8 formats, respec-
tively. The mixed-precision aggregation is performed on the
chip before cross-SoC synchronization. SoCFlow further in-
troduces two key metrics: one that estimates the accuracy
gap between the logits from the CPU and NPU; and another
that measures the compute power gap between the CPU and
NPU. Utilizing these metrics, SoCFlow judiciously partitions
the per-batch training data across CPU/NPU to optimize the
training speed and to mitigate the precision loss of INT8-
based training by offloading part of the training to the CPU
with FP32 format.

We have fully implemented SoCFlow on top of MNN [53],
the state-of-the-art training library on mobile SoCs. SoCFlow
supports models exported from TensorFlow [18] and Py-
Torch [65]. We have also comprehensively evaluated the
system on a commercial SoC-Cluster server with five popu-
lar DNNs and five datasets that are representative of edge
cloud scenarios. We also compare SoCFlow to six competi-
tive baselines [20, 50, 64, 73, 76, 85, 87], including traditional
Parameter Server and Ring-AllReduce topologies, as well as
advanced methods with hierarchical architecture and gradi-
ent compression. The experiments show that SoCFlow can
significantly and consistently outperform all baselines in
terms of training speed while preserving the convergence ac-
curacy (<1% loss), e.g., 1.6×–740× convergence speedup with
32 SoCs. In most cases, SoCFlow is the only approach that
can complete the training within a typical idle time frame of
a day (∼4hrs), allowing for model updates on a daily basis.
Besides, compared to a commodity GPU (i.e., NVIDIA V100)
that is widely used for DL training, SoCFlow achieves sim-
ilar training speed but with 2.31×–10.23× reduced energy
consumption.

The major contributions of this work are as follows:

• Wehighlight the opportunity of co-locating DNN train-
ing with existing workloads on deployed SoC-Cluster
servers and identify the major challenges through ex-
periments.

• We propose SoCFlow, an efficient DNN training engine
for SoC-Clusters. To scale the training speedwithmore
participant SoCs, it incorporates two novel techniques:
group-wise parallelism with delayed aggregation and
data-parallel mixed-precision training, which enable
SoCFlow to fully unleash the heterogeneous SoC hard-
ware capacity under scarce network bandwidth.

• We prototype SoCFlow and evaluate it with extensive
experiments. The results demonstrate its superior per-
formance over existing methods.

2 Background and Motivation
2.1 Edge SoC-Cluster
Physically, a typical computer server in a data center or edge
server consists of many-core CPUs and domain-specific ac-
celerators like NVIDIA GPUs and Google TPUs [3, 102]. The
processors inside are powerful and monolithic, i.e., hundreds
of cores in a CPU chip or even thousands of CUDA cores
in NVIDIA GPU. Recently, another unique form of server
has emerged in edge data centers, namely SoC-Cluster [14].
One SoC-Cluster consists of massive, low-power ARM-based
system-on-chips (SoCs), which are conventionally used only
in embedded devices like smartphones and IoTs.

Figure 2 depicts the conceptual architecture, physical struc-
ture, and detailed SoC specifications of a commercialized
SoC-Cluster we have purchased. The cluster comprises 60
Qualcomm Snapdragon 865 chips [2] and a control board.
Each chip in the cluster has an octa-core Kryo 585 CPU, an
Adreno 650 GPU, a Hexagon 695 digital signal processor
(DSP) that can function as a type of NPU, and 12GB LPDDR5
DRAM. These chips are mounted on 12 printed circuit boards
(PCBs), with five on each, and have a 1 Gb/s bandwidth be-
tween PCBs and the Ethernet switch and between each SoC
and PCBNIC using SAS [1]. All SoCs in a PCB share the same
NIC for accessing SoCs from other boards or user clients.
The 12 PCBs are also connected to the control board and the
access network through a 20 Gb/s bandwidth switch using
dual SPF+ interfaces. The control board manages the power,
temperature, and fan frequency.
The reasons for the emergence of SoC-Cluster are multifold.

• Firstly and perhaps most importantly, the use of SoCs with
the same hardware architecture as smartphones allows
for the support of unmodified mobile operating systems
(e.g., Android) and mobile applications (e.g., games). This
facilitates developers in deploying their cloud services
without modifying their codebase for different hardware
platforms, especially for graphic-intensive operations. One
of the most beneficial applications is mobile cloud gam-
ing [4–7, 13], which hosts gaming logic and rendering on
remote servers and streams the rendering results to thin
clients. Indeed, mobile cloud gaming has been the domi-
nant workload hosted on SoC-Cluster in the wild [102].

• Secondly, SoC-Cluster delivers denser hardware resources.
For instance, the Snapdragon 865-based SoC-Cluster men-
tioned above has 480 CPU cores in a 2U rack, which is
generally higher than conventional servers (e.g., 64 CPU
cores for an Intel Xeon server). This indicates that SoC-
Cluster can support the same amount of tasks with much
less space, which is crucial for space-constrained edge
environments like base stations [102, 108].

• Thirdly but not least, SoCs are designed to be energy-
efficient by using smaller transistors (≤7nm) and a simple
instruction set. Meanwhile, energy efficiency is another
critical criterion of edge server design [55, 102], as they
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Figure 2. The overview of a typical edge SoC-Cluster that has been widely deployed in a real environment.

are deployed in proximity to populations where electricity
is more limited and expensive than large data centers.

2.2 DNN Training on SoC-Clusters
According to our industrial partner (a major edge service
provider), tens of thousands of such SoC-Clusters have been
deployed on their edge clouds, serving edge applications
like mobile cloud gaming. On a daily basis, millions of game
sessions are being launched on those servers. The number
of those SoC-Clusters is still increasing rapidly because they
have demonstrated superior performance to support tasks
offloaded from mobile devices.
However, the average CPU utilization of those deployed

SoC-Clusters is still low, i.e., below 20% according to the
runtime traces we collected. The primary reason is that the
workloads hosted on SoC-Clusters exhibit significant tidal
phenomena. For example, the number of active game users
from 11:00 AM to 17:00 PM is more than one order of magni-
tude higher than 3:00 AM to 8:00 AM, as shown in Figure 3.
This phenomenon attributes to the inherent, user-centric
characteristics of theworkloads hosted on SoC-Clusters. This
observation is also consistent with the recent large-scale, em-
pirical study on commercial edge platforms [102, 104].
To increase the hardware utilization, a typical method is

to co-locate best-effort workloads with those latency-critical
workloads on servers [71, 100, 112]. In this work, we seek
to perform DNN training [112] on the SoC-Clusters when
they are idle, regarding its popularity and predictability as
discussed in §1. It can also reduce the cost of purchasing ad-
ditional hardware (e.g., NVIDIA GPUs) to handle the training
workloads for edge service providers, thus eliminating the
CO2 emission while manufacturing such saved electronic de-
vices. At runtime, it further reduces the energy consumption
for DNN training tasks compared to commodity datacenter-
scale GPUs, due to the high energy efficiency of mobile SoCs,
as we will experimentally show in §4.

2.3 Challenges and Observations
DNN training is known to be time-consuming; making it
shorter, therefore has become a hot topic of cloud computing
research in recent years [19, 20, 46, 59, 76, 85]. The signifi-
cance of fast training is especially valued on SoC-Clusters:
an excessively prolonged training task, lasting for tens of
hours, not only delays the model’s availability for use by
users but also adds complexity to software design. This is
because the extended training process may occupy multiple
idle time windows of SoCs, making it more challenging to
manage and optimize system resources effectively.

As the first attempt, we tested classical DNN models (e.g.,
VGG-11 [86] and ResNet-18 [42] on CIFAR-10 dataset [58])
atop the SoC-Cluster presented above, using the state-of-
the-art mobile training engines MNN [53]. We use those small
to medium-sized models since the models trained on edge
servers are often to be deployed on end devices. In our ex-
periments, we aimed to answer the following questions: (1)
Is a single SoC adequate to train DNNs fast? (2) If not, can
multiple SoCs be used together to speed up training, and
how scalable is this approach? (3) How much can hetero-
geneous processors equipped on SoCs help, especially the
mobile NPUs [101]? The results are illustrated in Figure 4.
• Observation #1: DNN training on a single SoC is ex-
tremely slow. Our experiments show that it takes more
than 29 and 233 hours to train VGG-11 and ResNet-18 on the
mobile CPU, respectively, as shown in Figure 4(a). Even with
state-of-the-art mixed-precision training algorithms [94],
training on a mobile NPU still takes nearly 10 and 36 hours
for VGG-11 and ResNet-18, respectively. Such long-time
training has to span multiple idle time windows and mo-
tivates distributed training on multiple SoCs.
• Observation #2: The efficiency of distributed train-
ing is severely bottlenecked by the cross-SoC network.
Ring-AllReduce and parameter-server communication la-
tency with increasing the number of SoCs is shown in Fig-
ure 4(b). In our experiments, a PCB board contains 5 SoCs.
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Figure 4. Measurement results of training VGG-11 (V11) and ResNet-18 (R18) models on
CIFAR-10 dataset atop edge SoC cluster.

Therefore, experiments with less than 5 SoCs involve intra-
PCB board communication; otherwise, inter-PCB board com-
munication. Intra-PCB board Ring-AllReduce gradient com-
munication takes 540 and 699ms to finish for the VGG-11 and
ResNet-18 models; parameter-server gradient communica-
tion takes 2060 and 2700 ms correspondingly. That is because
they are designed for cloud gaming, whose communication
is nearly all out-server. Worse, 32-SoC inter-PCB board gra-
dient communication takes 1248, 2225, 20593, and 26505
ms, 2.31–9.81× more than the intra-one. That is because
Ring-AllReduce’s latency scales linearly with the number
of nodes [10, 11, 35, 105], and 32-SoC weight aggregation’s
preparing and starting the communication for the ResNet18
model takes 1300 ms, 58% of total communication latency.
Such delays are unbearable for distributed machine-learning
scenarios.
• Observation #3: mixed-precision training algorithm
may degrade model accuracy. Since most mobile NPUs
only support INT8 operations, offloading training tasks to
them could lead to accuracy degradation – the price paid for
a few times accelerations compared to CPU. Worse, when
these INT8 training algorithms are applied to distributed
deep learning, the accuracy degradation increases severely.
Specifically, the convergence accuracy of training with INT8
on 32 mobile SoC’ NPU for VGG-11 and ResNet-18 model is
5.94% and 8.25% lower than training with FP32, as shown in
Figure 4(c).

3 SoCFlow Design
SoCFlow is a data-parallel distributed DNN training frame-
work on SoC-Clusters that aims to achieve fast DNN train-
ing under the collaboration of many SoCs without compro-
mising accuracy. Figure 5(a) illustrates its overall architec-
ture. SoCFlow takes the training datasets and the DNN to be
trained as input. It then continuously trains the DNN until
convergence or manually terminated. From the developers’
perspective, using SoCFlow is just as easy and standard as
using other distributed training frameworks such as Tensor-
Flow or PyTorch. Besides, SoCFlow considers sudden user
requests during off-peak periods, e.g., early midnight, when
most SoCs are used to train DNN models. SoCFlow includes
checkpoints onMobile SoCs to ensure that a new user-related

workload request can preempt training tasks and maintain
high service quality for users. Since the group-wise training
structure is flexible (§ 3.1), SoCFlow only needs to terminate
a logical group of SoCs to minimize the reduction in training
efficiency while preserving the convergence accuracy.

SoCFlow mainly consists of two modules:
• Global scheduler is a lightweight software deployed on
the SoC-Cluster’s control board. Its primary function is to co-
ordinate the training process. Ahead of the training, it deter-
mines how SoCs will be orchestrated, such as SoC grouping,
gradients synchronizing frequency, and aggregation method-
ology, as will be elaborated in §3. Then, it dispatches the
training data and model to each SoC. During training, each
SoC loads only a partial dataset based on the data-parallelism
strategy. This module contains most of SoCFlow’ designs.
• Distributed training engine is responsible for the gra-
dient computing on each SoC. It supports FP32-based train-
ing on CPU, Int8-based training on mobile NPU, or mixed-
precision training with both. It also aggregates the gradi-
ents/weights sent from other SoCs and synchronizes them.

3.1 Group-wise Parallelism with Delayed
Aggregation

In general, there are two ways to address the network bot-
tleneck in distributed DNN training.

• One is to design an efficient network topology, which
specifies how data (model weight updates in our case)
flows and aggregates across SoCs. In data centers, Ring-
AllReduce [85] is a bandwidth-optimal communication
strategy and is widely used in network-constrained sce-
narios. However, it is still inadequate for SoC-Cluster, as
previously shown in Figure 4. In essence, it attributes to
the severe mismatch of compute-to-network capacity on
SoC-Cluster.

• The other is to delay the weights aggregation from each
compute node. This approach is commonly used in fed-
erated learning [26, 40, 57, 73], where the clients are geo-
distributed and are connected to a central server through
a wireless network. For instance, FedAvg [73] protocol
lets each client train a model for one or many data epochs
instead of one batch before uploading it to the cloud for ag-
gregation. By increasing the computing time, the network
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Terms/Symbols Description
Physical group
(PG) The SoCs that reside in the same PCB.

Logical group
(LG)

The SoCs that exchange weights frequently through
Ring-AllReduce topology. It is determined by SoCFlow at runtime.

Communication
group (CG)

A few logical groups whose intra-group synchronization
does not incur NIC contention.

M The total number of the SoCs.
N The number of the logical groups.
K The number of the PCB boards (physical groups).
𝑁𝑈𝑀𝑠𝑎𝑚𝑝𝑙𝑒 The number of dataset samples.
𝐵𝑆𝑔 The sum of all local mini-batch sizes of SoCs within a logical group.
𝐴𝑐

𝐵𝑆𝑔

𝑁
𝑁 logical groups’ convergent accuracy with a global batch size 𝐵𝑆𝑔 .

Table 1. The symbols and terms used in §3

bottleneck is mitigated. This approach, however, causes
model staleness and potential accuracy degradation [73].

The network capacity of SoC-Cluster lies somewhere be-
tween the high-speed data center and wireless network.
Therefore, we propose a hierarchical topology that enables
group-wise parallelism across SoCs, as shown in Figure 5(b).
SoCFlow divides the SoCs into logical groups: (1) Within a
logical group, the SoCs form a Ring-AllReduce topology and
exchange their model updates frequently, i.e., per batch. Dif-
ferent groups’ intra-group training can execute in parallel.
To ensure similar training accuracy as standard local sto-
chastic gradient descent (SGD) [67, 82], SoCFlow employs
synchronized stochastic gradient descent (SSGD) algorithm
within each group. SoCFlow leverages both SoC CPU and
NPU for model training. Therefore, before cross-SoC syn-
chronization, the gradients computed by the CPU and NPU
are aggregated first on the chip. (2) Across logical groups,
the weights are aggregated in a delayed manner and infre-
quently, i.e., per epoch. Unlike federated learning, SoCFlow
can shuffle the input data among different groups to guar-
antee high convergence accuracy. Notably, at the beginning
of inter-group synchronization, to reduce synchronization
time, each logical group selects a leader (SoC in brown in
Figure 5(b)) to aggregate weights with other groups, and all
groups’ leaders also form a Ring-AllReduce topology.

There are three crucial steps to efficiently realize the pro-
posed mechanism: (1) determining the number of SoCs of
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Figure 6. The testing accuracy after achieving final con-
vergence and for only the first epoch is compared across
different group sizes.

each logical group, i.e., the group size; (2) mapping the log-
ical topology of SoC groups into the physical SoC-Cluster
architecture; (3) planning the group-wise communication
to minimize the NIC contention during training. The terms
used in this section are shown in Table 1.
Determining group size. Supposing𝑀 SoCs will be divided
into 𝑁 groups, and each group’s global batch size is 𝐵𝑆𝑔 , the
per-epoch training time can be formulated as

𝑇𝑒𝑝𝑜𝑐ℎ =
𝑁𝑈𝑀𝑠𝑎𝑚𝑝𝑙𝑒

(𝑁 ∗ 𝐵𝑆𝑔)
∗ (𝑇 𝐵𝑆𝑔

𝑡𝑟𝑎𝑖𝑛
∗ 𝑁
𝑀

+𝑇𝑠𝑦𝑛𝑐 ) (1)

where 𝑇 𝐵𝑆𝑔

𝑡𝑟𝑎𝑖𝑛
and 𝑇𝑠𝑦𝑛𝑐 are the computing and synchroniza-

tion time. In the SoCFlow, 𝑇𝑠𝑦𝑛𝑐 consists of intra-group com-
munication and inter-group communication time. Since the
computing, intra-group communication, and inter-group
communication time are constant, 𝑇𝑒𝑝𝑜𝑐ℎ is negatively cor-
related to 𝑁 . Meanwhile, convergence accuracy exhibits
a negative correlation with the number of groups, as an
increased batch size tends to adversely affect convergence
accuracy [38, 44, 106]. This is also confirmed by our experi-
ments in Figure 6, which shows a too large group number
notably degrades convergence accuracy.

To identify the largest group size 𝑁 that guarantees mini-
mal training time while preserving convergence accuracy,
SoCFlow offers system designers the flexibility to empirically
select this parameter by default and provides an optional
heuristic approach. This approach capitalizes on an observa-
tion: the training accuracy observed during the initial epoch
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closely mirrors the behavior of convergence accuracy, as
shown in Figure 6. Thus, during the warm-up stage, SoCFlow
profiles the training accuracy from a smaller group size to a
larger one. It halts at the first group size where accuracy falls
significantly, typically to around 15%, signifying substantial
degradation. This is exemplified by the choices of 4 and 8 in
Figure 6(a) and (b).

Our experiments validate the efficacy of this heuristic ap-
proach. Nevertheless, it is essential to note that this approach
relies on heuristics rather than a solid theoretical foundation.
Consequently, its applicability across all model types may
be limited.
Mapping the logical topology into the physical SoC-
Cluster architecture. As shown in §2.1, the SoCs in a SoC-
Cluster server are organized into different physical groups
(PCBs). Intuitively, a logical group is better mapped to SoCs
within the same physical PCB, so that the intensive intra-
group data exchange does not go through the external NIC
to minimize the contention. Yet, the logical and physical
group sizes are often unequal, so that a mixed partitioning
is unavoidable.

We first formulate themapping problem: suppose there are
𝐾 PCB boards, and each logical groups contains 𝑀

𝑁
SoCs. The

i-th PCB board contains 𝑆𝑖 logical groups, denoted as 𝐿𝑖 =
{𝐿𝑖,0, 𝐿𝑖,1, · · · , 𝐿𝑖,𝑆𝑖 }. If the number of SoCs for the j-th logical
group in i-th PCB board is smaller than 𝑀

𝑁
(denoted by |𝐿𝑖, 𝑗 | <

𝑀
𝑁
), there must be at least one SoC in other PCB boards,

therefore incurring inter-PCB communication. We use 𝐿𝑖𝑛𝑡𝑒𝑟𝑖

to represent logical groups with inter-PCB communications
inside i-th PCB in Eq 2.

𝐿𝑖𝑛𝑡𝑒𝑟𝑖 = {𝑥 | |𝑥 | < 𝑀

𝑁
,∀𝑥 ∈ 𝐿𝑖 } (2)

The maximum number of 𝐾 PCB boards’ inter-PCB commu-
nication logical groups is denoted by 𝐶 ,

𝐶 =𝑚𝑎𝑥{|𝐿𝑖𝑛𝑡𝑒𝑟𝑖 |,∀𝑖 ∈ 𝐾} (3)

which represents the conflict numbers. SoCFlow’s objective
is to minimize 𝐶 .

To solve the problem, SoCFlow employs a novel mapping
algorithm: integrity-greedy mapping: First, SoCFlow maps as
many logical groups as possible to physical groups without
splitting. Figure 5(c) illustrates an example with a logical
group size 3 and a physical group size 5. In this case, each
three nodes within logical groups 1–3 are all placed within
the first three SoCs in the corresponding PCBs. Second, the
rest of the logical nodes are mapped in sequence. For both
logical and physical nodes, we squeeze them into a 1-D di-
mension by placing the nodes within a group continuously,
and the mapping follows the squeezed order. In this step, the
four nodes within logical group 4 span the 1st and 2nd PCBs,
while the nodes within logical group 5 span the 2nd and 3rd
PCBs.

CG1

LG 1
LG 2
LG 3

1 1
1 1
1 1

CG2 1 1

2 2
2 2
2 2

1 2

N N
N N
N N

N N 1

1
1
1

...

...

Computing Inter-group
synchronization

Intra-group
synchronization

LG 5

LG 4 1 1 2 2 N N 1

Figure 7. The group-wise communication planning used by
SoCFlow. CG and LG represent the communication group
and logical group, respectively.

We have the following theorems for the integrity-greedy
mapping algorithm. The first theorem can be proven by the
"greedy stays ahead" algorithm [8]. Mapping as many LGs
as possible with no inter-PCB communication always has
less NIC contention. While the second one can be proved by
contradiction.
Theorem 1: Integrity-greedy mapping minimizes 𝐶 . This
theorem guarantees the optimality for the mapping stage.
Theorem 2: Integrity-greedy mapping guarantees that each
logical group contends with up to two other logical groups
for NIC. This theorem is used in the next stage in planning
communications.
Planning group-wise communication to minimize the
contention. When the logical group size does not match
with the physical group size (which is often true), the NIC
contention between logical groups is inevitable. To mitigate
such contention, SoCFlow seeks to carefully determine their
communication timing.

Specifically, SoCFlow further combines logical groups into
different communication groups (CGs). In the same CG, dif-
ferent logical groups’ intra-group synchronization is inter-
leaved. For example, logical groups 1–4 in Figure 5(c) forms
one CG, while logical group 5 is put into another CG. This
is because LG1–3 have no inter-PCB communication and
can be placed anywhere, while LG4 and LG5 have inter-PCB
communication and are conflicted with each other. After CG
division, different CGs’ intra-group synchronization commu-
nicates separately in sequence to avoid network contention,
as shown in Figure 7. Specifically, designing an effective
communication strategy faces the following two challenges:
• How to divide logical groups into CGs. In general, finding
the minimum CGs division is crucial to SoCFlow, since
more CGs need more communication intervals. However,
such a problem is equivalent to minimum graph coloring
problem [79], which is an NP-Hard problem.

• How to plan CGs communication sequence to minimize the
idle time of processors. Since only one CG’s logical groups
can synchronize at some time, other CGs should wait until
no network communication. The waiting time may lead
to wasting processor resources.
To address the first challenge, fortunately, theorem 2 of

integrity-greedy mapping guarantees that one logical group
contends for NIC with up to two other logical groups. This
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transforms the CG division problem into the minimum bipar-
tite graph coloring problem, for which the optimal solution
can be obtained using the depth-first search (DFS) [22].
Regarding the second challenge, an intuitive approach is

to use a pipeline of several CGs to hide the intra-group com-
munication time. In general, to completely hide 𝑛 sequences
of communication, the computing time should be at least
𝑛−1 times longer than the communication time. Fortunately,
the solution to the first challenge [22] guarantees that the
number of CGs needed is at most two. Therefore, the com-
munication can be totally hidden as long as the computing
is slower than the communication, which is observed to be
true in most of our experiments. Figure 7 illustrates how the
overlapping works.

Lastly, after training all batch samples, all SoCs start inter-
group synchronization. Therefore, the extra delay of SoCFlow
is only one intra-group and inter-group synchronization
time.

3.2 Data-parallel Mixed-precision Training
As discussed in §2.3, mobile NPU can accelerate DNN train-
ing at the cost of compromised accuracy by using INT8 data
format. To address this, SoCFlow exploits both the CPU and
NPU on mobile SoCs in parallel, i.e., a mixed-precision train-
ing paradigm, to achieve both high accuracy and fast training.
Per batch, the training data is partitioned into CPU and NPU.
When training completes on both CPU and NPU, SoCFlow
directly aggregates the weights from them through on-chip
IPCs before the intra-group synchronization, as shown in
Figure 5(b). Currently, we employ the standard SGD as the
training optimizer on CPU and the state-of-the-art INT8-
based optimizer [94] on NPU.

SoCFlow tackles two primary issues in designing themixed-
precision training algorithm: (1) The numerical errors in-
curred by FP32-to-INT8 quantization on NPU could accu-
mulate exponentially as training goes on. Therefore, naively
averaging the gradients from the CPU and NPU could lead
to significant accuracy loss. SoCFlow needs to minimize the
quantization errors to guarantee convergence accuracy. (2)
Unlike distributed training scenarios where worker nodes
are homogeneous [59, 63, 64, 80], mobile CPUs/NPUs face
huge training speed gaps. SoCFlow needs a way to harmo-
niously pace the two training processes.
To solve the above two problems, SoCFlow controls the

relative amount of data fed to the models running on CPU
and NPU, without re-engineering the network structure or
training process. More specifically, SoCFlow introduces two
metrics:
• 𝛼 – confidence that indicates the error gap between the
INT8 model and the FP32 model. To calculate it, SoCFlow
simply profiles the validation set on CPU/NPU prior to
each training epoch. It can be formulated as

𝛼 = 𝐶𝑜𝑠 (< 𝑙𝑜𝑔𝑖𝑡𝑠𝐹𝑃32, 𝑙𝑜𝑔𝑖𝑡𝑠𝐼𝑁𝑇 8 >) (4)

We use cosine similarity since it avoids the negative ef-
fect of the varied gradients’ magnitudes from FP32 and
INT8, as shown in Eq 4. When 𝛼 approaches zero, the
INT8 model is less accurate, so SoCFlow allocates more
data for CPU training to mitigate training accuracy loss;
otherwise, more data should be fed to the NPU to improve
training speed. Typically, the cosine similarity of two mod-
els’ logits decays exponentially [123]. It means as the error
gap between the two models increases, the decline of 𝛼
becomes slower. Thus, although the minor quantization
error will accumulate exponentially after massive multipli-
cation and addition calculation, 𝛼 does not decrease much.
Correspondingly, SoCFlow leverages 𝑒−𝛼 to control input
data partition to avoid exponential decay. The portion of
mini-batch samples into the CPU model should be no less
than 𝑒−𝛼 , while the portion into the NPU model must not
exceed 1 − 𝑒−𝛼 . Weight aggregation is also modified as
follows.

𝑤𝑡+1 = 𝑒
−𝛼 ∗𝑤𝐹𝑃32

𝑡+1 + (1 − 𝑒−𝛼 ) ∗𝑤 𝐼𝑁𝑇 8
𝑡+1 (5)

where 𝑤𝐹𝑃32
𝑡+1 and 𝑤 𝐼𝑁𝑇 8

𝑡+1 are 𝑡 + 1 iteration weights from
the FP32 and INT8 model, respectively. Oftentimes, at the
beginning of a training task, the INT8 model on NPU
is accurate enough and 𝛼 is close to 1, so much of the
training data is fed into the NPU to improve the training
speed; when approaching convergence, 𝛼 is close to 0 so
more data is fed to the CPU to guarantee the convergence
accuracy.

• 𝛽 - compute power ratio that represents the ratio of compute
power for heterogeneous processors. It is simply profiled
as the CPU-to-NPU performance gap before the training
task begins. For SoCFlow, 𝛽 can be formulated as

𝛽 =
𝑇𝑁𝑃𝑈

𝑇𝑁𝑃𝑈 +𝑇𝐶𝑃𝑈
(6)

To avoid processor idleness, the portions of input data
being fed into the NPU should be exactly as 𝛽 does.
When jointly considering accuracy requirements and per-

formance issues, SoCFlow always feds𝑚𝑎𝑥{𝑒−𝛼 , 1 − 𝛽} por-
tion of data into the CPU. That is because when 𝑒−𝛼 is larger
than 𝛽 , NPU processing capacity is not enough and the CPU
is idle, so feeding more data into NPU cannot gain any bene-
fit. Otherwise, SoCFlow is bottlenecked by the quantization
error from the INT8 model, and more data should be fed into
the CPU even if the NPU is idle.

4 Evaluation
4.1 Implementation and Setups
We have fully implemented SoCFlowwith 5.2k LoC in C/C++.
The prototype is a standalone framework supporting models
exported from TensorFlow [18] and Pytorch [80]. SoCFlow
leverages MNN [53] (the most lightweight on-device train-
ing framework) as the CPU backend and Mandheling [101]
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Model Dataset Learning methods

LeNet [62] EMNIST [27]

From scratch

Fashion-MNIST [99]

VGG-11 [86] CIFAR-10 [58]
CelebA [72]

ResNet-18 [42] CIFAR-10
CelebA

MobileNet_V1 [45] CIFAR-10
ResNet-50 [42] CINIC-10 [32] Transfer learning

Table 2. DNN models used in the experiments.

as the NPU backend. We follow PyTorch to implement gra-
dient synchronization, such as layer-by-layer computing-
communication overlapping, and aggregation in the back-
ward pass and optimizer. All the network communication,
including Ring-AllReduce, parameter server, and federated
learning, are implemented over TCP protocol. Parameters
and weights aggregation through CPU and NPU are over
shared memory for efficiency. In addition, we have imple-
mented two key optimizations to make SoCFlow more effi-
cient and practical: (1) Gradient computing-communication
overlap tomitigate synchronization delays; (2) Underclocking-
aware workload re-balancing to address potential perfor-
mance degradation.
Hardware setup.We test the performance of SoCFlow on
the SoC-Cluster as discussed in §2.1. All devices run Android
OS 10. By default, we always run the baselines on 4 BIG
CPU cores. The CPU frequency is controlled by the OS’s
dynamic voltage and frequency scaling (DVFS) controller.
The physical, logical, and communication groups used in the
experiments are 5, 8, and 2, respectively.
Models and datasets. We test with a range of typical CNN
modelswith various datasets: LeNet [58], VGG-11 [86], ResNet-
18/50 [42], and MobileNet_V1 [45], as listed in Table 2. The
input data for LeNets are either EMNIST or Fashion-MNIST
(input size 28*28), while for VGG-11, ResNet18 and Mo-
bileNet_V1 are either CIFAR-10 or Celeba (input size 32*32).
In addition to training from scratch, SoCFlow also evalu-
ates the transfer learning scenarios: finetuning on CIFAR-
10 while pre-trained on CINIC-10 dataset (same categories
with 40k more images) with ResNet-50. We choose small
to medium-sized models since the models trained on edge
servers are often to be deployed on end devices.
Baselines.We compare SoCFlowwith 6 baselines which can
be divided into two categories:

• Distributed machine learning baselines (1) Parameter
Server (PS): the traditional FP32-based centralized aggrega-
tion method [64]. (2) Ring-AllReduce (RING): the traditional
FP32-based allreduce training method following the work-
flow of Horovod [85]. (3) HiPress [20]: a compression-aware
gradient synchronization framework for data-parallel DNN
training. It uses DGC [69] as the sparsification compression
algorithm. (4) 2D parallelism [87] (2D-Paral): a hierarchi-
cal topology with node grouping. Across groups, it exploits

Ring-AllReduce-based data parallelism; within a group, it
exploits pipeline parallelism as PipeDream [76]. We do not
compare 3D parallelism [87] as its tensor parallelism is more
suitable for large models like GPT3 [78], while SoCFlow is
designed for small to medium-sized models on edges.

• Federated learning baselines (1) Federated learning (FedAvg):
the traditional FP32-based federated learning protocol [73].
(2) Tree-aggregation-based hierarchical federated learning
(T-FedAvg): It divides SoC clients into several groups and
exploits tree-based hierarchical aggregation federated learn-
ing protocol [50, 74] with FedAvg algorithm. Both of the
baselines have been implemented within the context of in-
dependent and identically distributed (IID) settings.
To make the comparison fair, all baselines are enhanced

with the two optimizations in §4.1 if applicable.
Metrics.Wemainly measure convergence accuracy, training
time, and energy consumption during training. The energy
consumption is calculated through SoC-Cluster’s control
board power management system. All experiments are re-
peated three times and we report the average numbers.

4.2 End-to-end Performance
Overall performance.We comprehensively investigate the
end-to-end training performance of SoCFlow using 32 SoCs.
The convergence accuracy, training time, and energy con-
sumption of the 32 SoCs are illustrated in Table 3, Figure 8,
and Figure 9. Except for MobileNet_V1 uses a global batch
size of 256, other models all use 64. Our key observation is
that SoCFlow consistently and remarkably outperforms
other baselines on training time and energy consump-
tion with negligible accuracy loss.

• Training time of SoCFlow v.s. distributed machine learn-
ing baselines. Compared with industrial baselines, like PS
and RING, SoCFlow achieves a 94.4–740.7× and 14.8–143.7×
speedup, respectively, as shown in Figure 8, with negligi-
ble accuracy degradation, e.g., <1%, in most cases, as shown
in Table 3. Those benefits from our group-wise parallelism
with delayed aggregation and mixed-precision data-parallel
training algorithm. The first technique can reduce communi-
cation overhead, while the second one can exploit NPU fully
without influencing accuracy.

Besides, comparedwith state-of-the-art baselines, HiPress,
and 2D-Paral, SoCFlow can still reduce training time by
7.4–98.2× and 4.4–50.4×, respectively. That is because al-
though such baselines can decrease communication volume
or increase parallelism, they still cannot avoid inter-PCB
communication contention. While SoCFlow’s group-wise
parallelism with delayed aggregation can exploit logical-to-
physical topology mapping and communication planning to
mitigate with no network contention when synchronizing
weights.

Last, SoCFlow guarantees that all training tasks finish
within two hours smaller than the SoC-Cluster’s idle time
(below the dark red line in Figure 8) so that the model can be
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Model Local PS RING 2D-Paral HiPress FedAvg Tree-FedAvg Ours
Acc. Acc. Degrad. Acc. Degrad. Acc. Degrad. Acc. Degrad. Acc. Degrad. Acc. Degrad. Acc. Degrad.

MobileNet 88.5 87.9 -0.6 87.9 -0.6 87.9 -0.6 87.9 -0.6 85.4 -3.1 85.4 -3.1 88.7 0.2
VGG11 84.5 84.4 -0.1 84.4 -0.1 84.4 -0.1 84.4 -0.1 80.4 -4.1 80.4 -4.1 82.2 -2.3
ResNet18 87.7 87.3 -0.4 87.3 -0.4 87.3 -0.4 87.3 -0.4 82.1 -5.6 82.1 -5.6 84.5 -3.2
VGG11-CelebA 96.9 96.9 0 96.9 0 96.9 0 96.9 0 96.8 -0.1 96.8 -0.1 97.1 0.2
Resnet18-CelebA 97.3 97.4 0.1 97.4 0.1 97.4 0.1 97.4 0.1 97.4 0.1 97.4 0.1 97.2 -0.1
LeNet5-EMNIST 87.5 87.6 0.1 87.6 0.1 87.6 0.1 87.6 0.1 85.6 -1.9 85.6 -1.9 87.7 0.2
Lenet-FMNIST 91.6 91.6 0 91.6 0 91.6 0 91.6 0 90.7 -0.9 90.7 -0.9 91.1 -0.5
ResNet50-Finetune 69.9 69.9 0 69.9 0 69.9 0 69.9 0 x x x x 68.9 -1

Average degradation -0.16 -0.16 -0.16 -0.16 -2.23 -2.23 -0.81
Table 3. A summary of end-to-end training convergence accuracy. "Acc.": accuracy; "Degrad.": accuracy degradation.
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Figure 8. End-to-end training time up to convergence under different training scenarios.
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Figure 9. End-to-end training energy consumption up to convergence under different training scenarios.

updated and applied to cloud applications every day; while
no distributed machine learning baselines can satisfy such
strict deadline. Therefore, SoCFlow can both boost training
efficiency and be practical in use.

• Energy consumption of SoCFlow v.s. distributed machine
learning baselines. As shown in Figure 9, SoCFlow’s improve-
ments in energy consumption are also impressive as in train-
ing speed. SoCFlow can reduce energy consumption by 20.0–
158×, 1.9–60.2×, 3.1–144.3×, and 2.6–49.8× for PS, RING,
HiPress and 2D-Paral, respectively. That is because (1) the

existing distributed deep learning algorithms lead to long-
time synchronization communication, wasting lots of energy.
(2) SoCFlow can leverage energy-efficient NPU to accelerate
training speed and reduce energy consumption.

• SoCFlow v.s. federated learning baselines. Compared with
the federated learning method, SoCFlow achieves an accu-
racy improvement of 0.1–3.3%. The accuracy enhancement
is attributed to SoCFlow mitigating the precision loss associ-
ated with INT8-based training by offloading a portion of the
training workloads to the CPU in FP32 format. Additionally,
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Figure 10. Elapsed training time taken to reach same target accuracy under various SoC numbers.

SoCFlow substantially reduces training time, achieving an
average speedup of 2.85x for FedAvg and 2.17x for T-FedAvg.
This efficiency gain can be primarily attributed two reasons:
(1) While federated learning baselines are not constrained
by communication bottlenecks, they grapple with gradient
staleness and require more epochs to converge to the same
accuracy. SoCFlow addresses this issue by implementing a
synchronized gradient updating approach. (2) SoCFlow har-
nesses NPUs to accelerate the training process while main-
taining high accuracy.

In addition, SoCFlow reduces energy consumption by 2.1–
9.9 and 1.7–11.0×, compared with FedAvg and T-FedAvg,
respectively, as shown in Figure 9. The benefits come from
the high energy efficiency of NPU and accelerated conver-
gence.

4.3 Scalability
We comprehensively investigate the scalability training per-
formance of SoCFlow under 8, 16, and 32 SoCs. Figure 10
shows the training time trend reaching the same accuracy
(99% relative convergence accuracy, e.g., 87% forMobileNet_V1)
when involving more SoCs in learning tasks. We do not in-
clude the results of ResNet50-Finetune using FL-based base-
lines, as it did not converge. Except for MobileNet_V1 uses a
global batch size of 256, other models all use 64. Our experi-
ments show that SoCFlow consistently outperforms all
baselines from 8 to 32 SoCs, and its benefits are more
prominent with the increasing SoC number.

SoCFlow reduces training time on 8 SoCs by 83.3×, 8.89×,
2.31×, 36.4×, 2.51×, and 53.8× on average for PS, RING, HiPress,
2D-Paral, FedAvg, and T-FedAvg, respectively; while the
speedups for 32 SoCs are 474.8×, 49.3×, 2.35×, 52.8×, 3.1×
and 35.7× correspondingly, which are 2.6 × larger than that
of 8 SoCs on average. That is because our group-wise par-
allelism with delayed aggregation is flexible and scalable,
not increasing the network congestion with the SoC number
increasing.
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Figure 11. Training time and energy consumption compari-
son between SoCFlow and traditional datacenter GPUs using
PyTorch.

4.4 Comparison with Traditional Datacenter GPU
In this section, we examine the performance of SoCFlow in
comparison to traditional datacenter GPUs. It’s important to
note that our objective in these experiments is not to present
SoC-Cluster as a superior alternative to traditional datacen-
ter GPUs. Rather, our goal is to illustrate how SoCFlow can
effectively utilize the available resources in SoC-Clusters,
particularly when dealing with small models as the focus of
this study.
We conducted a comprehensive assessment on the end-

to-end training performance of SoCFlow under 60 SoCs, in
contrast to a standard server GPUs, using PyTorch, as shown
in Figure 11. We compared Snapdragon 865 SoC with the
NVIDIA V100, and the latest Snapdragon 8gen1 SoC with
the NVIDIA A100. Our selection is mainly based two main
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Figure 12. A breakdown training time under VGG-11 and
ResNet-18 models on CIFAR-10.

reasons: (1) Relatively consistent performance gap in latest
versions. Despite the Snapdragon 865 SoC being introduced
later than the V100, it is noteworthy that the performance
improvements of mobile SoCs outpaces those in server GPUs.
For instance, the NPU in the 8gen2 (2022) exhibits an 18×
increase in performance compared to the Snapdragon 865
SoC [15], while such performance gain from the H100 (latest
NVIDIA GPU) to the V100 is only about 9×. (2) It is important
to acknowledge that data center-level GPUs such as the V100
are not primarily designed for training small models that
often exhibit low GPU utilization. Nonetheless, they are
frequently adopted in edge cloud environments to address
a variety of training scenarios, including training small-to-
medium-sized models. Our experiments show that SoCFlow
achieves similar training speed but with up to 10.23×
reduced energy consumption without comprising the
convergence accuracy.

Compared to the V100 GPU, SoCFlow achieves a speedup
of 0.80–2.79× for the VGG11-CIFAR10, ResNet18-CIFAR10,
LeNet-EMNIST, and LeNet-FMNIST models. This is due to
SoCFlow’s ability to tap into the computing power of the
60-SoC heterogeneous processors and break network limits
to accelerate training speed. In addition, SoCFlow consumes
2.31×, 2.81×, 2.96×, and 10.23× less energy than the V100,
respectively. This is because mobile SoCs are generally more
energy-efficient than the V100, especially for mobile NPU,
and SoCFlow can fully utilize this advantage. The results of
the A100 also demonstrates analogous outcomes.

4.5 Breakdown analysis of training time
In this section, we conduct a comprehensive investigation
into the breakdown of training time consumption. Typically,
training time comprises three main components: gradients
computing (Compute), gradients/weights synchronization
(Sync), and parameter updates (Update). The breakdown
results for VGG-11 and ResNet-18 under 32 SoCs are illus-
trated in Figure 12. SoCFlow achieves a delicate balance
between distributed machine learning baselines and
federated learning baselines approaches by trading off
weights synchronization time with accuracy.
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Figure 13. Ablation study of the hierarchical weights aggre-
gation.

The synchronization in RING consistently occupies the
most time (e.g., 81% for VGG-11) due to network contention.
Two communication-efficient baselines HiPress and 2D-Paral
manage to reduce the synchronization overhead to an av-
erage of 76.5% and 71.5% on average, respectively. Never-
theless, the bottleneck in these two baselines still persists
in communication since they synchronize inter-group (per-
batch) gradient communication simultaneously, contending
for the physical board NIC. FedAvg’s synchronization time
is notably lower, only 16.5–34.7%, owing to its epoch-based
synchronization strategy. SoCFlow’s synchronization time
falls in the middle of distributed machine learning baselines
and federated learning baseline, accounting for only 46% of
the total training time, attributed to its efficient hierarchical
weight aggregation.

4.6 Ablation Study
Overall techniques. Figure 13 demonstrates how each tech-
nique in SoCFlow is combined together to help train effi-
ciently and scalably step by step. The rightmost bar is the
same as baseline RING, while the leftmost one is SoCFlow.
The three steps in §3.1 and the data-parallel mixed-precision
training algorithm in §3.2 are represented by Group, Map-
ping, Plan, and Mixed correspondingly.
First, dividing SoCs into groups can avoid the network

traffic jam of all SoCs communicating together, leading to
an 8% and 57% speedup for VGG-11 and ResNet-18 models,
respectively. The more benefits for ResNet-18 are because
of more gradients to be synchronized. Besides, mapping the
logical topology into the physical SoC-Cluster architecture
can reduce training time by 1.05–1.10 ×. That is because our
mapping algorithm considers and minimizes the network
conflicts in synchronization. In addition, group-wise commu-
nication planning can achieve a 1.69–1.78 × speedup since
communication planning can avoid NIT conflicts and miti-
gate the network bottleneck. Last, the data-parallel mixed-
precision training algorithm reduces by 3.53–5.78× because
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Figure 14. Ablation study of the mixed-precision data-
parallel training algorithm.

it can exploit both the CPU and NPU to train a model in
parallel.
Although SoCFlow also has batch synchronization due

to its hierarchical weight aggregation, the synchronization
time is relatively short, only 25% of that for Ring-AllReduce.
On the other hand, FL spends a lot of time on epoch synchro-
nization, while Ring-AllReduce hardly spends any time on
it.
Mixed-precision data-parallel training algorithm. Fig-
ure 14 further shows how SoCFlow’s mixed-precision data-
parallel training algorithm can improve convergence speed
and accuracy. It only shows the first 10 epochs. Here, we
propose three new baselines. Ours-FP32 only uses CPU to
train an FP32 model; while Ours-INT8 only uses DSP to train
an INT8 model. Ours-Half always inputs half of the datasets
to the FP32 model and the rest to the INT8 model, a special
case as SoCFlow (𝛼 = 0.7), detailed in §3.2.

As shown in Figure 14, SoCFlow can achieve both high
accuracy, similar toOurs-FP32, and high training speed,
similar to Ours-INT8. That is because, with the help of
the INT8 model confidence hyper-parameter 𝛼 and compute
power ratio 𝛽 , SoCFlow can feed the maximum portion of
data to the NPU INT8 model to improve training speed with-
out affecting the convergence accuracy. Specifically, 𝛼 will
decrease with training progresses, which means that the
INT8 model is less and less confidential. At the beginning of
training, more data is trained on the INT8 model to improve
training speed with rapid improvement in accuracy as Ours-
INT8 does. At the end of the training, more data to the FP32
model to ensure higher accuracy, similar to Ours-FP32. As a
result, SoCFlow can incorporate the advantages of Ours-INT8
and Ours-FP32 methods. On the contrary, the ad-hoc method,
Ours-Half, cannot dynamically adjust the portion of input
data fed into the CPU and NPU models, so its training speed
is slower than Ours-INT8 and the accuracy is lower than
Ours-FP32, missing optimization opportunities that SoCFlow
can exploit.

5 Discussion
Feasibility of INT8 training on SoC-Cluster. SoC-Cluster
is an edge cloud platform primarily tailored to serve rela-
tively small models and simple computer vision tasks, such
as face recognition. While INT8 training may not be the
prevailing approach, recent extensive efforts on INT8 train-
ing [94, 114, 123] have delved into its potential, particularly
for these small edge-oriented models. By harnessing the ef-
ficiency of mobile SoC NPUs in INT8 operations [15–17],
these mixed-precision training algorithms have showcased
their ability to significantly reduce on-SoC training time
and energy consumption while incurring only negligible ac-
curacy losses [101]. Moreover, SoCFlow introduces a novel
data-parallel mixed-precision training algorithm designed to
mitigate the precision loss inherent in INT8-based training.
This algorithm effectively offloads a portion of the training
workload to the CPU, utilizing the more precise FP32 format
to compensate for the precision loss entailed by INT8-based
training. This innovative approach not only maximizes train-
ing speed but also preserves training accuracy.
Future applicability of SoCFlow. Recent advancements
have highlighted a compelling trend in mobile SoC NPUs,
wherein their capabilities have expanded significantly. These
NPUs now concurrently accommodate a diverse range of
low-precision data formats, including INT4, INT8, INT16,
and FP16 [15–17]. These versatile data formats cater to a
spectrum of application scenarios, spanning from image clas-
sification to keyword detection. For instance, the latest NPUs
in Snapdragon 8gen2 support INT8 and FP16 operations,
yielding a remarkable 18× speedup over the Snapdragon
865 employed in our experimental setup [15]. Given that
SoCFlow is a distributed training framework orthogonal to
low-precision training algorithm and leverages two main
techniques to train deep learning models fast and scalably
without being influenced by the network bottleneck and the
accuracy loss of low-precision training algorithm, the recent
developments of mobile NPUs opening up more opportuni-
ties for SoCFlow to train relatively larger DNNs, including
Transformers [90], on SoC-Cluster.

6 Related Work
On-device training. Recently, there has been a trend to
train a DNN model on mobile devices locally [9, 26, 40, 57,
73, 95, 101, 103]. DeepType [103] proposes incremental train-
ing to effectively train a personalized deep learning model
from a global model. Melon [95] reduces memory usage by a
novel lifetime-aware memory pool and memory-calibrated
progressive recomputation. Some of them tried to leverage
GPU/DSP offloading to accelerate training speed and reduce
training energy consumption [33, 101]. SoCFlow is orthogo-
nal to and compatible with those system-level optimizations.
Mixed-precision DNN training has been proposed to re-
duce training cost [21, 29, 31, 48, 68, 70, 81, 94, 96, 98, 114, 116,
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118, 119, 121–123]. These approaches use lower-precision
formats, such as INT8 and INT16, to represent the weights
and activation generated during training. UI8 [123] further
proposes a cosine-distance-based gradient quantization er-
ror estimation technique and direction-aware clip function
to minimize gradient quantization error. SoCFlow’s data-
parallel mixed-precision training algorithm is built on them
but algorithm-independent.
Distributed machine learning. Since training DNN mod-
els is too time-consuming, nowadays, many distributed train-
ing approaches are proposed to speed up the training pro-
cess, including data parallelism [59, 63, 64, 80], model par-
allelism [34], hybrid parallelism [52], and pipeline paral-
lelism [19, 46, 76]. Besides, many solutions have been pro-
posed to optimize communication efficiency between dif-
ferent workers [30, 36, 41, 49, 54, 93, 109, 113]. SoCFlow is
motivated by those efforts and is the first framework to sup-
port distributed training atop edge SoC-Cluster. Furthermore,
some researchers propose asynchronous or stale synchro-
nous parallel (SSP) aggregation which allows distributed
workers to read older, stale versions of parameters from a
local cache, instead of waiting to get them from a central
storage [23, 43, 117, 120]. This approach can reduce signif-
icantly synchronization waiting time while still providing
correctness guarantees.
Federated learning is also an emerging machine-learning
paradigm [26, 40, 57, 73, 77, 91] built atop on-device training
and requires many clients to train a DNN model collabora-
tively. Most of the prior works focus on model compression
techniques to address the communication bottleneck, while
some propose tree aggregation [50] and LAN-WAN aggre-
gation [107] to save network traffic. Those studies inspire
SoCFlow group-wise parallelism with delayed aggregation.
Junkyard Computing. A few recent works [75, 88] have
explored the opportunity of recycling obsolete smartphones
to build a computing cluster. However, they are mostly pro-
totyped with a very limited number of devices and tested
with microbenchmarks. In contrast, SoCFlow aims to develop
production-ready, widely deployed hardware. Meanwhile,
the challenges and opportunities for deep learning training
on the SoC-Cluster have not been addressed in those works.

7 Conclusion
This work presented SoCFlow, the first framework that can
efficiently train deep learning models on SoC-Cluster. To
achieve efficient and scalable training performance under
limited cross-SoC network capacity, SoCFlow incorporates
two novel techniques, including group-wise parallelism with
delayed aggregation and a data-parallel mixed-precision
training algorithm. Our experiments have demonstrated that

SoCFlow significantly and consistently outperforms all base-
lines regarding the training speed while preserving the con-
vergence accuracy, e.g., 1.6×–294× convergence speedup
with 32 SoCs.
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