
Video Analytics with
Zero-streaming Cameras

(*)Mengwei Xu1,2, (*)Tiantu Xu3, Yunxin Liu4, Felix Xiaozhu Lin5

(*) = co-primary
1Peking University, 2Beijing University of Posts and Telecommunications, 

3Purdue University, 4Tsinghua University, 5University of Virginia

1



Trends of surveillance cameras

• Low-cost, wireless cameras are growing exponentially and enabling
ubiquitous intelligence
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Query: return all frames last week that contains a bus



Trends of surveillance cameras

• Low-cost, wireless cameras grow exponentially and enable ubiquitous
intelligence
• Most videos are cold (i.e., never used till deletion)

§ We target retrospective query

3

A campus spanning around 1mi2
• equipped more than 1,000 cameras

Analysis over 6-month 3,000,000 hours of
videos (around 5.4PB) show that:
• Only <2% cameras were used
• Only <0.005% video data was used



Trends of surveillance cameras

• Low-cost, wireless cameras grow exponentially and enable ubiquitous
intelligence
• Most videos are cold (e.g., never used till deletion)
• Transmitting cold videos wastes precious wireless bandwidth
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Network 𝑈𝑠𝑎𝑔𝑒 = 𝐵𝑖𝑡𝑟𝑎𝑡𝑒 ∗ 𝐶𝑎𝑚𝑒𝑟𝑎𝑠 ∗ 𝑇𝑖𝑚𝑒

24*7 always-on!
Densely-deployed, large-scale!
1-2Mbps for 720P@30FPS!

(Wireless) bandwidth is for user applications (e.g.,
video streaming), not cold videos!!



Trends of surveillance cameras

• Low-cost, wireless cameras grow exponentially and enable ubiquitous
intelligence
• Most videos are cold (e.g., never used till deletion)
• Transmitting cold videos wastes precious wireless bandwidth
• Cheap camera storage can retain videos long enough (weeks to months)
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↑1.9× for mobile/wireless

↑2.5× for fixed broadband
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↓5.4× for 256GB SD card

↓2.6× for 128GB SD card

• Network Statistics from SpeedTest
• Storage statistics from Camelcamelcamel



Zero-streaming (ZS) cameras

1. Cameras store videos locally during capture time
2. Cameras respond to servers during query time
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Zero-streaming (ZS) cameras

1. Cameras store videos locally during ingestion time
2. Cameras respond to servers during query time

• A key question: how can we query fast?
• Challenges we are facing:

q Cameras are wimpy (No GPU, RaspberryPi-like)
q Network limited (the bottleneck!)
q User are waiting (return something useful AFAP)
q …

7



DIVA: a runtime for ZS cameras
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Capture time: building landmarks to capture
reliable video knowledge
• e.g., in which video areas buses usually appear

Query time: run NNs on camera to prioritize/filter
frames to be sent, and update the NNs
• Results to users are continuously refined



Supported query types in DIVA
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Positive
frames

Positive
time ranges

9:10:00-9:15:00
3:30:15-3:35:20
…

Statistics
Max: 25
Min: 3
Mean: 14.5

A query: (
1Timespan,
2Object,
3Type
)

Retrieval

Tagging

Counting



Supported query types in DIVA
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Supported query types in DIVA
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Positive
frames

Positive
time ranges

9:10:00-9:15:00
3:30:15-3:35:20
…

Statistics
Max: 25
Min: 3
Mean: 14.5

A query: (
1Timespan,
2Object,
3Type
)

Retrieval

Tagging

Counting

Query online refinement
- Rough results first, then keep refining them



Basics: operators

• Nothing but small neural networks (NNs)
• Small enough to run fast on cameras (x100s FPS)
• Rich accuracy-throughput tradeoff
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Basics: operators

• Nothing but small neural networks (NNs)
• Small enough to run fast on cameras (x100s FPS)
• Rich accuracy-throughput tradeoff

• How operators serve? As rankers or filters
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Design #1: landmarks (capture time)

• Running the expensive model on captured frames regularly (sparsely)
• Landmarks are used to train operators
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Design #1: landmarks (capture time)

• Key idea: exploiting spatial skews of video objects
q So operators can be more focused on areas of interests
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Cropping improves op performance

Car in Banff
100%

80%

Person in Boathouse

80% 100%

Object spatial skews is pervasive



Design #2: operator upgrade (query time)

• What operator to use? No silver bullet!
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Fast (yet inaccurate) operators win at early stage



Design #2: operator upgrade (query time)

• What operator to use? No silver bullet!
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Accurate (yet slow) operators win at later stage



Design #2: operator upgrade (query time)

• Multipass, multi-operator execution
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Concrete execution plan
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Concrete execution plan
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Concrete execution plan
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Concrete execution plan
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Concrete execution plan
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Concrete execution plan
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Cloud detects objs
& op training
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Continuous refinement of results

Landmarks
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Concrete execution plan
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Detailed questions:
• When to upgrade an operator?
• What operator to be upgraded to?
• What frames to be processed first?

Please refer to our paper for details!



More about DIVA

• Scaled to more cameras? Just adding more GPUs.

• DIVA is complementary to real-time video analytics, which shall be
deployed to critical regions, e.g., banks.
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Experiment settings

• 15 public video streams from YouTube
• Per stream: 48 hours, 720P@1FPS

• Hardware: RPI 3B/Odroid XU4 (Camera) + Nvidia Titan V (Server)
• Network: 0.1-10MB/s (1MB/s by default)
• Baselines
• CloudOnly, OptOp[1], PreIndexAll[2]

27 [1] Kang, Daniel, et al. “Noscope: optimizing neural network queries over video at scale.” VLDB 2017.
[2] Hsieh, Kevin, et al. “Focus: Querying large video datasets with low latency and low cost.” OSDI 2018.



Highlighted results

• DIVA outperforms the baselines throughout the query process
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Highlighted results

• DIVA improves end-to-end latency by 4X – 30X to baselines
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Highlighted results

• Both two key designs of DIVA are critical, e.g., in Tagging:
• Operator Upgrade brings 2.0X – 3.0X speedup
• Landmarks bring 1.6X – 3.1X speedup
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Highlighted results

• DIVA saves network bandwidth over “all streaming” by >1,000X as in
our campus case study.
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Highlighted results

• With sparser landmarks, DIVA’s
performance degrades slowly

• With inaccurate landmarks,
DIVA’s performance degrades
significantly
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Summary

• Zero-streaming cameras towards high resource efficiency
• A complement to cloud-centric approach

• DIVA: the first runtime for zero-streaming cameras
• Key techniques: landmarks and operator upgrade

• Beyond cameras: cold data is pervasive (IoT, smartphones, etc)!
• How to query them efficiently?
• A new research direction?
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