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Trends of surveillance cameras

* Low-cost, wireless cameras are growing exponentially and enabling
ubiquitous intelligence

Top rated

Based on star rating and number of customer ratings See more

4
“

>
Security Camera Outdoor, 1080P HD wansview Wireless Security Camera, [2021 Upgraded] Indoor Wireless Security Camera WiFi IP Camera -
Wireless Rechargeable Battery IP Camera 1080P HD, WiFi Home Security Camera,Littlelf Smart 1080P  KAMTRON HD Home Wireless
Powered WiFi Home Surveillance Indoor Camera for Baby/Pet/Nanny, Home WiFi IP Camera for Pet/Baby Baby/Pet Camera with Cloud Storage
Camera with Waterproof, Night... Motion Detection, 2 Way Audio Nig... Monitor with Motion... Two-Way Audio Motion Detection...
Yok kely ~ 6,302 ok kly v 20,117 Yok kly ~ 3,941 ok kA ilr ~ 8,985
$5299 $3099 43559 $389° $359 56599
More Buying Choices More Buying Choices More Buying Choices
$48.75 (5 used & new offers) $27.59 (3 used & new offers) $32.23 (3 used & new offers)

Query: return all frames last week that contains a bus



Trends of surveillance cameras

* Most videos are cold (i.e., never used till deletion)
= WWe target retrospective query

Zhongguanyuan |||
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A campus spanning around 1mi?
* equipped more than 1,000 cameras

Analysis over 6-month 3,000,000 hours of
videos (around 5.4PB) show that:

* Only <2% cameras were used

* Only <0.005% video data was used



Trends of surveillance cameras

* Transmitting cold videos wastes precious wireless bandwidth

Network Usage = Bitrate *» Cameras * Time

L' 24*7 always-on!

> Densely-deployed, large-scale!
> 1-2Mbps for 720P@30FPS!

(Wireless) bandwidth is for user applications (e.g.,
video streaming), not cold videos!!



Trends of surveillance cameras

* Cheap camera storage can retain videos long enough (weeks to months)
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Zero-streaming (ZS) cameras

1. Cameras store videos locally during capture time
2. Cameras respond to servers during query time\/g




Zero-streaming (ZS) cameras

1. Cameras store videos locally during ingestion time
2. Cameras respond to servers during query time

* A key question: how can we query fast?

* Challenges we are facing:
(1 Cameras are wimpy (No GPU, RaspberryPi-like)
1 Network limited (the bottleneck!)

1 User are waiting (return something useful AFAP)
..



DIVA: a runtime for ZS cameras

Camera

Expensive

obj detector Capture time: building landmarks to capture
reliable video knowledge
* e.g., in which video areas buses usually appear

Landmarks

Camera Cloud

Lightweight Expensive

& fast op obj detector O Query time: run NNs on camera to prioritize/filter
Res frames to be sent, and update the NNs

Refining * Results to users are continuously refined

Online op upgrade




Supported query types in DIVA

Positive
frames

Retrieval

>

A query:
7 q ry ( 9:10:00-9:15:00 Positive
Timespan,

. 3:30:15-3:35:20  time ranges
20bject, Tagging ] = oo __ .
Type R

A 4

) Max: 25

Min: 3 Statistics
Mean: 14.5

Counting




Supported query types in DIVA

A query: (
TTimespan,
20bject,

Positive
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Supported query types in DIVA

Query online refinement

- Rough results first, then keep refining them



Basics: operators

* Nothing but small neural networks (NNs)
* Small enough to run fast on cameras (x100s FPS)
* Rich accuracy-throughput tradeoff
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Basics: operators

* How operators serve? As rankers or filters

upload
queue

13

after ranked by
an operator

\ positive frames

(containing bus)

. negative frames




Design #1: landmarks (capture time)

* Running the expensive model on captured frames regularly (sparsely)
* Landmarks are used to train operators

> Bootstrap
operators

> To be
processed

X ingested frames

During capture D% untagged frames During query
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Design #1: landmarks (capture time)

* Key idea: exploiting spatial skews of video objects
J So operators can be more focused on areas of interests

i A
Car in Banff 1400 - N w/ crop
— A
0 1200 - A w/o crop
o
E: 1000 A A
©
A
Y A A A
o A
- V600 - 4 A
Person in Boathouse _
% A A
S 400 - . g: A 4
- Al o,
A 2aulae

0i2 0i3 014 Oj5 0i6 017 0.8
model precision (recall = 0.9)

Object spatial skews is pervasive

Cropping improves op performance
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Design #2: operator upgrade (query time)

* What operator to use? No silver bullet!
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Fast (yet inaccurate) operators win at early stage



Design #2: operator upgrade (query time)

* What operator to use? No silver bullet!
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Accurate (yet slow) operators win at later stage



Design #2: operator upgrade (query time)

* Multipass, multi-operator execution
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Concrete execution plan

O 1 Query

start




Concrete execution plan

camera J'_u—\
1
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Time
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Concrete execution plan

O 1 Query

start

Bootstrap
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Concrete execution plan

O 1 Query

start

Bootstrap Cloud detects objs

|9 e & op training
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Concrete execution plan

1 Query
start

S

Bootstrap Cloud detects objs

Op
e & op training |

| upgrade

1
1
10p2
frames

‘: |
| ‘lV Time
camera J_uﬁ—\ ——P
0 | 9 Op1 runs

@Opz runs
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Concrete execution plan

O | Query Continuous refinement of results 1 Query
1 1
|= start e = abort
: Bootstrap Cloud detects objs Op \
! & op training upgrade ‘
cloud r |o e | | | \4I_
1
/) 0p2 |
1
Landmarks frames ! frames 1 _
‘// ' ! 1 Time
camera J_uﬁ"—\
0 | 9 Op1 runs @Opz runs



Concrete execution plan

Detailed questions:

 When to upgrade an operator?
 What operator to be upgraded to?
* What frames to be processed first?

Please refer to our paper for details!



More about DIVA

* Scaled to more cameras? Just adding more GPUs.

* DIVA is complementary to real-time video analytics, which shall be
deployed to critical regions, e.g., banks.

Higher Real-time detection
comp ute cost ;
" Early discarders Live analytics
1 T on camera
lee cameras Reducto FilterForward on CIOUd
QUEfy Vigil Glimpse VideoStorm Chameleon
Exploratory Index video at
analytics capture timerecs ~ LOW-delay
Retro ﬁThis Archive on cloud retrieval
Query WOI'k NoScope VStore
Higher
Zero All
net cost

26 Streaming while capturing?



Experiment settings

* 15 public video streams from YouTube
* Per stream: 48 hours, 720P@1FPS

AT
Hdrd Rock

L HOOTERS ..

%

ﬂ o Ye ll .
s

* Network: 0.1-10MB/s (1MB/s by default)

e Baselines
* CloudOnly, OptOp!t, PreindexAlll2]

[1] Kang, Daniel, et al. “Noscope: optimizing neural network queries over video at scale.” VLDB 2017.
[2] Hsieh, Kevin, et al. “Focus: Querying large video datasets with low latency and low cost.” OSD/ 2018.
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Highlighted results

* DIVA outperforms the baselines throughout the query process
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Chaweng

500 1000
query delay (seconds)

Q: Retrieving frames
containing a bicycle



(a) Retrieval

(b) Tagging

Highlighted results

* DIVA improves end-to-end latency by 4X — 30X to baselines
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Highlighted results

* Both two key designs of DIVA are critical, e.g., in Tagging:
* Operator Upgrade brings 2.0X — 3.0X speedup
* Landmarks bring 1.6X — 3.1X speedup
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Highlighted results

* DIVA saves network bandwidth over “all streaming” by >1,000X as in
our campus case study.

10000 :
. X @ Retrieval
>
~— 1000x +-Tagging _ _
= » Most frames will not be queried
= 100x » Even for queried frames, most of them
3 don’t have to be uploaded
>
o  10x
o

0) 50 100
Fraction of Queried Video (%)
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Highlighted results

1024
875

Ours + Yv3 *
Ours + Yv2

* With sparser landmarks, DIVA's Ours + YTiny

Ours w/o LM

performance degrades slowly PreindexAll+Yv2

PrelndexAll+YTiny *

240
378
1652
118 |

* = default used in
end-to-endtest query speed (x realtime)  Query speed (x realtime)

. . 7g =-CloudOnly + LM . =e=CloudOnly + LM
e With inaccurate landmarks, £ ~=-Ours <e-Ours
DIVA’s performance degrades = ]
° L[] L[] s ! - 4
S|gn |f| Cd ntly :-)_ \default: 1in 30 seconds default: 1in 30 seconds
5

Landmark interval / seconds Landmark interval / seconds



Summary

e Zero-streaming cameras towards high resource efficiency
* A complement to cloud-centric approach

* DIVA: the first runtime for zero-streaming cameras
* Key techniques: landmarks and operator upgrade

* Beyond cameras: cold data is pervasive (loT, smartphones, etc)!
* How to query them efficiently?
* A new research direction?
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Thanks for your listenting!

Mengwei Xu Tiantu Xu Yunxin Liu Felix Xiaozhu Lin
PKU & BUPT Purdue ECE Tsinghua UVA

Contact: Mengwei Xu (mwx@bupt.edu.cn)



