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Abstract

Low-cost cameras enable powerful analytics. An unexploited

opportunity is that most captured videos remain “cold” with-

out being queried. For efficiency, we advocate for these cam-

eras to be zero streaming: capturing videos to local storage

and communicating with the cloud only when analytics is

requested.

How to query zero-streaming cameras efficiently? Our re-

sponse is a camera/cloud runtime system called DIVA. It

addresses two key challenges: to best use limited camera

resource during video capture; to rapidly explore massive

videos during query execution. DIVA contributes two uncon-

ventional techniques. (1) When capturing videos, a camera

builds sparse yet accurate landmark frames, from which it

learns reliable knowledge for accelerating future queries. (2)

When executing a query, a camera processes frames in mul-

tiple passes with increasingly more expensive operators. As

such, DIVA presents and keeps refining inexact query results

throughout the query’s execution. On diverse queries over

15 videos lasting 720 hours in total, DIVA runs at more than

100× video realtime and outperforms competitive alterna-

tive designs. To our knowledge, DIVA is the first system for

querying large videos stored on low-cost remote cameras.

1 Introduction

Cameras are pervasive: a survey of 61 organizations shows

that from 2015 to 2018 their average number of cameras has

increased by almost 70%, from 2,900 to 4,900 [6]. Insights

of videos can be extracted by queries such as “get the daily

peak pedestrian count in the past week” [36,67,82,101]. Four

recent trends motivate our work.

*Mengwei Xu and Tiantu Xu contributed equally to the paper.
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Figure 1: The design space of video analytics systems, show-

ing this work and prior systems.

(1) Low-cost, wireless cameras grow fast As key comple-

ments to high-end cameras, low-cost cameras (<$40) are in-

creasingly pervasive [17, 18, 34]. These cameras often have

limited compute resources yet spacious storage. Being wire-

less, these cameras are meant to be installed by individuals or

small businesses with ease just as other wireless sensors.

(2) Most videos are cold Users deploy cameras to know-

ingly capture excessive videos, expecting that most videos

will never be queried [72]. This is because interesting events

are often unforeseeable, e.g., car accidents; the need for exam-

ining such events emerges well after the fact. §2.1 presents a

6-month study of real-world camera deployment, where only

<0.005% of captured videos are eventually queried.

(3) Transmitting cold videos wastes wireless bandwidth Cold

videos should not compete with human users for network

bandwidth. If streaming video in real-time, a single cam-

era generates traffic at 0.2 MB/s–0.4 MB/s (720P@1–30

FPS); with multiple cameras on one network, their always-on

streams easily consume most, if not all, bandwidth of con-

sumer WiFi, which is 0.2 MB/s–3 MB/s (median: 0.99) in a

recent global survey [9] and less than 1.5 MB/s in an academic

study [47]. A dedicated network for cameras is expensive, as

the network monetary cost will exceed the camera cost in

several months [14].

(4) Camera storage can retain videos long enough A cheap



camera can already store videos for weeks or months. Such

retention periods already satisfy many video scenarios [2,

10]. In fact, legal regulations often prevent retention longer

than a few months, mandating video deletion for privacy [1,

7]. Existing measures can assure data security of on-camera

videos. §2.3 will provide evidence in detail.

Zero streaming & its use cases How to analyze cold videos

produced by numerous low-cost cameras? We advocate for a

system model dubbed “zero streaming”. (1) Cameras continu-

ously capture videos to their local storage without uploading

any. (2) Only in response to a retrospective query, the cloud

reaches out to the queried camera and coordinates with it

to process the queried video. (3) While the video is being

processed, the system presents users with inexact yet useful

results; it continuously refines the results until query com-

pletion [50]. In this way, a user may explore videos through

interactive queries, e.g., aborting an ongoing query based on

inexact results and issuing a new query with revised parame-

ters [45, 46]. Zero streaming has rich use cases, for example:

• To trace the cause of recent frequent congestion on a high-

way, a city planner queries cameras on nearby local roads,

requesting car counts seen on these local roads.

• To understand how recent visitors impact bobcat activities,

a ranger queries all the park’s cameras, requesting time ranges

where the cameras capture bobcats.

Advantages Zero streaming suits resource-frugal cameras in

large deployment. When capturing videos, cameras require

no network or external compute resources. Only to process a

query, the cameras require networks such as long-range wire-

less [35] and cloud resources such as GPU. Zero streaming

adds a new point to the design space of video analytics shown

in Figure 1. It facilitates retrospective, exploratory analytics,

a key complement to real-time event detection and low-delay

video retrieval [51,55,65,99]. The latter demands higher com-

pute or network resources per camera and hence suits fewer

cameras around hot locations such as building entrances.

DIVA To support querying zero-streaming cameras, we

present a camera/cloud runtime called DIVA. As shown in

Figure 2, a camera captures video to local storage; it deletes

videos after their maximum retention period. In response to

a query, the camera works in conjunction with the cloud:

the camera runs operators, implemented as lightweight neural

nets (NNs), to rank or filter frames; the cloud runs full-fledged

object detection to validate results uploaded from the camera.

DIVA thus does not sacrifice query accuracy, ensuring it as

high as that of object detection by the cloud.

The major challenges to DIVA are two. (1) During video

capture: how should cameras best use limited resources for fu-

ture queries? (2) To execute a query: how should the cloud and

the camera orchestrate to deliver useful results rapidly? Ex-

isting techniques are inadequate. Recent systems pre-process

(“index”) video frames as capturing them [51] and answer
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Figure 2: Overview of DIVA

queries based on indexes only. Yet, as we will show in §8,

low-cost cameras can hardly build quality indexes in real-

time. Many systems process video frames in a streaming

fashion [40, 42, 92, 97, 100], which however miss key oppor-

tunities in retrospective queries.

To this end, DIVA has two unconventional designs.

• During video capture: building sparse but sure land-

marks to distill long-term knowledge (Figure 2(a)) To op-

timize future queries, our key insight is that accurate knowl-

edge on a sparse sample of frames is much more useful than

inaccurate knowledge on all frames. This is opposite to exist-

ing designs that detect objects with low accuracy on all/most

frames as capturing them [40, 51]. On a small sample of

captured video frames dubbed landmarks, the camera runs

generic, expensive object detection, e.g., YOLOv3 [77]. Con-

strained by camera hardware, landmarks are sparse in time,

e.g., 1 in every 30 seconds; yet, with high-accuracy object

labels, they provide reliable spatial distributions of various

objects over long videos. High accuracy is crucial, as we will

validate through evaluation (§8.3). DIVA optimizes queries

with landmarks: it prioritizes processing of frame regions with

object skewness learned from landmarks; it bootstraps oper-

ators with landmarks as training samples. Landmarks only

capture a small fraction of object instances; those uncaptured

do not affect correctness/accuracy (§4).

• To execute queries: multipass processing with online

operator upgrade (Figure 2(b)) To process large videos, our

key insight is to refine query results in multiple passes, each

pass with a more expensive/accurate operator. Unlike prior

systems processing all frames in one pass and delivering re-

sults in one shot [40, 58, 59], multipass processing produces

useful results during query execution, enabling users to ex-

plore videos effectively. To do so, DIVA’s cloud trains oper-

ators with a wide spectrum of accuracies/costs. Throughout

query execution, the cloud keeps pushing new operators to the

camera, picking the next operator based on query progress,

network conditions, and operator accuracy. The early oper-

ators quickly explore the frames for inexact answers while

later operators slowly exploit for more exact answers.

On 720-hour videos in total from 15 different scenes, DIVA

runs queries at more than 100× video realtime on average,

with typical wireless conditions and low-cost hardware. DIVA

returns results quickly: compared to executing a query to



completion, DIVA takes one order of magnitude shorter time

to return half of the result frames. Compared to competitive

alternatives, DIVA speeds up queries by at least 4×.

Contributions We have made the following contributions.

• Zero streaming, a new model for low-cost cameras to oper-

ate on frugal networks while answering video queries.

• Two novel techniques for querying zero-streaming cam-

eras: optimizing queries with accurate knowledge from sparse

frames; processing frames in multiple passes with operators

continuously picked during a query.

• DIVA, a concrete implementation that runs queries at more

than 100× realtime with uncompromised query accuracy. To

our knowledge, DIVA is the first system designed for querying

large videos stored on low-cost remote cameras.

Ethical considerations In this study: all visual data used is

from the public domain; no information traceable to human

individuals is collected or analyzed.

2 Motivations

2.1 Cold videos are already pervasive

Case study: Cold videos in real-world deployment We

conduct an IRB-approved study examining existing camera

deployment on PKU campus. Spanning 1 mi2, the campus

hosts tens of thousands of employees and operates more

than 1,000 cameras. All captured videos are stored for a few

months for retrospective queries before deletion. The camera

deployment supports AI-based queries, e.g., object detection,

not traceable to unique persons, and reviews by human an-

alysts. We analyzed system logs spanning six continuous

months: in over 3,000,000 hours of videos (5.4 PB) have been

captured, only <0.005% video data from <2% cameras are

queried.

Why are most videos cold? (1) Interesting video events

are both unpredictable (thus the need for capturing exces-

sive videos) and sparse (thus low chances for footage being

queried). For example, severe traffic breakdown contributes

to less than 5% of the time per day [89]; Foreign intelli-

gence surveillance court only reviewed a tiny fraction of video

for terrorism events [93]. (2) Analyzing videos is expensive:

it still requires a GPU of a few thousand dollars for high-

accuracy object detection over a video stream [59]. (3) In

years to come, cheap cameras will produce more videos.

2.2 Target queries and their execution

We target ad-hoc queries [51, 59, 96, 100]. The query parame-

ters, including object classes, video timespans, and expected

accuracies, are specified at query time rather than video cap-

ture time. Such queries are known for flexibility.

High-accuracy object detection is essential Object detec-

tion is the core of ad-hoc queries [58]. Minor accuracy loss

in object detection may result in substantial loss in query

performance, as we will demonstrate in §8. While NNs signif-

icantly advance object detection, new models with higher ac-

curacy demand much more compute. For instance, compared

to YOLOv3 (2018) [77], CornerNet (2019) [64] improves

Average Precision by 28% while being 5× more expensive.

Low-cost cameras cannot answer queries without cloud

Cameras in real-world deployment are reported to be resource-

constrained [65]. Low-cost cameras (<$40) have wimpy cores,

e.g., Cortex-A9 cores for YI Home Camera [18] and MIPS32

cores for WyzeCam [17]; their DRAM is no more than a few

GBs [15, 16]. In recent benchmarks, they run state-of-the-art

object detection at 0.1 FPS [8, 66], incapable of keeping up

with video capture at 1–30 FPS [51, 59]. NN accelerators

still cannot run high-accuracy object detection fast enough at

low enough monetary cost, e.g., Intel’s Movidius ($70) runs

YOLOv3 at no faster than 0.5 FPS. In the foreseeable future,

we expect that the resource gap between high-accuracy object

detection and low-cost camera continues to exist.

2.3 A case for zero streaming

Streaming cold videos wastes bandwidth As discussed in

§1, cameras are cheap while wireless spectrum is precious.

Deploying streaming cameras on a shared network incurs

poor experience [3, 11] and draws researcher attention [40,

100]. Dedicated networks are costly [14] and thus only suit a

small number of cameras in critical locations. While wireless

bandwidth grows, consumer demand grows even faster, e.g.,

20× for VR/AR and 10× for gaming [5]. Cold video traffic

should not contend with consumers for network bandwidth.

Streaming optimizations cannot offset the waste One may

reduce FPS or resolution of streamed videos. Even if users tol-

erate the resultant lower query accuracy, the saved bandwidth

is incomparable to the waste on overwhelmingly streamed

cold videos, as we will experimentally show (§8). On-camera

“early filters” [40, 42, 65] are still suboptimal when querying

massive cold videos. (1) Without knowing query objects/pa-

rameters at video capture time, a camera may run a generic

filter, e.g., discarding no-motion frames; it still streams sub-

stantial survival frames (e.g., consider a street-view camera).

As stated above, most of these frames will remain cold and

hence wasted. (2) The camera may run a large set of specific

filters covering all possible query objects/parameters. Even if

possible, this incurs a much higher compute cost to camera.

Edge processing does not justify streaming Cameras may

stream to edge servers. Yet, streaming hundreds if not thou-

sands of always-on, cold video streams, even if possible on

certain wireless infrastructures, still wastes precious wireless

spectrum at the edge [69]. Furthermore, deploying and man-

aging video edge servers can be challenging and costly in



many scenarios, such as construction sites and remote farms.

Size Yr.2017 Yr.2020 720p@30FPS 720p@1FPS

128GB $45 $17 ∼11 days ∼3 weeks

256GB $150 $28 ∼3 weeks ∼ 6 weeks

Table 1: Cheap µSD cards on cameras retain long videos for

humans to review [4] or for machines to analyze [51].

Cameras can retain videos long enough Table 1 shows the

price of µSD cards has been dropped by 2.6×–5.4× in the

past few years. Cameras can retain videos for several weeks

and for several months soon. Such a retention period is already

adequate for most retrospective query scenarios, where videos

are retained from a few weeks to a few months based on best

practice and legal regulations [1, 2, 7, 10]. For privacy, many

regulations prohibit video retention longer than a few months

and mandate deletion afterwards [1, 7].

Our model & design scope To harness cold videos, we ad-

vocate for zero streaming. We focus on cold videos being

queried for the first time and querying individual cameras. We

intend our design to form the basis of future enhancement and

extension, e.g., resource scheduling for multiple queries/user-

s/tenants [40], caching for repetitive queries [95], exploiting

past queries for refinement [41], and exploiting cross-camera

topology [54]. We address limited compute resource on cam-

eras [15] and limited network bandwidth [47]. We do not

consider the cloud as a limiting factor, assuming it runs fast

enough to process frames uploaded from cameras.

3 The DIVA Overview

Query types Concerning a specific camera, an ad-hoc query

(T ,C ) covers a video timespan T , typically hours or days,

and an object class C as detectable by modern NNs, e.g., any

of the 80 classes of YOLOv3 [77]. As summarized in Table 2,

DIVA supports three query types: Retrieval, e.g., “retrieve

all images that contain buses from yesterday”; Tagging, e.g.,

“return all time ranges when any deer shows up in the past

week”, in which the time ranges are returned as metadata but

not images; Counting, e.g., “return the maximum number of

cars that ever appear in any frame today”.

System components DIVA spans a camera and the cloud.

Between them, the network connection is only provisioned

at query time. To execute a query, a camera runs lightweight

NNs, or operators, to filter or rank the queried frames for

upload. On the uploaded frames, the cloud runs generic, high-

accuracy object detection and materializes query results. Ta-

ble 2 summarizes executions for different queries:

• The camera executes rankers for Retrieval and max Count

queries. A ranker scores frames; a higher score suggests that

a frame is more likely to contain any object of interest (for

Retrieval) or a large count of such objects (for max Count).
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Figure 3: The workflow of a query’s execution.

• The camera executes filters for Tagging queries. A filter

scores frames; it resolves any frame scored below/above two

pre-defined thresholds as negative/positive, and deems other

frames as unresolved. For each resolved frame, the camera

uploads a positive/negative tag; the camera either uploads

unresolved frames for the cloud to decide or defer them to

more accurate filters on camera in subsequent passes.

Query execution Upon receiving a query, the cloud retrieves

all landmarks in queried video as low-resolution thumbnails,

e.g., 100×100, with object labels and bounding boxes (Fig-

ure 3 1 ). The cloud uses landmarks: (1) to estimate object

spatial distribution, e.g., “90% queried objects appear in a

100×100 region on the top-right”, which is crucial to query

optimization (§4); (2) as the initial training samples for boot-

strapping a family of camera operators ( 2 ). The camera fil-

ters/ranks frames and uploads the ranked or surviving frames

( 3 ). The cloud processes the uploaded frames and emits

results, e.g., positive frames. It trains operators for higher

accuracy ( 4 ). Observing resource conditions and positive

ratios in uploaded frames, the cloud upgrades the operator on

camera ( 5 ). With the upgraded operator, the camera contin-

ues to process remaining frames ( 6 ). Step ( 4 )–( 6 ) repeat

until query abort or completion. Throughout the query, the

cloud keeps refining the results presented to the user ( 7 ).

Notable designs (1) The camera processes frames in mul-

tiple passes, one operator in each pass. (2) The camera pro-

cesses and uploads frames asynchronously. For instance,

when the camera finishes ranking 100 out of total 1,000

frames, it may have uploaded the top 50 of the 100 ranked

frames. This is opposed to common ranking which holds off

frame upload until all the frames are ranked [38, 53, 61]. (3)

The processing/upload asynchrony facilitates video explo-

ration: it amortizes query delay over many installments of

results; it pipelines query execution with user thinking [45].

Table 2 summarizes a user’s view of query results and the

performance metrics. While such online query processing has

been known [43,71], we are the first applying it to visual data.

Limitations DIVA is not designed for several cases and may

underperform: querying very short video ranges, e.g., minutes,

for which simply uploading all queried frames may suffice

without operators; querying non-stationary cameras for which

landmarks may not yield accurate object distribution. DIVA

is vulnerable to loss of video data in case of camera stor-



Type & Semantics Execution User’s view of query results Performance Metrics 

Retrieval.  

Get positive video frames (i.e., 

containing C) within T 

Camera: multipass ranking of frames 

Uploaded: ranked frames 

Cloud: object detection for identifying true positives 

• Positive frames being uploaded;  

• Estimated % of positives retrieved 

The rate of the user receiving 

positive frames 

Tagging.  

Get time ranges from T that 

contain C 

Camera: multipass filtering of frames  

Uploaded: unresolved frames; tags of resolved frames 

Cloud: object detection to tag unresolved frames 

• A video timeline with pos/neg ranges; 

• Tagging resolution, i.e., 1 in every N 

adjacent frames tagged 

The refining rate of tagging 

resolution seen by the user 

Counting.  

Get max/mean/median count 

of C across all frames in T 

Camera: multipass ranking (max) or random sampling 

(mean/median) of frames 

Uploaded: ranked or sampled frames  

Cloud: object detection to count objects 

• Running counts that converge to ground 

truth; 

• % of frames processed;  

• Estimated time to complete the query 

The rate of running counts 

converging to ground truth 

 

Table 2: A summary of supported queries. T is the queried video timespan; C is the queried object class
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(a) Banff (b) Boathouse (c) Chaweng

Figure 4: Class spatial skews in videos. In (a) Banff: 80%

and 100% of cars appear in regions that are only 19% and

57% of the whole frame, respectively.

Persons

(2 hrs @ 0.01FPS)

Persons

(20 hrs @ 0.01FPS)

Persons

(48 hrs @ 1FPS)

Figure 5: Class spatial distribution can be estimated from

sparse frames sampled over long video footage. Among

the three heatmaps: while sparse sampling over short footage

(left) significantly differs from dense sampling of long footage

(right), sparse sampling of long footage (middle) is almost

equivalent to the right. Video: Tucson (see Table 4).

age failure. Users can mitigate such a risk via cross-camera

data backup (RAID-like techniques) on the same local area

network or by increasing camera deployment density.

4 Landmark Design

Surveillance cameras have a unique opportunity: to learn ob-

ject class distribution from weeks of videos. We focus on

spatial skews: objects of a given class are likely to concen-

trate on certain small regions on video frames. In examples

of Figure 4(a)-(b), most cars appear near a stop sign; most

persons appear in a shop’s aisle. Such long-term skews are

rarely tapped in prior computer vision work, which mostly

focused on minute-long videos [52, 54, 78, 81, 102]. Com-

pared to recent work that improved classifier performance

by cropping video frames [40], DIVA takes a step further by

automatically learning spatial skews from sparse frames with

resource efficiency.

The design is backed up by three key observations. (1) One

object class may exhibit different skews in different videos

(Figure 4(a)-(c)); different classes may exhibit different skews

in the same video (Figure 4(c)). (2) The skews are pervasive:

surveillance cameras cover long time spans and a wide field

of view, where objects are small; in the view, objects are

subject to social constraints, e.g., buses stop at traffic lights,

or physical constraints, e.g., humans appear on the floor. (3)

The skews can be learned through sparse frame samples, as

exemplified by Figure 5.

To exploit such an opportunity, DIVA makes the following

design choices. High-accuracy object detection: at capture

time, the camera runs an object detector with the highest

accuracy as allowed by the camera’s hardware, mostly mem-

ory capacity. This is because camera operators crucially de-

pend on the correctness of landmarks, i.e., the object labels

and bounding boxes. We will validate this experimentally

(§8.3). Sparse sampling at regular intervals: to accommo-

date slow object detection on cameras, the camera creates

landmarks at long intervals, e.g., 1 in every 30 seconds in

our prototype (§8). Sparse sampling is proven valid for esti-

mating statistics of low-frequency signals [37], e.g., object

occurrence in videos in our case. We will validate this (§8.3);

without assuming a priori of object distribution, regular sam-

pling ensures unbiased estimation of the distribution [79].

Given a priori, cameras may sample at corresponding random

intervals for unbiased estimation.

Key idea: exploiting spatial skews for performance The

cloud learns the object class distribution from landmarks of

the queried video timespan. It generates a heatmap for spatial

distribution (Figure 4). Based on the heatmap, the cloud pro-

duces camera operators consuming frame regions of different

locations and sizes. Take Figure 4(a) as an example: a filter

may consume bottom halves of all frames and accordingly fil-

ter frames with no cars; for Figure 4(b), a ranker may consume

a smaller bounding box where 80% persons appear and rank

frames based on their likelihood of containing more persons.

Figure 6 shows that, by zooming into smaller regions, opera-

tors run faster and deliver higher accuracy. By varying input

region locations/sizes, DIVA produces a set of operators with

diverse costs/accuracies. By controlling the execution order

of operators, DIVA processes “popular” frame regions prior

to “unpopular” regions. DIVA never omits any region when it

executes a query to completion to guarantee correctness.

What happens to instances uncaptured by landmarks?
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Figure 6: On-camera operators benefit from long-term

video knowledge substantially. Each marker: an operator.

For querying buses on video Banff (see Table 4).

Sparse by design, landmarks are not meant to capture all

object instances; instead, they are used as inexact estima-

tors and initial training samples. Reducing landmarks will

degrade query speed, as we will experimentally quantify in

§8.3. Doing so, however, does not affect query correctness

or accuracy: the instances uncaptured by landmarks will be

eventually processed by DIVA as a query goes on.

5 Online Operator Upgrade

5.1 The rationale

Three factors determine a query’s execution speed:

1. Pending workloads: the difficulty of the frames to be pro-

cessed, i.e., how likely will the frame be mis-filtered or mis-

ranked on camera.

2. Camera operators: cheap operators spend less time on

each frame but are more likely to mis-filter/mis-rank frames,

especially difficult frames. This is shown in Figure 6.

3. Network condition: the available uplink bandwidth.

The three factors interplay as follows.

• Queries executed with on-camera rankers A camera

ranks and uploads frames asynchronously (§3). The key is

to maximize the rate of true positive frames arriving at the

cloud, for which the system must balance ranking speed/ac-

curacy with upload bandwidth. (1) When the camera runs a

cheaper ranker, it ranks frames at a much higher rate than

uploading the frames; as a result, the cloud receives frames

hastily selected from a wide video timespan. (2) When the

camera runs an expensive ranker, the cloud receives frames

selected deliberately from a narrow timespan. (3) The camera

should never run rankers slower than upload, which is as bad

as uploading unranked frames.

As an example, ECHEAP and EEXP on the top of Figure 7

compare two possible executions of the same query, running

cheap/expensive rankers respectively. Shortly after the query

starts ( 1 ), ECHEAP swiftly explores more frames on camera;

it outperforms EEXP by discovering and returning more true

Time

Already done!

ECHEAP

EEXP

Multi

pass

2 3

Expensive ranking 

& uploading…
All done

Expensive ranking 

& uploading…

Cheap ranking 

& uploading…
Uploading…

1
Uploading…

4

5

Uploaded Uploaded Uploaded

True Positive True Negative UnrankedFrames

Expensive ranking 

& uploading…

Cheap ranking 

& uploading…

Figure 7: Three alternative executions of a Retrieval

query, showing multipass ranking (bottom) outperforms

running individual rankers alone (top two). Each row:

snapshots of the upload queue at three different moments.

In a queue: ranking/uploading frames from left to right.
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Figure 8: Cheap/expensive camera operators excel at dif-

ferent query stages. Each subfigure: two alternative execu-

tions of the same query, showing query progress (bars) and

the corresponding operator’s progress (arrows).

positive frames. As both executions proceed to harder frames

( 2 ), ECHEAP makes more mistakes in ranking; it uploads an

increasingly large ratio of negatives which wastes the exe-

cution time. By contrast, EEXP ranks frames slower yet with

much fewer mistakes, hence uploading fewer negatives. It

eventually returns all positives earlier than ECHEAP ( 3 ).

The microbenchmark in Figure 8(a) offers quantitative evi-

dence. E1 spends less time (0.7×) in returning the first 90%

positives, but more time (1.7×) in returning 99% positives.

Furthermore, lower upload bandwidth favors a more expen-

sive ranker, as the uploaded frames would contain a higher

ratio of positives, better utilizing the precious bandwidth.

• Queries executed with on-camera filters The key is to

maximize the rate of resolving frames on camera. Cheap

filters excel on easy frames, resolving these frames fast with

confidence. They are incapable on difficult frames, wasting

time on attempting frames without much success in resolving.

They would underperform expensive filters that spend more

time per frame yet being able to resolve more frames.

The benchmark in Figure 8(b) shows two executions with

cheap/expensive filters. Early in the query, E1 makes faster

progress as the camera quickly resolves 50% of the frames

(4× less time than E2). Later in the execution, E1 lags behind

as the camera cannot resolve the remaining frames and must



upload them. By contrast, E2 resolves 82% of frames on

camera and only uploads the remaining 18%. As a result, E2

takes 1.3× less time in completing 90% and 99% of the query.

Summary & implications It is crucial for DIVA to pick op-

erators with optimal cost/accuracy at query time. The choice

not only varies across queries but also varies throughout a

query’s execution: easy frames are processed early, leaving

increasingly difficult frames that call for more expensive op-

erators. DIVA should monitor pending frame difficulty and

network bandwidth and upgrade operators accordingly.

5.2 Multipass, multi-operator execution

DIVA manages operators with the following techniques. (1) A

camera processes frames iteratively with multiple operators.

(2) The cloud progressively updates operators on camera,

from cheaper ones to more expensive ones, as the direction

shown in Figure 6. In picking operators, the cloud dynami-

cally adapts operator speed to frame upload speed. (3) The

cloud uses frames received in early execution stages to train

operators for later stages; as the latter operators are more

expensive, they require more training samples.

• Multipass ranking This is exemplified by the bottom execu-

tion in Figure 7. The camera first runs a cheap ranker, moving

positives towards the front of the upload queue ( 4 ). Subse-

quently, the camera runs an expensive ranker, continuously

reordering unsent frames in a smaller scope ( 5 ). Throughout

the query, the camera first quickly uploads easy frames that are

quickly ranked and slows down to vet difficult frames with ex-

pensive/accurate ranking. Notably, the cheaper ranker roughly

prioritizes the frames as input for the expensive ranker, en-

suring the efficacy of the expensive ranker. In actual query

executions, a camera switches among 4–8 operators (§8).

• Multipass filtering The camera sifts undecided, unsent

frames in multiple passes, each with a more expensive filter

over a sample of the remaining frames. Throughout one query,

early, cheaper filters quickly filter easier frames, leaving more

difficult frames for subsequent filters to resolve.

6 Query Execution Planning

DIVA plans a concrete query execution by (1) the camera’s

policy for selecting frames to process; (2) the cloud’s policy

for upgrading on-camera operators. We now discuss them.

6.1 Executing Retrieval queries

Policy for selecting frames To execute the initial operator,

the camera prioritizes fixed-length video spans (e.g., 1 hour)

likely rich in positive frames, estimated based on landmark

frames. In executing subsequent operators, the camera pro-

cesses frames in their existing ranking as decided by earlier

operators, as described in §5. The camera gives opportunities

to frames never ranked by prior operators, interleaving their

processing with ranked frames with mediocre scores (0.5).

Policy for operator upgrade As discussed in §3, DIVA

switches from cheap operators to expensive ones, and matches

operator speed to frame upload rate. To capture an operator

op’s relative speed to upload, it uses one simple metric: the

ratio between the two speeds, i.e., fop = FPSop/FPSnet . Op-

erators with higher fop tend to rapidly explore frames while

others tend to exploit slowly. The operator speed FPSop is

profiled offline. (1) Selecting the initial operator In general,

DIVA should fully utilize the upload bandwidth with positive

frames. As positive frames are scattered in the queried video

initially, the camera should explore all frames sufficiently fast.

Otherwise, it would either starve the uplink or knowingly up-

load negative frames. Based on this idea, the cloud picks the

most accurate operator from the ones that are fast enough,

i.e., fop ×Rpos > 1, where Rpos is the ratio of positives in the

queried video, estimated from landmarks. (2) When to up-

grade: current operator losing its vigor The cloud upgrades

operators either when the current operator finishes processing

all frames, or the cloud observes a continuous quality decline

in recently uploaded frames, an indicator of the current op-

erator’s incapability. To decide the latter, DIVA employs a

rule: the positive ratio in recently uploaded frames are k× (de-

fault: 5) lower than the frames uploaded at the beginning; (3)

Selecting the next operator: slow down exponentially Since

the initial operator promotes many positives towards the front

of the upload queue, subsequent operators, scanning from the

queue front, likely operate on a larger fraction of positives. Ac-

cordingly, the cloud picks the most accurate operator among

much slower ones, s.t. fop(i+1) > α× fop(i), where α controls

speed decay in subsequent operators. A larger α leads to more

aggressive upgrade: losing more speed for higher accuracy. In

the current prototype, we empirically choose α = 0.5. Since f

is relative to FPSnet measured at every upgrade, the upgrade

adapts to network bandwidth change during a query.

6.2 Executing Tagging queries

Recall that for Tagging, a camera runs multipass filtering; the

objective of each pass is to tag, as positive (P) or negative

(N), at least one frame from every K adjacent frames. We

call K the group size; DIVA pre-defines a sequence of group

sizes as refinement levels, e.g., K = 30, 10, ..., 1. As in prior

work [51, 58, 59], the user specifies tolerable error as part of

her query, e.g., 1% false negative and 1% false positive; DIVA

trains filters with thresholds to meet the accuracy.

Policy for selecting frames The goal is to quickly tag easy

frames in individual groups while balancing the workloads

of on-camera processing and frame upload. An operator op

works in two stages of each pass. i) Rapid attempting. op

scans all the groups; it attempts one frame per group; if it

succeeds, it moves to the next group; it adds undecidable



frames (U) to the upload queue. ii) Work stealing. op steals

work from the end of upload queue. For an undecidable frame

f belonging to a group g, op attempts other untagged frames

in g; once it succeeds, it removes f from the upload queue as

f no longer needs tagging in the current pass. After one pass,

the camera switches to the next refinement level (e.g., 10 →

5). It keeps all the tagging results (P,N,U) while cancels all

pending uploads. It re-runs the frame scheduling algorithm

until it meets the finest refinement level or query terminated.

Policy for operator upgrade Given an operator op and γop,

the ratio of frames it can successfully tag, DIVA measures

op’s efficiency by its effective tagging rate, FPSop × γop +
FPSnet , as a sum of op’s successful tagging rate and the up-

loading rate. As part of operator training, the cloud estimates

γop for all the candidate operators by testing them on all land-

marks (early in query) and uploaded frames (later in query).

To select every operator, initial or subsequent, the cloud picks

the candidate with the highest effective tagging rate. The

cloud upgrades operators either when the current operator has

attempted all remaining frames or another candidate having

an effective tagging rate β× or higher (default value 2).

6.3 Executing Counting queries

Max Count: Policy for selecting frames To execute the ini-

tial operator, the camera randomly selects frames to process,

avoiding the worst cases that the max resides at the end of the

query range. For subsequent operators, the camera processes

frames in existing ranking decided by earlier operators.

Max Count: Policy for operator upgrade As the camera

runs rankers, the policy is similar to that for Retrieval with a

subtle yet essential difference. To determine whether the cur-

rent operator shall be replaced, the cloud must assess the qual-

ity of recently uploaded frames. While for Retrieval, DIVA

conveniently measures the quality as the ratio of positive

frames, the metric does not apply to max Count, which seeks

to discover higher scored frames. Hence, DIVA adopts the

Manhattan distance as a quality metric among the permuta-

tions from the ranking of the uploaded frames (as produced by

the on-camera operator) and the ranking that is re-computed

by the cloud object detector. A higher metric indicates worse

quality hence more urgency for the upgrade.

Average/Median Count: no on-camera operators After

the initial upload of landmarks, the camera randomly samples

frames in queried videos and uploads them for the cloud to

refine the average/median statistics. To avoid any sampling

bias, the camera does not prioritize frames; it instead relies

on the Law of Large Numbers (LLN) [48] to approach the

average/median ground truth through continuous sampling.

Cameras 
Rpi3 (default): Raspberry Pi 3 ($35). 4xCortex-A53, 1GB DRAM 

Odroid: XU4 ($49) 4xCortexA15 & 4xCortexA7, 2GB DRAM 

CloudServer 2x Intel Xeon E5-2640v4, 128GB DRAM GPU: Nvidia Titan V  

 (a) Hardware platforms

Cam:Landmarks Cam:Query Cloud:Query

ClondOnly – Only upload frames
OptOp Yv3 every 30 secs Run one optimal op Yv3 on all
PreIndexAll YTiny every sec Parse YTiny result uploaded frames
DIVA Yv3 every 30 secs Multi passes & ops

(b) DIVA and the baselines. The table summarizes their executions for

capture and query. NNs: Yv3 – YOLOv3, high accuracy (mAP=57.9);

YTiny – YOLOv3-tiny, low accuracy (mAP=33.1).

Table 3: Experiment configurations

Name Object Description

T

JacksonH [25] car A busy intersection in Jackson Hole, WY
JacksonT [26] car A night street in Jackson Hole, WY
Banff [20] bus A cross-road in Banff, Alberta, Canada
Mierlo [29] truck A rail crossing in Netherlands
Miami [28] car A cross-road in Miami Beach, FL
Ashland [19] train A level crossing in Ashland, VA

Shibuya [31] bus An intersection in Shibuya (渋谷 ), Japan

O

Chaweng [22] bicycle Absolut Ice Bar (outside) in Thailand
Lausanne [27] car A pedestrian plaza in Lausanne, Switzerland
Venice [32] person A waterfront walkway in Venice, Italy
Oxford [30] bus A street beside Oxford Martin school, UK
Whitebay [33] person A beach in Virgin Islands

I
CoralReef [23] person An aquarium video from CA
BoatHouse [21] person A retail store from Jackson Hole, WY

W Eagle [24] eagle A tree with an eagle nest in FL

Table 4: 15 videos used for test. Each video: 720P at 1FPS

lasting 48 hours. Column 1: video type. T – traffic; O/I –

outdoor/indoor surveillance; W – wildlife.

7 Implementation and Methodology

Operators We architect on-camera operators as variants

of AlexNet [63]. We vary the number of convolutional

layers (2–5), convolution kernel sizes (8/16/32), the last

dense layer’s size (16/32/64); and the input image size

(25×25/50×50/100×100). We empirically select 40 oper-

ators to be trained by DIVA online; we have attempted more

but see diminishing returns. These operators require small

training samples (e.g., 10K images) and run fast on camera.

Background subtraction filters static frames at low over-

head [51]. DIVA employs a standard technique [12]: during

video capture, a camera detects frames that have little motion

(< 1% foreground mask) and omits them in query execution.

On our camera hardware (Table 3), background subtraction is

affordable in real time during capture. For fair comparisons,

we augment all baselines with background subtraction.

Videos & Queries We test DIVA on 15 videos captured

from 15 live camera feeds (Table 4). Each video lasts con-

tinuous 48 hours including daytime and nighttime, collected

between Oct. 2018 to Mar. 2019. We preprocess all videos

to be 720P at 1 FPS, consistent with prior work [51]. We

test Retrieval/Tagging/Counting queries on 6/6/3 videos. We

intentionally choose videos with disparate characteristics and

hence different degrees of difficulty. For instance, Whitebay



is captured from a close-up camera, containing clear and large

persons; Venice is captured from a high camera view and

hence contains blurry and small persons. For each video, we

pick a representative object class to query; across videos,

these classes are diverse. For Tagging, we set query error to

be < 1% FN/FP as prior work did [59].

A query’s accuracy is reflected by its execution progress.

For retrieval/counting, we report accuracy as the fraction of

positive frames returned. There is no false positive because

the cloud always runs the high-accuracy object detector as a

“safety net”, of which the output is regarded as the ground truth.

For tagging, we report accuracy as query errors, meaning the

percentage of frames mistakenly tagged. To issue a query, the

user sets the target error, which by default is 1% as in prior

work. Table 2 and §6 provide more details.

Test platform & parameters As summarized in Table 3(a),

we test on embedded hardware similar to low-cost cam-

eras [15, 16]. We use Rpi3 as the default camera hardware

and report its measurement unless stated otherwise. During

query execution, both devices set up a network connection

with 1MB/s default bandwidth to emulate typical WiFi con-

dition [47]. Note that this network bandwidth is not meant

for streaming; it is only for a camera while the camera is

being queried. We run YOLOv3 as the high-accuracy object

detector on camera and cloud (Table 3(b)). In calculating ac-

curacy, we use the output of YOLOv3 as the ground truth

as in prior work [51, 59]. On Rpi3, we partition YOLOv3

into three stages, each fitting into DRAM separately. We will

study alternative models, landmarks, and resources in §8.3.

Baselines As summarized in Table 3(b), we compare DIVA

with three alternative designs augmented with background

subtraction and only process/transmit non-static video frames.

• CloudOnly: a naive design that uploads all queried frames

at query time for the cloud to process.

• OptOp: in the spirit of NoScope [59], the camera runs only

one ranker/filter specialized for a given query, selected by a

cost model for minimizing full-query delay. To make OptOp

competitive, we augment it with landmark frames to reduce

the operator training cost. Compared to DIVA, OptOp’s key

differences are the lack of operator upgrade and the lack of

operator optimization by long-term video knowledge.

• PreIndexAll: in the spirit of Focus [51], the camera runs

a cheap yet generic object detector on all frames. We pick

YOLOv3-tiny (much cheaper than YOLOv3) as the detector

affordable by Rpi3 in real time (1 FPS). The detector plays

the same role as an operator in DIVA, except that it runs

at capture time: for Retrieval and Counting, the detector’s

output scores are used to prioritize frames to upload at query

time; for Tagging, the output is used to filter the frames that

have enough confidence. PreIndexAll implements all run-

time features of Focus except feature clustering. We left out

clustering because we find it performs poorly on counting

queries. Compared to DIVA, PreIndexAll’s key differences

are: it answers queries solely based on the indexes built at

capture time; it requires no operator training or processing

actual images at query time.

8 Evaluation

8.1 End-to-end performance

Full query delay is measured as: (Retrieval) the time to

receive 99% positive frames as in prior work [51]; (Tagging)

the time taken to tag every frame; (Counting) the time to

reach the ground truth (max) or converge within 1% error of

the ground truth (avg/median). Overall, DIVA delivers good

performance and outperforms the baselines significantly.

• Retrieval (Figure 9(a)). On videos each lasting 48 hours,

DIVA spends ∼1,900 seconds on average, i.e., 89× of video

realtime. On average, DIVA’s delay is 3.8×, 3.1×, and 2.0×

shorter than CloudOnly, PreIndexAll, and OptOp, respectively.

• Tagging (Figure 9(b)). DIVA spends ∼581 seconds on av-

erage (297× realtime). This delay is 16.0×, 2.1×, and 4.3×

shorter than CloudOnly, PreIndexAll, and OptOp, respectively.

• Counting (Figure 10). DIVA’s average/median take sev-

eral seconds to converge. For average Count, DIVA’s delay

is 65.1× and up to three orders of magnitude shorter than

CloudOnly and PreIndexAll. For median Count, DIVA’s delay

is 68.3× shorter than the others. For max Count, DIVA spends

34 seconds on average (635× realtime), which is 5.8×, 5.0×,

and 1.3× shorter than CloudOnly, PreIndexAll, and OptOp.

Query progress DIVA makes much faster progress in most

time of query execution. It always outperforms CloudOnly

and OptOp during Retrieval/Tagging (Figure 9). It always out-

performs alternatives in median/average count (Figure 10).

Why DIVA outperforms the alternatives? The alterna-

tives suffer from the following. (1) Inaccurate indexes.

PreIndexAll resorts to inaccurate indexes (YOLOv3-tiny)

built at capture time. Misled by them, Retrieval and Tag-

ging upload too much garbage; Counting includes significant

errors in the initial estimation, slowing down convergence.

(2) Lack of long-term knowledge. OptOp’s operators are either

slower or less accurate than DIVA, as illustrated in Figure 6.

(3) One operator does not fit an entire query. Optimal at some

point (e.g., 99% Retrieval), the operator runs too slow on easy

frames which could have been done by cheaper operators.

Why DIVA underperforms (occasionally)? On short oc-

casions, DIVA may underperform PreIndexAll at early

query stages, e.g., BoatHouse in Figure 9. Reasons: (1)

PreIndexAll’s inaccurate indexes may be correct on easy

frames; (2) PreIndexAll does not pay for operator bootstrap-

ping as DIVA. Nevertheless, PreIndexAll’s advantage is tran-

sient. As easy frames are exhausted, indexes make more mis-

takes on the remaining frames and hence slow down the query.
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Figure 9: On Retrieval and Tagging queries, DIVA shows good performance and outperforms the alternatives. x-axis for

all: query delay (secs). y-axis for (a): % of retrieved instances; for (b): refinement level (1/N frames).
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Figure 10: On Counting queries, DIVA shows good per-

formance and outperforms the alternatives. Legend: see

Figure 9. x-axis for all: query delay (secs). y-axis for left plots:

count; for top two right plots: ground truth for avg/median

queries; for bottom right plot: % of max value.

Can DIVA outperform under different network band-

widths at query time? Table 5 summarizes DIVA’s query

delays at 9 bandwidths evenly spaced in [0.1 MB/s, 10 MB/s]

which cover typical WiFi bandwidths [9]. We have observed

that: on lower bandwidths, DIVA’s advantages over baselines

are more significant; at high bandwidths, DIVA’s advantages

are still substantial (>2× in most cases) yet less pronounced.

The limitation is not in DIVA’s design but rather its current

NNs: we find it difficult to train operators that are both fast

enough to keep up with higher upload bandwidth and accurate

enough to increase the uploaded positive ratio proportionally.

vs. “all streaming”: query speed As “all streaming” up-

loads all videos to the cloud before a query starts, the query

speed is bound by cloud GPUs but not network bandwidth.

With our default experiment setting (1 GPU and 1MB/s net-

work bandwidth), “all streaming” still runs queries much

slower than zero streaming. Adding more cloud GPUs will

eventually make “all streaming” run faster than DIVA.

 

 Retrieval Tagging Count/Max Count/Avg&Med 

CloudOnly  4.5/14.9/52.2 3.61/3.9/5.1 2.8/21.1/42.5 6.9/83.4/439.2 

OptOp 2.2/4.1/4.9 2.0/2.3/2.6 1.2/1.5/2.1 6.9/83.4/439.2* 

PreIndexAll 1.9/3.8/11.6 3.2/3.6/4.9 1.2/8.9/18.2 2.5/14.0/41.3 
*: Fall back to CloudOnly as the camera does not execute NN for these query types 

Table 5: DIVA’ performance (speedup) with various band-

widths. Numbers: min/median/max of times (×) of query

delay reduction compared to baselines (rows). Averaged on

all videos and 9 bandwidths in 0.1MB/s–10MB/s.
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Figure 11: DIVA significantly

reduces network traffic com-

pared to “all streaming”. Re-

sults averaged over all videos.

vs. “all streaming”:

network bandwidth

saving Compared to

streaming all videos

(720P 1FPS) at capture

time, DIVA saves

traffic significantly, as

shown in Figure 11.

When only as few as

0.005% of video is

queried as in our case

study (§2), the saving

is over three orders of magnitude. Even if all captured videos

are queried, DIVA saves more than 10×, as its on-camera

operators skip uploading many frames. Among the bandwidth

reduction brought by DIVA, only less than 30% attributes

to the background subtraction technique. It shows that the

disadvantage of “all streaming” is fundamental: streaming

optimizations may help save the bandwidth (upmost several

times [96]) but cannot offset the waste, as discussed in §2.3.

Training & shipping operators For each query, DIVA trains

∼40 operators, of which ∼10 are on the Pareto frontier. The

camera switches among 4–8 operators, which run at diverse

speeds (27×–1,000× realtime) and accuracies. DIVA chooses

very different operators for different queries. Training one

operator typically takes 5–45 seconds on our test platform

and requires 5k frames (for bootstrapping) to 15k frames (for

stable accuracy). Operators’ sizes range from 0.2–15 MB.

Sending an operator takes less than ten seconds. Only the

delay in training and sending the first operator (≤ 40 seconds)

adds to the query delay which is included in Figure 9/10.
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Figure 12: DIVA’s both key techniques – optimization with

long-term video knowledge (opt) and operator upgrade (up-

grade), contribute to performance significantly.

Subsequent operators are trained and transmitted in parallel

to query execution. Their delays are hidden from users.

DIVA elasticity Due to DIVA’s design, the computing re-

sources available on low-cost cameras are used efficiently at

both capture and query time. Thanks to its elastic execution,

it can avoid interference with a camera’s surveillance task,

notably video encoding and storage. For instance, DIVA can

produce denser/sparser landmarks per its CPU time allocated

by the camera OS. According to our experiments on Rasp-

berry Pi 3B+, recording video at 720P and 30 FPS only uses

less than 2% of CPU time, which is negligible as compared

to NN execution. We reserve a small fraction of CPU time to

surveillance using cgroup and observe no frame drop in the

surveillance task and negligible slowdown in NN execution.

8.2 Validation of query execution design

The experiments above show DIVA’s substantial advantage

over OptOp, coming from a combination of two techniques –

optimizing queries with long-term video knowledge (“Long-

term opt”, §4) and operator upgrade (“Upgrade”, §5). We

next break down the advantage by incrementally disabling the

two techniques in DIVA. Figure 12 shows the results.

Both techniques contribute to significant performance.

For instance, disabling Upgrade increases the delay of retriev-

ing 90% instances by 2× and that of tagging 1/1 frames by

2×-3×. Further disabling Long-term Opt increases the delay

of Retrieval by 1.3×-2.1× and that of tagging by 1.6×-3.1×.

Both techniques disabled, DIVA still outperforms CloudOnly

with its single non-optimized operator.

Upgrade’s benefit is universal; Long-term opt’s benefit is

more dependent on queries, i.e., the skews of the queried

object class in videos. For instance, DIVA’s benefit is more

pronounced on Chaweng, where small bicycles only appear

in a region in 1/8 size of the entire frame, than Ashland,

where large trains take 4/5 of the frame. With stronger skews

in Chaweng, DIVA trains operators that are more accurate
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(b) DIVA’s performance degrades slowly with sparser

landmarks. The y-axis is logarithmic.

0

500

1000

1500

0 50 100 150

BFLOP

rpi odroid

0

500

1000

1500

2000

0 50 100 150

BFLOP

rpi odroid

1 sec

10 secs

30 secs

1 sec

6 secs
20 secs

YTiny Yv2 Yv3 YTiny Yv2 Yv3

1 sec

1 sec

6 secs

20 secs

10 secs
30 secs

Q
u

e
ry

 s
p

e
e

d
 (

x 
re

a
lt

im
e

)

(c) On given camera hardware (Rpi3/Odroid), sparser yet

more accurate LMs always improve DIVA’s performance.

Landmark intervals annotated along curves.

Figure 13: Validation of landmark design. In (a)/(b)/(c):

Left – Retrieval on Chaweng; Right – Tagging on JacksonH.

and run faster. This also accounts for DIVA’s varying (yet

substantial) advantages over the alternatives (Figure 9).

8.3 Validation of landmark design

Next, we deviate from the default landmark parameters (Ta-

ble 3) to validate the choice of sparse-but-sure landmarks.

DIVA hinges on accurate landmarks. As shown in Fig-

ure 13(a), modestly inaccurate landmarks (as produced by

YOLOv2; 48.1 mAP) increase delays for Q1/Q2 by 45% and

17%. Even less accurate landmarks (by YOLOv3-tiny; 33.1

mAP) increase the delays significantly by 5.3× and 4.3×.

Perhaps surprisingly, such inaccurate landmarks can be worse

than no landmarks at all (“w/o LM” in Figure 13): when a

query starts, a camera randomly uploads unlabeled frames for

the cloud to bootstrap operators. Why inaccurate landmarks

hurt so much? They (1) provide wrong training samples; (2)

lead to incorrect observation of spatial skews which further

mislead frame cropping; and (3) introduce large errors into

initial statistics, making convergence harder.

DIVA tolerates longer landmark intervals. As shown in

Figure 13(b), DIVA’s Retrieval and Tagging performance

slowly degrade with longer intervals. Even with an infinite



interval, i.e., “w/o LM” in Figure 13(a), the slowdown is no

more than 3×. On Counting, the performance degradation is

more pronounced: 5× longer intervals for around 15× slow

down. Yet, such degradation is still much smaller than one

from inaccurate landmarks (two orders of magnitude). The

reason is that, with longer LM intervals DIVA has to upload

additional frames in full resolution (∼10× larger than LMs)

when a query starts for bootstrapping operators; such a one-

time cost, however, is amortized over the full query.

Create the most accurate landmarks possible Should a

camera build denser yet less accurate landmarks or sparser yet

more accurate ones? Figure 13(c) suggests the latter is always

preferred, because of DIVA’s high sensitivity to landmark

accuracy and low sensitivity to long landmark intervals.

DIVA on wimpy/brawny cameras DIVA suits wimpy cam-

eras that can only generate sparse landmarks. Some cameras

may have DRAM smaller than a high-accuracy NN (e.g.,

∼1 GB for YOLOv3); fortunately, recent orthogonal efforts

reduce NN sizes [56]. Wimpier cameras will further disad-

vantage the alternatives, e.g., PreIndexAll will produce even

less accurate indexes. On higher-end cameras (a few hundred

dollars each [13]) that DIVA is not designed for, DIVA still

shows benefits, albeit not as pronounced. High-end cameras

can afford more computation at capture time. i) They may run

PreIndexAll with improved index accuracy. In Figure 13(a),

running YOLOv2 on all captured frames (PreIndexAll+Yv2),

DIVA’s performance gain is 1.9× (left) or even 0.6× (right).

ii) These cameras may generate denser landmarks and rely on

the cloud for the remaining frames. Figure 13(b) shows, with

one landmark every 5 seconds, DIVA’s advantage is 1.5×.

9 Related Work

Optimizing video analytics The CV community has studied

video analytics for decades, e.g., for online training [83, 84]

and active learning [57]. They mostly focus on improving

analytics accuracy on short videos [44, 60, 68, 78, 81, 102]

while missing opportunities in exploiting long-term knowl-

edge (§4). These techniques alone cannot address the systems

challenges we face, e.g., network limit or frame scheduling.

A common theme of recent work is to trade accuracy for

lower cost: VStore [96] does so for video storage; Pakha et

al. [70] do so for network transport; Chameleon [55] and

VideoStorm [52, 99] do so with video formats. DIVA’s opera-

tors as well exploit accuracy/cost tradeoffs. Multiple systems

analyze archival videos on servers [58, 62, 73, 80, 96]. DIVA

analyzes archival videos on remote cameras and embraces

new techniques. ML model cascade is commonly used for

processing a stream of frames [39, 59, 85]: in processing a

frame, it keeps invoking a more expensive operator if the

current operator has insufficient confidence. This technique,

however, mismatches exploratory analytics, for which DIVA

uses one operator to process many frames in one pass and

produces inexact yet useful results for all of them.

Edge video analytics To reduce cloud/edge traffic, computa-

tion is partitioned, e.g., between cloud/edge [40,76,97], edge/-

drone [91], and edge/camera [100]. Elf [94] executes counting

queries completely on cameras. Most work targets live analyt-

ics, processes frames in a streaming fashion and trains NNs

ahead of time. DIVA spreads computation between cloud/-

cameras but takes a disparate design point (zero streaming)

that are inadequate in prior systems. CloudSeg [92] reduces

network traffic by uploading low-resolution frames and re-

covering them via super resolution. DIVA eliminates network

traffic at capture time at all.

Online Query Processing Dated back in the 90s, online

query processing allows users to see early results and control

query execution [49, 50]. It is proven effective in large data

analytics, such as MapReduce [43]. DIVA retrofits the idea

for video queries and accordingly contributes new techniques,

e.g., operator upgrade, to support the online fashion. DIVA

could borrow UI designs from existing online query engines.

WAN Analytics To query geo-distributed data, recent pro-

posals range from query placement to data placement [74,

86–88, 90]. JetStream [75] adjusts data quality to meet net-

work bandwidth; AWStream [98] facilitates apps to system-

atically trade-off analytics accuracy for network bandwidth.

Like them, DIVA adapts to network; unlike them, DIVA does

so by changing operator upgrade plan, a unique aspect in

video analytics. DIVA targets resource-constrained cameras,

which are unaddressed in WAN analytics.

10 Conclusions

Zero streaming shifts most compute from capture time to

query time. We build DIVA, an analytics engine for querying

cold videos on remote, low-cost cameras. At capture time,

DIVA builds sparse but sure landmarks; at query time, it

refines query results by continuously updating on-camera

operators. Our evaluation of three types of queries shows that

DIVA can run at more than 100× video realtime under typical

wireless network and camera hardware.
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