
An Empirical Study of Rust-for-Linux:
The Success, Dissatisfaction, and Compromise

Hongyu Li1 *, Liwei Guo2 *, Yexuan Yang1, Shangguang Wang1 and Mengwei Xu1

1Beijing University of Posts and Telecommunications
2University of Electronic Science and Technology of China

Abstract
Developed for over 30 years, Linux has already become the
computing foundation for today’s digital world; from gigantic,
complex mainframes (e.g., supercomputers) to cheap, wimpy
embedded devices (e.g., IoTs), countless applications are built
on top of it. Yet, such an infrastructure has been plagued by
numerous memory and concurrency bugs since the day it was
born, due to many rogue memory operations are permitted
by C language. A recent project Rust-for-Linux (RFL) has
the potential to address Linux’s safety concerns once and for
all – by embracing Rust’s static ownership and type checkers
into the kernel code, the kernel may finally be free from mem-
ory and concurrency bugs without hurting its performance.
While it has been gradually matured and even merged into
Linux mainline, however, RFL is rarely studied and still re-
mains unclear whether it has indeed reconciled the safety and
performance dilemma for the kernel.

To this end, we conduct the first empirical study on RFL
to understand its status quo and benefits, especially on how
Rust fuses with Linux and whether the fusion assures driver
safety without overhead. We collect and analyze 6 key RFL
drivers, which involve hundreds of issues and PRs, thousands
of Github commits and mail exchanges of the Linux mailing
list, as well as over 12K discussions on Zulip. We have found
while Rust mitigates kernel vulnerabilities, it is beyond Rust’s
capability to fully eliminate them; what is more, if not handled
properly, its safety assurance even costs the developers dearly
in terms of both runtime overhead and development efforts.

1 Introduction

As the de facto foundation for today’s computing infrastruc-
ture, Linux never ceases to eliminate memory and concur-
rency bugs [55, 61, 80, 109], which have been plaguing sys-
tems software for years. Yet, bugs keep emerging [15, 23–25]

Hongyu Li and Liwei Guo contributed equally to the paper. Mengwei
Xu is the corresponding author.

2013

2020

2022

2019

2021

2023

“Hello from Rust!++”

“Writing Linux Kernel 
Modules in Safe Rust” 
First RFL presentationRFL debuts at LPC and 

first PR committed

LKML “[RFC] Rust support” 
First RFL RFC on the 

kernel mailing list (LKML)
RFL officially merged 

into Linux v6.1

First RFL driver officially 
merged into Linux v6.8

Figure 1: A few remarkable milestones of RFL.

despite years of security hardening and engineering efforts
from the Linux community [1, 19]. One root cause is the C
language allows unfettered access to memory objects, which
the Linux kernel exploits wild typecasting, raw pointer de-
referencing, etc., to construct complex abstraction layers and
generic frameworks (e.g. device drivers [60]) for modularity
and performance.

How to ensure memory safety with little or no performance
degradation? Rust seems to be a promising solution, which
may finally resolve the aforementioned problems [13]. As
an emerging, statically and strongly-typed systems program-
ming language, Rust claims to deliver both safety and per-
formance without runtime overhead [51]. Backing its claim
is the ownership mechanism [48] for eliminating memory
and concurrency bugs, underpinned by three key rules: 1)
each memory location can only be owned exclusively by
one variable at a time; 2) the ownership of variables may
be permanently moved (i.e. transferred to other variables) or
temporarily borrowed through references within a thread and
across threads, using the Send and Sync traits respectively;
3) once the owner goes out of scope, its owning variable is
dropped with its memory being freed. By relying on extensive
static checks to enforce the above rules at compile time, Rust
eliminates a heavyweight and costly memory checker [84,90]



as well as a garbage collector [75, 85], eschewing from being
interrupted and having unpredictable delays at run time.

Rust for Linux The above intriguing properties of Rust led
to the advent of Rust-For-Linux (RFL), which begins in
2013 as a hobbyist project [3] shown in Figure 1. As the first
attempt to bring Rust into Linux, the project built a Rust ob-
ject file against kernel headers and invoked one Rust function
from the file in a loadable kernel module. The Rust function
simply printed out “Hello from Rust!++”, yet was the first cry
of Rust in the Linux kernel space. At the time, Rust was only
Linux’s nice peripheral, whose main use case was to compose
safety-critical, brief, and standalone snippets for kernel mod-
ules (i.e. still written in C language) to invoke. The situation
started to shift in 2019. In the year, a proposal to write kernel
modules fully in Rust emerged [8,11] to lead Rust further into
Linux. To achieve its goal, the proposal took a bold move by
directly adding a thin Rust wrapping layer to kernel interfaces
and data structures in upstream Linux. The proposal is cat-
alyzing: a year later, the idea of further fusing Rust into Linux
kernel tree debuted at the Linux Plumbers Conference (LPC)
in 2020 and received widespread support [10], which incu-
bated the first RFL RFC in 2021 [13]. Since then, RFL has
attracted significant attention. With developers’ fond hope of
revolutionizing kernel safety and with the thrust from Rust’s
community-based collaboration model, RFL quickly gained
momentum: all RFL code is managed by a Git repo, which
runs a continuous integration (CI) pipeline as a gatekeeper
for checking patch quality and correctness, boosting develop-
ment efficiency; discussions happen more vividly and lively
on an online forum called Zulip instead of the traditional mail-
ing list. Hence, only a year after the RFC, RFL is officially
merged into upstream Linux v6.1 as an experimental kernel
feature [20]. When RFL gradually gets speed in the journey
of robusting Linux, there emerge numerous attempts to use
RFL to write drivers in various areas, such as network [62],
block device [68, 69], file system [32, 36], android [59], and
GPU [67]. Among them, one network driver [40] first makes
it into the Linux mainline in v6.8 after 11 rounds’ co-review
of the RFL and network community. This means RFL can
receive feedback from users, which is a sign of RFL stepping
into the real use cases from the experimental states. Despite
still being in an early stage, RFL has become one of the most
active kernel subsystems [47], on par with ebpf [63], and
io_uring [65].

Motivations While Rust has been well understood [71, 103,
110] as a programming language, its synergy between Linux,
i.e., RFL, is rarely studied. Understanding how Rust is fused
into Linux is critical, as it provides practical guidance for
implementing safe and efficient drivers under active develop-
ment, as well as valuable lessons for incorporating Rust into
more kernel subsystems in the near future.

Not less importantly, RFL also provides a unique angle for
us to look into how a new programming language blends into

a giant, old-school codebase which has been already shipped
on billions of computing devices. This process is profound
and complex, involving not only massaging self-contained
kernel libraries into Rust libararies (i.e. crates), and also adap-
tations in the language syntax/semantics level, e.g., adapting
C paradigms such as generative and functional-like macros
to Rust semantics and interfaces. It also concerns judicious
design decisions and engineering practices to fit strict safety
rules into the kernel execution environment which needs to be
more relaxed in executing memory ops. Moreover, together
with the new language, it introduces new collaboration models
and development tools, which have slowly but surely shifted
the development process of Linux. This process, as we will
show, is a mixture of success, dissatisfaction, and compromise.

With over 20K lines of RFL code being officially merged
into Linux mainline since 2022, we believe it is good timing to
reflect on this process and draw necessary insights from it. To
this end, we conduct the first comprehensive study examining
the ongoing fusion between Rust and the Linux kernel. We
thoroughly look into the RFL project and have collected 6
Rust drivers, 269 issues, 763 PRs, and 1540 commits in the
RFL GitHub, 3611 mails in the RFL mailing list, and 12501
discussions in the RFL Zulip forum.

In this paper, we answer the following three key research
questions (RQs):

RQ1: what is the status quo of RFL? Based on the col-
lected data, our study first presents a comprehensive analysis
of the current landscape of RFL. We further dive into the in-
dividual drivers for gauging the implementation gap between
Rust and the Linux kernel. Our key observations are: 1) while
RFL’s toolchain (e.g., Kbuild) has mostly matured, it lacks
major drivers and file systems, which is bottlenecked by a
slow code review process; 2) although Rust Traits lifts the
significant burden of manual kernel security audit, it is no
silver bullet in affirming full memory safety. Additionally,
the mismatch between Rust and the kernel on memory opera-
tions results in complicated workarounds, which leads to both
runtime and development overhead.

RQ2: does RFL live up to the hype? We re-evaluate the
three critical goals set by the kernel community when initi-
ating RFL, which aims to make the kernel 1) more secure at
2) little overhead and enable 3) easier development. To do
so, we analyze the collected bug reports, PRs, and patches
and run 5 RFL kernel drivers on real hardware. Contrary to
the common belief, our study shows Rust only makes the
kernel more “securable” but not fully secure due to unsafe
usage is inevitable in driver development. Moreover, as a side
effect of generic Traits and smart pointers, Rust drivers incur
a large number of icache misses and under-performs C drivers
significantly in some cases. Delightedly, we have also found
Rust greatly improves kernel code quality and has attracted
new developers who are not even familiar with C into kernel
programming.

RQ3: what are the lessons learned from RFL? Based



on the insights from previous two RQs, we provide practical
guidelines in implementing and using RFL for both devel-
opers and the community. For developers, we suggest they
take Rust safety assurance with a grain of salt as Rust safety
rules do not detect semantic bugs and developers often opt for
unsafe as the final resort. For the community which seeks
to expand the RFL scope into future kernel subsystems, we
model the benefits of rustifying a kernel subsystem as the
tradeoffs between the security gain (i.e. bugs Rust may elimi-
nate) and engineering efforts. With the model, we show that
there are 7 out of 79 subsystems and their 25 related drivers
have greater benefits, including ext4 and linux-block. Priori-
tizing RFL development on them likely has a higher value.

Contributions Compared with prior works studying Rust
safety and performance [81, 97], we are the first to present a
comprehensive study on Rust synergy with Linux. Overall,
this paper makes the following contributions:

• We have collected a dataset of RFL development, consti-
tuting 1540 commits, 269 issues, 763 PRs and 3611 mail
exchanges, which we will publicize upon publication.
• Based on the dataset, we developed a toolset for automat-
ically processing APIs, analyzing their usage statistics, and
reporting the results by the subsystem view.
• We present a detailed analysis of the current RFL develop-
ment status, disclose the key difficulties in incorporating Rust
into the kernel execution environment, and insightful advice
on future RFL driver development.

The dataset and code is available at https://github.com/
Richardhongyu/rfl_empirical_tools. We plan to con-
tinuously monitor RFL evolvement and update the repository.

2 A Primer on Rust in Linux

Rust safety model Rust is a statically and strongly-typed
language. In short, its safety model regulates the accesses to
memory locations: at one given time, only one variable may
write to a memory location but many may read from it. It
instantiates the following strict rules:
• Ownership and lifetime. It mandates each memory location
(i.e., value) can have a single owner at a time, similar to affine
type [105]; for the value, only its owner can modify it. Each
owner has its scope as its lifetime: once an owner goes out of
scope, its lifetime ends and the value bound by the owner and
the aliased variables will be freed by Rust.
• Move and Borrow. Move transfers the ownership of a vari-
able when it is consumed by another variable or passed to a
function as an argument. Ownership can be Borrowed without
being transferred, by generating the reference of a memory
location. Once moved or borrowed, the memory location can
no longer be modified by its original owner. Ownership can
also be Moved and Borrowed across threads via Send and
Sync traits, respectively.

The unsafe keyword While the above rules ensure mem-
ory and thread safety by eliminating sharing and aliasing, they
critically restrict the expressiveness of the language. For in-
stance, they prohibit complex data structures such as a doubly-
linked list, where each node is simultaneously referenced (i.e.,
owned) by both its predecessor and successor, violating the
exclusivity mandated by the ownership mechanism.

To overcome this, Rust introduces the unsafe keyword as an
escape hatch to bypass static compiler checks on ownership
of the variables. With the unsafe keyword, programmers are
allowed to manipulate memory objects using a wide range
of operations, such as raw pointer de-reference, calling func-
tions via foreign function interface (FFI), and even inline
assembly. The keyword serves as an agreement with the pro-
grammers that Rust compiler trusts the programmers for the
safety of their unsafe blocks. It is proven by properly wrap-
ping unsafe code under the safe APIs, it is possible for the
whole program to still enjoy full safety guarantee of Rust [86].

Binding Rust with Linux To implant Rust-written de-
vice drivers into the C-written Linux kernel, RFL first pre-
processes kernel APIs on which Rust drivers depend, e.g.,
kmalloc. Using rust-bindgen, it generates Rust APIs cor-
responding to the kernel APIs; the newly generated kernel
APIs conform to Rust calling convention and form kernel
crates (i.e., Rust libraries), which RFL may directly invoke
via FFIs. Since the APIs eventually land in kernel address
space (i.e., unchecked by Rust compiler) and is unsafe, RFL
wraps them with a safe abstraction layer; by design, Rust
drivers shall only invoke safe APIs exported by the layer.

Figure 2 shows an actual example of integrating a Rust
char device driver into Linux. Later sections uncover more
complex drivers such as NVMe, NIC, and GPU drivers. In this
case, rust-bindgen looks at the header file cdev.h included
by the driver and generates FFIs in three crates as shown in
Figure 2 (a). The developer then manually constructs the ker-
nel crate as the safe abstraction layer for wrapping unsafe
APIs, e.g., alloc wraps around the unsafe invocation to
bindings::cdev_alloc as in Figure 2 (b). Notably, RFL
uses comments as the contract between developers to reason
about the safety of unsafe blocks, which specify precondi-
tions and usage of the input variables of underlying FFIs. At
last, the driver follows Rust programming conventions and
invokes the APIs in the safe abstraction layer to access the
kernel infrastructure (Figure 2c).

RFL goals Table 1 summarizes the goals that RFL has de-
clared in the initial RFC [13] to the mailing list and official
presentations [14]. In general, RFL attempts to improve the
safety of Linux drivers with zero overhead, and brings the
modern development experience and efficient development
tools into the kernel to attract more developers.

https://github.com/Richardhongyu/rfl_empirical_tools
https://github.com/Richardhongyu/rfl_empirical_tools


Figure 2: The architecture of Rust-for-Linux. (a): Rust-bindgen generates FFI bindings of kernel data structures and interfaces.
(b): The developer constructs safe abstractions (i.e. the kernel crate) by wrapping around the unsafe FFI bindings. (c): Drivers
(i.e. the drivers crate) invoke RFL safe abstractions to enjoy zero-overhead safety.

Table 1: The initial goals of RFL [13].

Fields Goal
Safety Memory-safe and thread-safe drivers.

Performance Zero overhead on abstraction.
Tools Better documents and CI test quality.

Efficiency Higher development efficiency.
Community More developers in the kernel.

3 RQ1: What is the status quo of RFL

In this section, we first present an analysis on current develop-
ment status of RFL based on collected commits, issues, and
mail exchanges. Next, we reveal the tension between Rust
and kernel programming by diving into the construction of
safe abstraction layer and Rust drivers.

3.1 RFL development status
Our key observation is: although RFL is still young, the infras-
tructure (e.g., irq, mm, sched) has matured; while individual
drivers and file systems (i.e., relatively independent subsys-
tems) are currently lacking and will be the next focus, the
shortage of qualified reviewers bottlenecks RFL development.

3.1.1 Methodology

We collect RFL code from PRs/commits on GitHub and
patches on Linux mailing list, as RFL leverages GitHub as its
code repository before submitting to the kernel community.
Depending on the RFL community collaboration mode [37],
we further categorize the RFL code into three stages: 1) pend-
ing: the commit is still in PR of RFL repo, pending for the
first round of review, 2) staged: it has passed PR and being

moved to the mailing list for formal review by the maintainer
of the kernel subsystem, 3) merged: the commit has been
formally merged into the upstream kernel, i.e Linux mainline
or Linux-next repo.

In total, we collected 160+ merged RFL commits (19K
LoC1), 1300+ staged commits (112K LoC) and 500+ pending
commits (186K LoC). We further extract kernel data struc-
tures and functions from them to gain insights into their com-
position and distribution along RFL development timeline. To
do so, we develop a tool which automatically parses the code
with regular expressions and reports the results by respective
subsystems and aforementioned categories.

3.1.2 Results

(1) Development progress. The goal is to gauge the gap be-
tween the current RFL codebase versus a completely Rusti-
fied Linux kernel. Overall, RFL is still at a very early stage in
blending with the Linux kernel: in terms of LoC, the merged
code (7.1%) only constitutes 0.125% of the kernel code, while
the rest (92.9%) is still pending review or is staged for merg-
ing. We further break down the merged code by their respec-
tive kernel subsystems to understand individual status and
show the results in Figure 3.

Insight 1: drivers, netdev, and file systems are the
long tail of RFL code.

We have observed a clear long tail: most code resides in
scheduling, memory management, and IRQ infrastructure. By
contrast, drivers, file systems, netdev, and security subsystems

1All LoC results are reported by cloc [78], if not specified otherwise



sched

20

16

12

8

4

%
 o

f a
lre

ad
y 

wr
ap

pe
d

15
.3

10
.2

Wrapped Functions Wrapped Structs

mm

1.
4

11
.8

irq&&clk

2.
9

5.
7

driver
0.

4 1.
4

file

1.
1

0.
6

net

0.
6

0.
3

security

1.
1

0.
5 func avg

3.29

structs avg
4.37

Linux Subsystems

Figure 3: The progress of wrapping APIs.

22/1 22/4 22/7 22/10 23/1 23/4 23/7 23/10 24/1 24/4
Time

0

20

40

60

80

Pa
tc

h 
Pe

rc
en

ta
ge

 (%
)

rust build abstraction

Figure 4: RFL patch distribution over time. Rust, Kbuild, ab-
straction are patches for modifying Rust compiler, construct-
ing KBuild system, and the safe abstraction, respectively.

which account for most kernel code (i.e., 78% in Linux v6.2)
only have received little RFL code, constituting the “tail”.

The results are sensible. As scheduling, memory manage-
ment, and IRQ subsystems are most commonly used by all
drivers, optimizing RFL development for them has a high
value and priority. In comparison, drivers and file systems
have more specific use cases (e.g., for a particular model of a
device), which require more programming and reviewing ef-
fort. For instance, reviewers from netdev communities spend
6 months on 11 versions of draft patches, before settling one
the final merged network PHY driver [46].

(2) Patch distribution. To study how individual RFL compo-
nents develop, we categorize the code into three types de-
pending on their use cases, i.e. for building safe abstraction,
Kbuild system, and Rust compiler. We show the results in
Figure 4 and conclude the following insight:

Insight 2: RFL infrastructure has matured, with
safe abstraction and drivers being the next focus.

We base the insight on two key pieces of evidence: 1) as
time passes, Kbuild undergoes a clear recession in its portion
of the RFL cake, indicating the foundation of RFL has been
laid; 2) in the meantime, abstraction takes up more portion,

20
/12

21
/06

21
/12

22
/06

22
/12

23
/06

0

400

800

1200

1600

Nu
m

be
r o

f C
om

m
its

under review
staged

20
/07
21

/01
21

/07
22

/01
22

/07
23

/01
23

/07
24

/01

10−2

100

102

104

Re
vi

ew
in

g 
tim

e(
h)

Figure 5: The trend of RFL commits and reviews over time.

e.g., from 20% to 60% in 18 months. Interestingly, a surge
in the number of Rust commits appeared half a year after
RFL started, as seen by the 23/4 timestamp of Figure 4. It
belongs to a patch that directly modifies the RFL lib code
for supporting a safe implementation of Rust initializer for
pinned objects; prior to the fix, early RFL has been using
unsafe initializer in gpio_pl061, bcm2835_rng drivers.

3) The trend. To understand how RFL development progresses
with time, we project the commits and the email exchanges
onto the timeline and highlight the reviewing time length of
the PRs, as shown in Figure 5.

Insight 3: RFL is bottlenecked by code review but
not by code development.

From the slope changes of the left figure, we are witness-
ing the committed/staged RFL code start to plateau after the
initial steep when RFL first started. Yet, the number of email
exchanges shows RFL is an increasingly active community.
Besides, the PR reviewing becomes significantly slower as
time goes by observed from the right figure. For instance,
the PRs between Jan. 2023 and Jul. 2023 take 280 hours to
be reviewed on average, which is 200× as long as 3 years
ago. This suggests the speed of producing RFL code is much
faster than that of consumption, i.e., reviewing and eventually
merging RFL code into the upstream kernel. This can also
be confirmed by the huge imbalance between merged code
versus the rest of the code, where the latter is 13 × larger than
the former and represents a huge bulk of the area.

The reasons are multifold. First, there is clearly a lack of
qualified reviewers who must be familiar with both Rust and
kernel programming. This is backed up by many posts we
found from the mailing list [27, 29]. Second, there is a mis-
match of collaboration conventions between the RFL and
Linux subsystem communities [28], including response time
and review cycle. Such a mismatch slows down the devel-
opment speed. Third, there is a deadlock of RFL develop-
ment: the subsystem communities are unwilling to review the



patches about safe abstractions without real Rust drivers as
motivating examples; yet without such abstractions, the RFL
community is not able to construct the drivers in Rust [39].
Fortunately, such deadlock has drawn attention from the com-
munities, and early solution has been proposed [34].

An inspiring observation is that RFL is gradually embraced
by the kernel community, seeing the increasing engagement
of traditional kernel developers. For example, the recently
developed NVME, NULL block, V4L2, and e1000 drivers
using RFL are all driven by the Linux community.

3.2 Rustify Linux with safe abstraction
Safe abstraction is the key ingredient towards rustifying Linux
kernel and among the largest portions of RFL code (§ 3.1). As
the name itself implies, the layer extends a C kernel safely into
Rust drivers: it abstracts kernel data structures and interfaces,
so that upon invocation they may still ensure memory and
thread safety.
Challange: taming kernel programming conventions To
construct the safe abstraction layer, RFL first translates kernel
data structures and interfaces into Rust style; it then wraps
them with Rust interfaces and exports them to drivers (§ 2).
While the process seems straightforward, RFL needs to ad-
dress a unique challenge – how to tame kernel programming
paradigms with Rust safety rules? For instance, the kernel ex-
tensively uses typecasting, pointer arithmetic, bit operations,
etc., many of which contradict Rust philosophy. As we will
show, to construct the safe abstraction layer, RFL deploys
various workarounds, systematically manages kernel states in
the Rust style, and even evolves the language itself to cater to
the kernel.
Converting kernel data structures RFL leverages bindgen
to automatically generate Rust bindings of C kernel struct
prior to use. The generation is rule-based and syntax-directed,
which translates the C types and symbols into their Rust coun-
terparts. The translation is mechanical, following the rules in
Table 2. For instance, uint32_t of C translates into c_uint
in Rust namespace core::ffi, which aliases to the Rust
primitive u32. However, not every C type translates into a
corresponding Rust primitive. We have found such incom-
patibility exists especially in language features which kernel
exploits for manually consolidating memory layout. We detail
them as follows.

Insight 4: Kernel’s initiative to control memory in
fine granularity conflicts Rust philosophy, which
incurs overhead for RFL.

(1) Emulated bitfields and unions. The kernel extensively uses
bitfields and unions for improving memory efficiency, e.g.,
e1000 driver uses a single word to store 4 flags to indicate
link states. Bit operations on struct members contradict Rust
memory safety principle and hence do not have native Rust

Table 2: The translation rules from C to Rust in the rust-
bindgen.

Type C Rust
Primitive types foo core::ffi:c_foo
Typed pointers foo * *mut foo

Attributes

aligned #repr(c)
(with caveats [7, 9])

unused ignored
weak ignored

randomize
_layout ignored

Function pointer fn option<fn>

support. As a workaround, RFL emulates bitfields with a byte
array, which implements bit operations as accessors to the
array. Although Rust has a union primitive, it cannot provide
ABI compatibility with C union. Thus RFL implements a
struct called __BindgenUnionField with the same memory
layout as the C interface. Both workarounds are based on
the transmute operation, which reinterprets memory at run
time, hence are implemented in unsafe blocks. The major
overhead of the emulation code is the increase of binary size,
which we will discuss in Section 4.2.

(2) Incomplete attribute support. The kernel often relies on
packed and aligned attributes for better locality and mem-
ory efficiency, e.g., task_struct groups most frequently
accessed scheduling data in one cache line. Despite the
attributes are supported by Rust repr(C), Rust may still
mishandle them and cause bindgen to generate the wrong
code [7, 9]. For attributes less commonly used, RFL does
not support them, e.g., BTF tags [21]. Notably, RFL ignores
randomize_layout attribute, which kernel utilizes to miti-
gate memory bugs [58]. This is reasonable because Rust has
already mitigated such vulnerabilities through ownership and
boundary checks.

Despite the generated bindings having the identical data
layout as their C counterpart, the safe abstraction layer still
cannot directly expose them to drivers. This is because the
bindings involve numerous raw pointers (i.e., *mut), which
are prevalent in kernel but are unsafe to use in Rust. To safely
use them, Rust needs to manually reason about the pointer
validity (i.e., not via borrow checker at compile time) and
specify their ownership. To this end, RFL uses helper types
to embed generated kernel data structure bindings and bakes
Rust flavors into them.

Insight 5: RFL uses helper types to delegate
management of kernel data to Rust while leaving
the operation to kernel itself.

Specifically, RFL leverage two key Rust features to manage
kernel data structures.



(1) RFL uses Type and Deref coercion to bound kernel pointer
de-referencing and casting. For the embedded kernel data
structures, RFL overrides memory accesses to them by com-
bining Type and Deref coercion. By doing so, RFL stipulates
how Rust interprets the kernel pointer and prevents direct
memory operations such as de-referencing on raw pointers,
and transmuting the memory objects. As an example, device
struct often contains void * to point to device-specific data,
which kernel typecast at run time. For all such structs, RFL im-
plements deref traits on them, whose function body coerces
the de-referencing to result in a correct type.

(2) Automate kernel struct life cycle management. RFL in-
troduces three new low-level types and attach them to helper
types for mechanizing the management of kernel struct, i.e.,
ScopeGuard, ARef, opaque. Essentially, the low-level types
exploit Rust support on executing custom stub functions upon
entering/exiting specific scopes. e.g., ScopeGuard frees allo-
cated resources of a Task by executing its drop traits when the
Task’s life cycle ends; ARef automatically increments/decre-
ments the refcount of the helper type whenever it is refer-
enced/freed. Prior to RFL, kernel developers need to man-
ually manage the resources and states, e.g., explicitly call
get/put_task to increment/decrement refcount of struct
task. With Rust, RFL solidifies the under-documented kernel
programming convention and provides a safe management
foundation for the rust driver.

With Rust, RFL separates the management from operation
of a kernel object. An example is kernel-locking primitives.
RFL re-writes the backend for mutex and spinlocks using
the helper types. For management, the new backend lever-
ages Deref coercion to safely de-reference the data protected
by the lock and use ScopeGuard low-level type for runtime
memory reclamation. For operation, RFL still invokes kernel
locking/unlocking methods.

Incorporating kernel functions Following similar transla-
tion rules in converting the kernel data structures (Table 2),
RFL generates FFI bindings of kernel functions. Then, RFL
extensively leverages Rust traits to massage Rust features into
them in the safe abstraction layer. We summarize three major
measures.

(1) Functions as members of structs. RFL groups kernel func-
tions related to a type and incorporates them as members of
the type struct, following an OOP paradigm. For instance, it
groups work queue related functions such as queue_work_on,
__INIT_WORK_WITH_KEY under Rust struct Queue, the
RFL helper type for kernel struct workqueue_struct. Doing
so improves code readability and ensures the caller of these
functions is never null, avoiding pointer validity checks inside
the function body.

(2) Functions pointers as traits. Many kernel functions are
dangling and used only as callbacks of kernel structs at run
time. RFL incorporates them as traits of the helper type and
specify bounds on them. The trait bounds specify the callback

types and owner struct for the dangling kernel functions, pre-
venting vulnerabilities caused by incorrect type casting [16].

(3) Wrapping inlined functions and macros. They pro-
vide important and handy utilities to kernel drivers, e.g.,
for_each_online_cpu to enumerate available CPUs. RFL
wraps static inline functions with non-inlined Rust functions.
This is because current Rust lacks a convenient mechanism
for inlining FFIs of C functions; while it is still possible to
inline them, it takes lots of efforts and hence is not encour-
aged by the community [44]. For function-like macros, RFL
prefers wrapping them with helper functions instead of rewrit-
ing them with Rust macros. The main reason is RFL inclines
not to maintain two sets of kernel interfaces known to be
unstable [82].

3.3 Rustify device drivers
As the programming paradigm has shifted from C to Rust, the
reasoning of data layout (as in C) has also shifted to that of
driver data ownership. In this section, we put ourselves in the
shoes of a developer and describe how the shift has impacted
driver development.

First, device probing. The developer implements the de-
vice probing callback, which allocates kernel resource for
device data and registers the IRQ handler if needed. Com-
pared with driver development in C, the key difference is
the developer must annotate the device data with ownership
types, i.e., how the data might be used by what entity. For
instance, she marks the data with Arc if it might be shared
among threads (e.g., locks), and Pin if she wants to the data
to be unmovable so it can be shared with the C side. To
make matters more complicated, the annotations may be
nested and hard to comprehend. As an example, the rx ring
buffer of e1000 NIC driver contains an array of rx buffer
descriptors and is protected by a spinlock; its type is spec-
ified as Pin<Box<SpinLock<Box<Ring<RxDesc>>>>> [62]
and each nested type needs to invoke its own initializer, e.g.,
Pin::from and Box::try_new.

Second, implementing driver function. The developer
proceeds to implement driver functions required by
the driver framework, e.g., to operate, all NIC drivers
must implement ndo_open, ndo_start_xmit callbacks of
net_device_ops. This step resembles most of driver devel-
opment in C language, where the developer encodes core
device logic to drive the device towards desired states, as
specified by the hardware manual. Yet, Rust poses follow-
ing implementation challenges for the developer to maneuver
safety rules in kernel space:
(1) Implementing dynamically-sized arrays is non-trivial. The
C drivers often uses pointers to implement adjustable arrays
for hosting dynamic kernel objects, e.g., pages. In Rust drivers,
the developer must introduce multiple extra layers and imple-
ment dyn_num trait on them. An actual example is shown in
Figure 6 from RROS [96]. As can be seen, to realize the same



Figure 6: An example showing the inflexibility of writing
dynamically-sized arrays in RFL drivers.

elements array, Rust adds 83% more LoC, which bloats ob-
ject file sizes. More details about this example is given in the
§ A. We will show more such issues in § 4.2.

(2) Kernel contexts still need care. Rust safety rules do not
involve checks on execution contexts (e.g., atomic vs sleep-
able contexts) at either compile time or run time. Thus, it is
up to the developer to determine the execution context of the
calling function and be responsible to its thread safety.

Lastly, device cleanup. Should the kernel remove the device
or initialization go wrong, the driver cleans up device states.
Existing kernel drivers massively use gotos as the waypoints
towards a centralized resource-cleaning procedure. Different
from it, Rust drivers automate the process via Rust drop traits
and frees the labor from the developer: implemented by safe
abstraction, Rust automatically recycles the resources when
errors occur or when the life cycle ends.

Insight 6: The major difficulty of writing safe
drivers in Rust is to reconcile the inflexibility
of Rust versus kernel programming conventions,
which is often an oversight by RFL and the Linux
community from what we observe.

4 RQ2: Does RFL live up to the hype?

In this section, we reflect on the initial goals set by the kernel
community when starting RFL (Table 1) and focus on three
questions:
(1) Does Rust help Linux become safer? (§ 4.1)

(2) Does Rust bring additional overhead? (§ 4.2)

(3) How does Rust improve Linux development? (§ 4.3)

Table 3: The unsafe usage in RFL drivers. The second and
third columns show the number of unsafe usage due to 1)
Driver logic is too complex for Rust safety rules, and 2) Safety
abstractions are currently missing in RFL, respectively.

Driver Number of Unsafe usage
Driver logic Safety abstractions

GPU [67] 107 7
NVME [69] 44 16

Null block [68] 0 0
E1000 [62] 4 2
Binder [59] 45 9

Gpio_pl061 [64] 0 3
Semaphore [70] 0 4

4.1 RFL makes Linux more “securable”

Methodology We focus on the bug reports of Rust and the use
of unsafe code blocks in RFL and drivers. Our rationale is
RFL safety hinges on the safety assurance of Rust lang, which
concretely relies on the elimination of all unsafe blocks in
drivers and the safe abstraction APIs. Therefore, they are the
entry point to RFL safety vulnerabilities, if any. To this end,
we first collect all bug reports and safety-related code reviews
among staged and merged RFL code as categorized in § 3.1.
Based on the classification of the RFL issue label [66], we
categorize the bugs as compilation and soundness bugs; for
kernel concurrency bugs such as deadlock [53] and sleep-in-
atomic-context [18], we count them as soundness bugs. We
then examine all existing RFL drivers and Rust kernel crates
in the upstream repo [22] and analyze the usage of unsafe
code blocks.
Results In total, we have found 25 bugs from merged and
staged RFL code. Among them, 15 of them are in the Linux
mainline and 10 of them are in the stage rust branch. We list
them in Table 4. Of the bugs within merged code, 11 are com-
pilation bugs and the other 4 are related to safe abstraction.
The compilation bugs do not introduce safety vulnerabili-
ties; they are mostly caused by the misconfig of the kernel,
incompatibility of various Clang toolchain versions and the
mismatch between the Kbuild and rustc compiler [17]. Of the
soundness bugs, 6 are in the safe abstraction layer and break
memory safety and 3 break thread safety.

We have not found any unsafe usage of RFL drivers in the
Linux mainline, because no serious driver has made into the
mainline except for one with around 130 lines of code [50].
However, we have found unsafe cases in the drivers that are
proposed to the RFL mailing list. We show the results in
Table 3.
Post analysis We audit the bug reports and unsafe code to
summarize our findings on RFL safety as follows.

Insight 7: with RFL, Linux becomes more
“securable” but still cannot be fully secure.



Table 4: The bugs we have found in RFL. (x/y): x and y
stands for number of bugs from merged and staged code
respectively. We have not found bugs from Syzbot [41] and
KernelCI [38].

Source Compilation bug Soundness bug
GitHub [22] 4(1/3) 7(3/4)

Intel LKP [42] 8(6/2) 0
Mailing List [45] 4(4/0) 2(1/1)

Our verdict is reminiscent of that of Multics security au-
dit [88] and is based on the following facts.

(1) Rust safety mechanism constructs the pillar of kernel
safety. The language-level support helps kernel drivers fix ex-
isting bugs and eschew potential memory/concurrency bugs.
We will present more details in Section 5. As a modern lan-
guage with rich type specifiers, it facilitates more canonical
safety checkers such as klint [31], and RustBelt [86] to further
harden the kernel. Compared with C, RFL greatly reduces the
vast attack space of kernel software caused by memory bugs.
As a result, the developer has much less to reason about in
terms of kernel security.

(2) unsafe is inevitable, though vulnerabilities are optional.
In our audit, we have found unsafe code exist commonly
in all major drivers and it is hard, if not impossible, to fully
eliminate them. The reason is twofold. First, as kernel asserts
full control over memory and hardware, their operations need
to bypass Rust ownership checks. For instance, kernel ex-
ploits inline assembly for managing TLB and issuing memory
barrier [67], raw pointers for de-referencing MMIO registers,
and unions/bitfields as described earlier in § 3.3. Such oper-
ations are out of scope of the ownership mechanism, which
essentially is an affine type system. Second, the community
sometimes has to compromise on unsafe functions. This is
because ownership sometimes introduces twisted implementa-
tion, which often requires long reviewing cycles. Prior to the
settlement, the community must compromise on a usable API,
even though it is unsafe. A notable example we have found
is a memory initialization interface pin-init. Despite being
known unsafe per the Rust checker, it remains in the safe
abstraction layer for over two years. And only after rounds
of debates by seasoned developers [12, 57], has the interface
been finally fixed in a recent patch [49]. We acknowledge that
unsafe code does not necessarily imply vulnerabilities; we
argue that it involves sources for vulnerabilities (e.g., MMIOs)
which cannot be fully eliminated.

(3) Bugs do not disappear; they only hide deeper. On the one
hand, kernel functions invoked by the safe abstraction and
Rust drivers may still contain bugs and be exploited. On the
other hand, although Rust checker detects memory bugs on the
spot, it does not detect semantic bugs, which are often caused
by subtle differences in Rust and kernel memory allocation

Table 5: The benchmarks and metrics used to test Rust/C
drivers. The PC configuration: Intel i54590 with 4 cores, q87
mainboard plus PCIE*16 to m.2, 32 GB DDR3, Samsung
SSD 850 Evo, WD SN770, intel 82545 NIC.

Driver Benchmark Metrics Device
NVME fio

driver
size

throughput PC
Null Block fio throughput PC

E1000 ping latency PC
Binder ping latency Raspi4b

Gpio_pl061 - - -
Semaphore - - -

0.0 20.0K 40.0K 60.0K 80.0K 100.0K 120.0K
C

Rust

*N
VM

E
0.0 5.0K 10.0K 15.0K 20.0K 25.0K 30.0K 35.0K
C

Rust

*n
bl
k

0.0 20.0K 40.0K 60.0K 80.0K 100.0K
C

Rust
*e
10

00

0.0 20.0K 40.0K 60.0K 80.0K 100.0K 120.0K
C

Rust

bi
nd

er

0.0 2.0K 4.0K 6.0K 8.0K 10.0K
C

Rust

gp
io

0.0 1.0K 2.0K 3.0K 4.0K
C

Rust

se
m

text data bss

Figure 7: Comparison of Rust and C driver size. * indicates
that the Rust driver has not implemented full features as C.

methods. Such bugs may take a long to fix and can only be
detected by experts who are familiar with both Rust and kernel.
For example, the C binder driver has a use-after-free [33] bug.
When being re-implemented in Rust, it will not cause the same
symptom as in C. Instead, it incurs a mapping bug putting the
memory into the wrong place which passes all the checks by
the Rust compiler.

4.2 Does rust bring any overhead?

This section evaluates RFL drivers against native kernel
drivers in C. Our findings suggest Rust drivers incur signifi-
cant increase in binary sizes; its runtime overhead is compara-
ble to C, but is quite inconsistent across different drivers and
configurations with large variations.

Setup By exhausting RFL PRs and repositories, we collect



e1000 binder
Driver name

100

101
La

te
nc

y 
(m

s)
C Rust

Figure 8: The latencies between Rust and C drivers. Rust
e1000 driver is significantly slower because it lacks advanced
features such as prefetch.

4 drivers with serious use cases, which span diverse IO func-
tions (e.g., network, storage). Notably, NVME and binder are
considered the first batch of drivers to be merged in the Linux
mainline. In addition, we include 2 more toy drivers (i.e.,
gpio and sem) from RFL rust branch which are often used to
explore the difference between Rust and C implementation.
Among the 6 drivers tested, only e1000 and the 2 toy example
drivers have faithfully implemented full features as C drivers
do; while the rest of them have only implemented a subset
of the features. For each Rust driver that has a C counterpart,
we compile both, compare their binary sizes, and run bench-
marks following prior work [97] which represent their typical
workloads. Table 5 shows the experiment setups.

Binary size As illustrated in Figure 7, Rust drivers with
fully implemented features are significantly larger than C:
1.2× for binder, 2.4× for gpio, and 1.9× for sem. Since
the text section is to be blamed for most of the increased bi-
nary size, we further look into it and find that Rust generates
extra code (99%) to support its unique features that C does
not have: generic programming, boundary checks, lifecycle
management, etc. Even for wrappers that simply invoke ker-
nel functions, Rust expands their sizes by 33%. Interestingly,
we find that binder driver in Rust introduces less significant
overhead of binary size because it frequently uses function
pointers with unsafe keywords rather than generic program-
ming, which instead sacrifices the safety as intended by RFL.

Usually drivers are stripped of debugging information be-
fore deployment, but embedded systems may not have enough
resources to afford the overhead in debugging mode. We will
discuss this in the § B.

Performance Mostly, Rust drivers show on par performance
with C drivers within a 20% gap. Occasionally, Rust under-
performs C significantly; in a few cases, Rust surprisingly out-
performs C. Looking into individual drivers, we have found:

• For e1000, Rust driver is 11× slower than C driver for ping
latency as presented in Figure 8. The reason we digged out is

4
8

16
32
64

128

no
ne

28 12 21 21
27 12 -15 6
24 13 -15 4
24 14 -8 2
27 -22 1 -2
22 -19 2 -2

seq write
34 15 17 33
32 11 -19 0
30 19 -20 -5
23 -16 -5 -10
15 -31 -11 -12
22 -31 -11 -13

seq read
38 26 16 21
35 14 -20 5
28 23 -15 -2
26 -30 -5 -3
18 -27 -6 -11
23 -28 -8 -11

rand write
26 14 24 22
38 11 -19 11
34 15 -7 10
27 14 -5 5
33 -21 4 2
25 -17 4 2

rand read

1 2 3 4

4
8

16
32
64

128m
q-

de
ad

lin
e 28 14 30 24

23 17 7 10
28 16 -13 4
35 15 -5 2
28 -22 1 0
23 -20 0 -1

seq write

1 2 3 4

-2 1 -2 -2
-2 -3 -4 -15
-12 -3 -12 -14
-10 -15 -13 -14
-10 -14 -14 -15
-7 -7 -8 -7

seq read

1 2 3 4

3 -3 2 8
4 1 1 -1
-1 -2 -7 -6
-4 -10 -9 -9
-7 -11 -11 -10
-5 -6 -4 -4

rand write

1 2 3 4

37 9 33 32
36 16 -13 10
32 20 -8 8
32 13 2 6
28 -21 5 4
20 -18 4 2

rand read

−40

−30

−20

−10

0

10

20

30

40

Th
e 

Pe
rfo

rm
an

ce
 S

up
er

io
rit

y 
of

 R
us

t O
ve

r C
 (%

)

Bs
 (K

iB
)

Number of IO jobs

Figure 9: The performance comparison of NULL block
drivers. Green cell indicates the Rust driver performs bet-
ter than the C driver in the configuration. Red means the Rust
driver under-performs the C driver.

2
4
8

16
32io

de
pt

h=
1 29 1 5 2 1 0

-3 -1 -1 1 3 0
-12 -12 -5 -7 -6 -11
-10 -9 -4 -3 -2 -9
-7 -5 -2 -1 6 1

seq write
9 -1 3 -1 4 2
5 -2 1 6 2 -1
-8 -10 -10 -14 -6 -7
-8 -6 -6 -14 -7 -5
-3 -4 -7 0 -27 3

seq read
0 0 0 0 0 0
11 10 12 10 9 8
2 3 -2 11 9 4
-0 -3 2 23 7 33
-27 -20 -0 0 -28 1

rand write
5 -2 23 65 -29 5
5 -37 -28 -20 -12 -12
0 -22 -35 -44 -19 -3
2 -23 -12 -11 -52 -13
2 -17 -27 -20 -9 18

rand read

2
4
8

16
32io

de
pt

h=
2 32 0 0 3 -2 -0

-5 2 3 0 -2 0
-10 -13 -12 -7 -3 -12
-12 -8 -8 -6 -1 -5
-7 -3 -5 -2 6 1

2 0 0 -5 2 4
3 -1 1 4 6 4
-5 -11 -5 -6 -10 1
-8 -7 -4 -12 -25 -7
1 -5 -4 -0 -0 -0

-13 -12 -12 -12 -10 -10
14 7 10 12 12 9
-6 -1 1 12 0 1
1 2 -3 20 21 27
11 46 13 -1 2 -1

-16 -16 -28 -46 -62 -4
3 -35 -27 -20 -17 -16
2 -22 -54 -24 -27 -4
-3 -16 -3 -22 -15 -4
-1 -14 -21 -26 -11 24

1 2 4 8 1632

2
4
8

16
32io

de
pt

h=
4 29 0 -1 2 3 -0

-2 1 2 -0 1 -0
-16 -11 -6 -4 -2 -9
-10 -9 -4 -4 -3 -5
-6 -3 -4 -2 4 -0

1 2 4 8 1632

5 0 -2 2 0 -1
9 -4 6 5 -5 2

-12 -8 -4 -0 -7 -9
-9 -7 -6 -0 -1 -0
-5 -5 -3 0 -1 3

1 2 4 8 1632

-12 -12 -12 -12 -10 -10
9 6 13 13 12 11
0 -3 10 15 14 7
-0 2 12 27 18 -15
-24 9 4 -1 1 3

1 2 4 8 1632

-24 -24 -17 -41 -14 -6
5 -32 -39 -29 36 -8
-3 -19 -30 -25 -2 -22
0 -24 -42 -9 -55 -27
-1 -17 -19 -30 8 26 −60

−40

−20

0

20

40

60

Th
e 

Pe
rfo

rm
an

ce
 S

up
er

io
rit

y 
of

 R
us

t O
ve

r C
 (%

)

bl
oc

ks
ize

 (K
iB

)

Number of IO jobs

Figure 10: The performance comparison of NVME driver.

that the Rust driver has not yet implemented many features
that can accelerate data transmission as the C driver does, e.g.,
prefetch.
• For binder, Rust driver shows similar performance with C,
with only 10% gap in ping latency.
• For storage devices (NVME and NULL block), Rust drivers
lead to overall similar performance with C, with up to 61%
degradation and 67% improvement in throughput, depending
on the specific settings (e.g., job number and batch sizes) as
shown in Figure 9 and Figure 10. We observe that Rust drivers
favor smaller job numbers and blocksize, possibly because
Rust often has smaller structs (reasons explained later) which
are more likely to fit in the cache line.

We further dig into the potential causes of the performance
gap between Rust and C drivers, even with the same feature
sets implemented and code path executed. We perform ex-
tensive microbenchmarks with the help of kernel tools like
vtune and ftrace. We summarize the potential reasons why
Rust drivers could perform worse or better, which could help
guide the performance diagnosis and improvements for RFL
development in the future.

Why Rust drivers may perform poorly?



• Locks in Rust drivers are coarse-grained. Despite Rust
off-loading the duty of ensuring thread-safety to the lan-
guage itself (i.e., via rules), it does not lift the burden of
high-performance concurrency programming of a developer.
• Rust runtime checks in accessing arrays (e.g., boundary
checks) introduce extra performance costs. The results are
consistent with the prior study which reports Rust program
overhead can be 2.49× larger than C program [110]. Rust
performs poorly in memory-intensive workloads.
• Rust uses the emulated bit fields. As introduced earlier in
§ 3.2, bit field accesses are emulated via array accesses. It
further gets exacerbated by the runtime boundary checks.
• Rust massively use pointers to share the ownership of ob-
jects, which results in a higher cache/TLB/branch miss rate.

Why Rust drivers may perform better?
• The Rust struct has a smaller size compared with the C
due to the usage of smart pointers instead of allocating item
memory inside the struct. We use pahole to identify that Rust
structs use fewer cache lines than their C counterpart.
• Rust driver does not implement full features compared with
C, thus some code paths may be omitted.

Insight 8: There is no free lunch for performance –
it is the programmer that counts!

4.3 How does Rust improve Linux develop-
ment?

In this section, we show Rust improves kernel code quality
and readability and attracts more engagement from fresh de-
velopers.

Improved code quality and readability We use documenta-
tion coverage, and CI errors per KLoC as the two important
indicators in software quality [76, 106]. For documentation
coverage, we examine APIs exported via EXPORT_SYMBOL
and EXPORT_SYMBOL_GPL; by kernel convention [43], all of
them shall be documented. For CI errors, we report results
from the LKP, Syzbot [41] and KernelCI [38]. We compare
RFL with ebpf and io_uring, the two new and thriving kernel
subsystems as RFL.

As summarized in Table 6, RFL shows superior code and
documentation coverage (i.e 100%), compared with ebpf and
io_uring. Its average CI errors are also much fewer, by 49%
and 68% respectively. There are two key factors for such
improvements. First, RFL leverages the rustdoc lints to
bundle documentation with code. The feature allows RFL
to mandate documentation for all or selected interfaces. In
comparison, existing kernel development relies on unspoken
contracts or manual review for documentation. Yet, devel-
opers often omit writing documentation [4]. For instance,
io_uring_cmd_complete_in_task in io_uring is exported
via EXPORT_SYMBOL_GPL and is used whenever an IO task
needs to be completed asynchronously in the worker thread.

Table 6: The code quality measurement. % means coverage.
RFL achieves 100% documentation coverage and least CI
errors per 10K LoC.

Subsystems Docs% CI errors/10K LoC
RFL 100% 3.8
ebpf 15% 7.5

io_uring 31% 11.9

Due to its lack of documentation, many developers may mix
it up with io_uring_cmd_done, which results in a dead-
lock [30]. In fact, the community has deemed lack of docu-
mentation the # 1 bug of Linux [2].

Second, the built-in testing facility of Rust enables early
testing for kernel code. Existing kernel development leverages
testing framework KUnit [26] and Intel LKP [42], which
happens only after the code is staged or already merged. With
Rust, RFL incorporates test code easily as a #cfg(test)
attribute, which is supported by GitHub CI and will be run
automatically every time a PR is submitted. As the testing
happens even before the PR is brought onto the table for
discussion, RFL incurs much fewer CI errors, implying a
higher code quality.

More young blood to the Linux community We compare
the developer experience of RFL to recent kernel subsystem
(ebpf and io_uring) and traditional subsystem netdev which
inspired us to use git commit time as the experience met-
rics [52]. Similar to netdev, the commits are selected from
Linux version 6.1 to 6.4. We quantify developer experience by
counting the date of her first commit on the Linux git history
to date and categorize them as novice (0 - 24 months), expert
(24 - 120 months), and veteran (more than 120 months). Note
this is not fully complete as some developers may use differ-
ent mailing counts during their development process. We plot
the distribution in Figure 11.

As we can see, RFL community has the highest percentage
of novice developers (58%), 19% higher than ebpf(39%), 20%
higher io_uring(38%), and 29% higher than netdev(29%).
Interestingly, many of them (29) have never submitted one
line of C code. This implies Rust is likely the main factor
to attract them into the kernel community, which has been
traditionally C-focused.

Such young blood are not yet becoming core Linux de-
veloper/maintainers Despite more novice developers being
attracted by Rust to the kernel community, we have found their
commits are mainly for constructing Rust-relevant toolchains
as well as Rust crates alone; they do not, however, take part in
kernel code development. By contrast, 5 out of 6 investigated
drivers (as seen in Table 5) are mainly contributed by authors
from the Linux community. This implies a disconnection be-
tween the young and the seasoned developers, and that the
bar of kernel programming is not lowered by Rust language.



0 50 100 150 200 250
Experience (month)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

RFL
netdev

ebpf
io_uring

0 50
Percentage (%)

RFL

netdev

ebpf

io_uring

61

35

47

34

31

37

43

34

6

26

8

30

novice
expert

veteran

Figure 11: The distribution of the developer experience of
RFL and other popular kernel subsystems. The results show
RFL community has the highest percentage of novice devel-
opers.

5 RQ3: What are the experiences and lessons?

We now summarize the key lessons learned in carrying out
this empirical study.

To developers on building and using RFL To make RFL
and Rust drivers safer and more practical to use, the develop-
ers may consider: 1) not to treat Rust built-in checkers as the
holy grail but to leverage other comprehensive analysis tools
(e.g., RustBelt [86] and miri [54]), as we have demonstrated
the insufficiency of Rust checker in detecting semantic bugs
in real drivers (§ 4.1). 2) construct safe kernel abstraction
and manage driver resources from the perspective of owner-
ship, instead of memory as traditional kernel programming
does. Have clear ownership relations among the structs be-
fore starting programming. Otherwise, the cost to fix bugs
due to the wrongly used smart pointers in managing own-
ership will be extremely huge. 3) accept unsafe usage as
the final resort. Harnessing kernel memory ops with Rust
safety rules often involves massive use of smart pointers and
generic programming, which incurs large memory footprints
and overhead (§ 4.2). In such cases, the developers may opt
for unsafe implementation, as long as they have reviewed its
safety carefully.

To RFL community on expanding RFL scope Prioritizing
the development of RFL on future kernel driver/subsystem
is crucial, as it takes lots of development efforts and com-
mitment. To understand which driver/subsystem to rustify
gives most benefits, we model such benefits as the ratio be-
tween accumulative bugs/vulnerabilities of a driver/subsystem
which are fixable by Rust, and the scale of the driver/subsys-
tem in terms of LoC. The intuition is simple and backed by
the community decision [35]: the smaller the driver/subsys-
tem is and the more memory/thread bugs it may have, the
higher the value it has of being rustified. To do so, we tra-
verse the git history of each driver and collect all safety issues
by far; we then manually look into all fixed bugs and iden-

0 1 2 3 4 5 6
Bugs per KLoC Fixable by RFL

linux-blocklinux-clk linux-ext4

Figure 12: The analysis results of the Linux subsystems. Each
dot represents a subsystem, with its size showing the relative
scale in terms of code size and its color as the urgency for
Rust re-writing (blue: most urgent, red: least urgent).

tify those memory/thread-safety related bugs fixable by Rust
safety mechanism (§ 2).

We have analyzed over 2500 drivers spanning 79 different
subsystems2 and plotted the results in Figure 12. On average,
each subsystem contain 1.3 bugs/KLoC; across subsystems,
the bugs ratio vary a lot. Notably, the linux-block subsystem
has a high value due to it contains the most bugs per LoC:
113 data-race bugs plus 98 dangling pointer bugs out of 438
fixes, suggesting the subsystem shall be prioritized. Gladly,
the community has confirmed our conjecture and has already
rewritten its null block driver with RFL (as tested in § 4.2).
Besides linux-block, our results suggest linux-ext4 subsystem
also has a high value. Given that the safe abstraction on VFS
is already proposed [56] and there also have emerged Rust
file systems [32, 36], we expect that RFL next steps into the
ext4 file subsystem and hope that RFL can help with the
memory/thread safety bugs.

6 Related Works

Understanding Rust in the wild. Prior literature has studied
unsafe usage of Rust by analyzing popular Rust projects such
as Tock [94], TiKV [6], and Redox [5]. Some of them investi-
gate the unsafe use cases and the rationales [71, 79, 83, 111].
Their findings and insights could guide Rust developers to use
unsafe blocks more wisely. Some analyze the bugs in user
programs and the Rust compiler and dig into the underlying
reasons [103, 107, 108]. Instead, this work studies the RFL
project, drawing key insights and lessons from how Rust as a
language integrates with the Linux kernel codebase. We also
examine whether the RFL project meets its original goals,
such as safety improvement and zero-overhead abstraction.
Rust overhead. While designed to be as efficient as C, efforts
still have been invested to understand the overhead brought by
Rust [73, 81, 110]. They implement a program in both C and
Rust and test the performance difference. However, the bench-
marks used in those studies are mostly simple, e.g., classic
algorithms in less than 100 LoC, and may not be able to reflect

2We cluster the drivers and kernel subsystems into groups based on the
dependency and maintainers. We still refer the clustered groups as subsystems
for simplicity.



the cases in real-world complex programs, especially operat-
ing systems. [81] implements a non-trivial udp driver in Rust
and C to compare their difference from an end-to-end perspec-
tive. Instead, we perform comprehensive measurements, e.g.,
runtime metrics and object size overhead, on Linux drivers
written in Rust and C for comparison.
Rust-based kernels. Rust is a popular language for system
software programming in recent years. Both industry and
academia are exploring writing new operating systems and
kernels in Rust for various use cases, including both embed-
ded devices and personal computers [73,92–95,99,101]. How-
ever, those works are mainly purposed to understand the pros
and cons of developing Rust-only kernels, without concerning
the process of integrating Rust into existing C-based software,
which has been shown to be challenging and intriguing. Nei-
ther do they consider constructing the safe abstraction to reuse
the legacy code. Nevertheless, the findings obtained in this
study could be useful for developing Rust kernels as well.
Rust enhancements. Efforts have been invested to make
Rust safer and more developer-friendly. For instance, some
researchers have studied the factors that prevent Rust from
being adopted by more programmers and provide guidance to
help soften the learning curve of Rust [77, 112]. Others focus
on providing defensive mechanisms to improve the safety of
unsafe blocks, e.g., using formal verification to verify the
correctness of using unsafe blocks, executing program static
analysis, providing a sandbox mechanism for using unsafe
Rust, [72,74,86,89,91,98,100,104]. Our study also provides
insights towards better integration of Rust with Linux.

7 Conclusions

In this paper, we thoroughly investigate RFL, the very first
and increasingly popular project that aims to use Rust to
enhance the Linux kernel. We first study the status quo of
RFL by diving into the construction of the safe abstraction
layer and Rust drivers, which reveals the tension between the
language features of Rust and kernel programming. We then
look into whether and to what extent RFL has delivered its
promise in building a safer kernel with zero overhead. The
results show RFL brings better safety but still has leaks which
are stealthier and undetectable by the compiler, and that the
overhead brought by the tension between Rust and Linux can
not be ceased totally. Last, we summarize key lessons learned
in this study, hoping it may guide future development of RFL.

Acknowledgment

This work was supported in part by National Key R&D
Program of China (2022YFB4501200) and Natural Science
Foundation of Chongqing (No. CSTB2023NSCQ-LZX0115),
China. The authors thank the anonymous reviewers for their
insightful feedback. The authors also thank the rust-for-linux

developers Andreas Hindborg, and FUJITA Tomonori, who
kindly helped clarifying our questions in experiment settings
and benchmarking, etc.

References

[1] The static code analysis tool coverity scan results
for Linux. https://scan.coverity.com/projects/
linux, 2006.

[2] Carla Schroder: Missing docuement is the #1 bug
in the Linux. https://www.linuxtoday.com/blog/
linux-bug-1-bad-documentation/, 2009.

[3] A minimal Linux kernel module written in rust. https:
//github.com/tsgates/rust.ko, 2013.

[4] Linus explained the docuementation missing
problem. https://www.youtube.com/watch?v=
bAop_8l6_cI&t=2275s, 2015.

[5] Redox is a Unix-like Operating System written in
Rust. https://gitlab.redox-os.org/redox-os/
redox/, 2015.

[6] TiKV is an open-source, distributed, and transac-
tional key-value database written in Rust. https:
//github.com/tikv/tikv, 2016.

[7] Bindgen does not handle packed and aligned
right. https://github.com/rust-lang/rust-
bindgen/issues/1538, 2019.

[8] Why writing Linux Kernel Modules in Safe
Rust. https://www.youtube.com/watch?v=
RyY01fRyGhM, 2019.

[9] Bindgen mishandles aligned typedefs. https:
//github.com/rust-lang/rust-bindgen/
issues/1753, 2020.

[10] The Barriers to in-tree Rust talk in LPC 2020
LLVM MC. https://lpc.events/event/7/
contributions/804/, 2020.

[11] Linux kernel modules in safe Rust. https:
//github.com/fishinabarrel/linux-kernel-
module-rust, 2021.

[12] The issue of "Safe initialization of pinned structs"
in github. https://github.com/Rust-for-Linux/
linux/issues/290, 2021.

[13] The RFC in the maillist for Rust support.
https://lore.kernel.org/rust-for-linux/
20210414184604.23473-1-ojeda@kernel.org/,
2021.

https://scan.coverity.com/projects/linux
https://scan.coverity.com/projects/linux
https://www.linuxtoday.com/blog/linux-bug-1-bad-documentation/
https://www.linuxtoday.com/blog/linux-bug-1-bad-documentation/
https://github.com/tsgates/rust.ko
https://github.com/tsgates/rust.ko
https://www.youtube.com/watch?v=bAop_8l6_cI&t=2275s
https://www.youtube.com/watch?v=bAop_8l6_cI&t=2275s
https://gitlab.redox-os.org/redox-os/redox/
https://gitlab.redox-os.org/redox-os/redox/
https://github.com/tikv/tikv
https://github.com/tikv/tikv
https://github.com/rust-lang/rust-bindgen/issues/1538
https://github.com/rust-lang/rust-bindgen/issues/1538
https://www.youtube.com/watch?v=RyY01fRyGhM
https://www.youtube.com/watch?v=RyY01fRyGhM
https://github.com/rust-lang/rust-bindgen/issues/1753
https://github.com/rust-lang/rust-bindgen/issues/1753
https://github.com/rust-lang/rust-bindgen/issues/1753
https://lpc.events/event/7/contributions/804/
https://lpc.events/event/7/contributions/804/
https://github.com/fishinabarrel/linux-kernel-module-rust
https://github.com/fishinabarrel/linux-kernel-module-rust
https://github.com/fishinabarrel/linux-kernel-module-rust
https://github.com/Rust-for-Linux/linux/issues/290
https://github.com/Rust-for-Linux/linux/issues/290
https://lore.kernel.org/rust-for-linux/20210414184604.23473-1-ojeda@kernel.org/
https://lore.kernel.org/rust-for-linux/20210414184604.23473-1-ojeda@kernel.org/


[14] The Rust-for-Linux official presentation in the Rust
Meetup Linz. https://www.youtube.com/watch?v=
fVEeqo40IyQ, 2021.

[15] A Linux CVE caused by data race. https://
www.cvedetails.com/cve/CVE-2022-3566/, 2022.

[16] A Linux CVE caused by incorrect type casting. https:
//www.cvedetails.com/cve/CVE-2018-5861,
2022.

[17] A RFL bug due to the misconfig of Kbuild. https://
github.com/Rust-for-Linux/linux/issues/735,
2022.

[18] A RFL driver bug report: potential sleep-in-atomic-
context. https://lore.kernel.org/rust-for-
linux/87r0ykny6w.fsf@wdc.com/T/#t, 2022.

[19] KMSAN is a dynamic error detector aimed at
finding uses of uninitialized values. https://
docs.kernel.org/dev-tools/kmsan.html, 2022.

[20] Linux merges Rust into the mainline.
https://git.kernel.org/pub/scm/linux/
kernel/git/torvalds/linux.git/commit/?id=
8aebac82933ff1a7c8eede18cab11e1115e2062b,
2022.

[21] RFL discards BTF_TYPE_TAG attribute.
https://github.com/rust-lang/rust-bindgen/
issues/2244, 2022.

[22] The Rust-for-Linux project helping write drivers
in Linux. https://github.com/Rust-for-Linux/
linux/, 2022.

[23] A Linux CVE caused by oob bugs. https:
//www.cvedetails.com/cve/CVE-2023-38429/,
2023.

[24] A Linux CVE caused by use-after-free. https:
//www.cvedetails.com/cve/CVE-2023-33288/,
2023.

[25] A Linux CVE caused by usedouble free. https:
//www.cvedetails.com/cve/CVE-2023-28464/,
2023.

[26] A unit testing framework for the Linux kernel. https:
//kunit.dev/, 2023.

[27] An envidence that RFL community lacks of
enough available reviewers understanding net-
dev. https://lore.kernel.org/rust-for-
linux/CANiq72mDVQg9dbtbAYLSoxQo4ZTgyKk=
e-DCe8itvwgc0=HOZw@mail.gmail.com/, 2023.

[28] An envidence that RFL community lacks
of reviewers understanding netdev. https:
//lore.kernel.org/rust-for-linux/
20230614230128.199724bd@kernel.org/, 2023.

[29] An envidence that V4L2 community lacks of enough
available reviewers understanding RFL. https:
//lpc.events/event/17/contributions/1430/,
2023.

[30] Fix a AB-BA deadlock using
io_uring_cmd_complete_in_task.
https://lore.kernel.org/lkml/
20230525183607.1793983-55-
sashal@kernel.org/, 2023.

[31] Lints for kernel or embedded system develop-
ment. https://github.com/Rust-for-Linux/
klint, 2023.

[32] PuzzleFS buiild on the top of vfs abstractions in RFL.
https://lore.kernel.org/rust-for-linux/
20230609063118.24852-1-amiculas@cisco.com/,
2023.

[33] Rewriting drivers in RFL can still have bugs. https:
//lwn.net/Articles/953116/, 2023.

[34] RFL breaks the rule of no duplicate drivers in Linux.
https://lpc.events/event/17/contributions/
1501/, 2023.

[35] RFL driver selection reasons.
https://lore.kernel.org/all/
87y1ofj5tt.fsf@metaspace.dk/, 2023.

[36] Tarfs buiild on the top of vfs abstractions in
RFL. https://github.com/Rust-for-Linux/
linux/pull/1037, 2023.

[37] The collaboration method of RFL community. https:
//rust-for-linux.com/contributing, 2023.

[38] The community-based distributed test au-
tomation system KernelCI. https://
foundation.kernelci.org/, 2023.

[39] The deadlock of RFL abstraction and real
use drivers. https://lore.kernel.org/
rust-for-linux/8e9e2908-c0da-49ec-86ef-
b20fb3bd71c3@lunn.ch/, 2023.

[40] The first rust driver merged into in the Linux
mainline. https://lore.kernel.org/rust-
for-linux/20231213004211.1625780-1-
fujita.tomonori@gmail.com/, 2023.

[41] The google Syzbot kernel fuzzer project. https://
syzkaller.appspot.com/upstream, 2023.

https://www.youtube.com/watch?v=fVEeqo40IyQ
https://www.youtube.com/watch?v=fVEeqo40IyQ
https://www.cvedetails.com/cve/CVE-2022-3566/
https://www.cvedetails.com/cve/CVE-2022-3566/
https://www.cvedetails.com/cve/CVE-2018-5861
https://www.cvedetails.com/cve/CVE-2018-5861
https://github.com/Rust-for-Linux/linux/issues/735
https://github.com/Rust-for-Linux/linux/issues/735
https://lore.kernel.org/rust-for-linux/87r0ykny6w.fsf@wdc.com/T/#t
https://lore.kernel.org/rust-for-linux/87r0ykny6w.fsf@wdc.com/T/#t
https://docs.kernel.org/dev-tools/kmsan.html
https://docs.kernel.org/dev-tools/kmsan.html
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=8aebac82933ff1a7c8eede18cab11e1115e2062b
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=8aebac82933ff1a7c8eede18cab11e1115e2062b
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=8aebac82933ff1a7c8eede18cab11e1115e2062b
https://github.com/rust-lang/rust-bindgen/issues/2244
https://github.com/rust-lang/rust-bindgen/issues/2244
https://github.com/Rust-for-Linux/linux/
https://github.com/Rust-for-Linux/linux/
https://www.cvedetails.com/cve/CVE-2023-38429/
https://www.cvedetails.com/cve/CVE-2023-38429/
https://www.cvedetails.com/cve/CVE-2023-33288/
https://www.cvedetails.com/cve/CVE-2023-33288/
https://www.cvedetails.com/cve/CVE-2023-28464/
https://www.cvedetails.com/cve/CVE-2023-28464/
https://kunit.dev/
https://kunit.dev/
https://lore.kernel.org/rust-for-linux/CANiq72mDVQg9dbtbAYLSoxQo4ZTgyKk=e-DCe8itvwgc0=HOZw@mail.gmail.com/
https://lore.kernel.org/rust-for-linux/CANiq72mDVQg9dbtbAYLSoxQo4ZTgyKk=e-DCe8itvwgc0=HOZw@mail.gmail.com/
https://lore.kernel.org/rust-for-linux/CANiq72mDVQg9dbtbAYLSoxQo4ZTgyKk=e-DCe8itvwgc0=HOZw@mail.gmail.com/
https://lore.kernel.org/rust-for-linux/20230614230128.199724bd@kernel.org/
https://lore.kernel.org/rust-for-linux/20230614230128.199724bd@kernel.org/
https://lore.kernel.org/rust-for-linux/20230614230128.199724bd@kernel.org/
https://lpc.events/event/17/contributions/1430/
https://lpc.events/event/17/contributions/1430/
https://lore.kernel.org/lkml/20230525183607.1793983-55-sashal@kernel.org/
https://lore.kernel.org/lkml/20230525183607.1793983-55-sashal@kernel.org/
https://lore.kernel.org/lkml/20230525183607.1793983-55-sashal@kernel.org/
https://github.com/Rust-for-Linux/klint
https://github.com/Rust-for-Linux/klint
https://lore.kernel.org/rust-for-linux/20230609063118.24852-1-amiculas@cisco.com/
https://lore.kernel.org/rust-for-linux/20230609063118.24852-1-amiculas@cisco.com/
https://lwn.net/Articles/953116/
https://lwn.net/Articles/953116/
https://lpc.events/event/17/contributions/1501/
https://lpc.events/event/17/contributions/1501/
https://lore.kernel.org/all/87y1ofj5tt.fsf@metaspace.dk/
https://lore.kernel.org/all/87y1ofj5tt.fsf@metaspace.dk/
https://github.com/Rust-for-Linux/linux/pull/1037
https://github.com/Rust-for-Linux/linux/pull/1037
https://rust-for-linux.com/contributing
https://rust-for-linux.com/contributing
https://foundation.kernelci.org/
https://foundation.kernelci.org/
https://lore.kernel.org/rust-for-linux/8e9e2908-c0da-49ec-86ef-b20fb3bd71c3@lunn.ch/
https://lore.kernel.org/rust-for-linux/8e9e2908-c0da-49ec-86ef-b20fb3bd71c3@lunn.ch/
https://lore.kernel.org/rust-for-linux/8e9e2908-c0da-49ec-86ef-b20fb3bd71c3@lunn.ch/
https://lore.kernel.org/rust-for-linux/20231213004211.1625780-1-fujita.tomonori@gmail.com/
https://lore.kernel.org/rust-for-linux/20231213004211.1625780-1-fujita.tomonori@gmail.com/
https://lore.kernel.org/rust-for-linux/20231213004211.1625780-1-fujita.tomonori@gmail.com/
https://syzkaller.appspot.com/upstream
https://syzkaller.appspot.com/upstream


[42] The intel Linux Kernel Performance(LKP) project.
https://www.intel.com/content/www/us/en/
developer/topic-technology/open/linux-
kernel-performance/overview.html, 2023.

[43] The Linux kernel docuement requirement. https:
//docs.kernel.org/doc-guide/kernel-doc.html,
2023.

[44] The LTO optimization for rust kernel modules.
https://kangrejos.com/2023/Inlining%20and%
20LTO%20for%20Rust%20Kernel%20Modules.pdf,
2023.

[45] The mainling list of Rust-for-Linux project. https:
//lore.kernel.org/rust-for-linux/, 2023.

[46] The network PHY driver abstraction is merged.
https://lore.kernel.org/rust-for-linux/
170263322444.1975.17234929609368010648.git-
patchwork-notify@kernel.org/, 2023.

[47] The official statistics about the RFL community size.
https://kangrejos.com/2023/, 2023.

[48] The ownership mechanism of the Rust.
https://doc.rust-lang.org/book/ch04-00-
understanding-ownership.html, 2023.

[49] The patch of pin-init API. https://
github.com/Rust-for-Linux/linux/commit/
90e53c5e70a69159ec255fec361f7dcf9cf36eae,
2023.

[50] The Rust implementation of drivers/net/-
phy/ax88796b.c. https://lore.kernel.org/
rust-for-linux/20231213004211.1625780-5-
fujita.tomonori@gmail.com/, 2023.

[51] The Rust Programming Language. https://
www.rust-lang.org/, 2023.

[52] Time since first commit in the git history in netdev
subsystem of Linux. https://people.kernel.org/
kuba/more-development-statistics, 2023.

[53] A deadlock bug in the RFL project. https://
github.com/Rust-for-Linux/linux/issues/998,
2024.

[54] An interpreter for Rust’s mid-level intermediate repre-
sentation. https://github.com/rust-lang/miri,
2024.

[55] Kernel Self Protection Project. https:
//kernsec.org/wiki/index.php/
Kernel_Self_Protection_Project, 2024.

[56] RFL vfs safety abstraction. https:
//lore.kernel.org/rust-for-linux/
CY6W7MLYLYEI.1DX1F6OL9IIDV@suppilovahvero/
T/#mbadc4049b874d7cc9621e0c4abced36ec4bf9e4b,
2024.

[57] The 7 pin-init patches proposed in the Github. https:
//lore.kernel.org/all/?q=Rust+pin-init+API+
for+pinned+initialization+of+structs, 2024.

[58] The Address space layout randomization
wiki. https://en.wikipedia.org/wiki/
Address_space_layout_randomization, 2024.

[59] The android binder driver in Rust. https://
github.com/Darksonn/linux, 2024.

[60] The book Linux Device Drivers, Third Edition. https:
//lwn.net/Kernel/LDD3/, 2024.

[61] The documentation about how Linux handle
bugs. https://docs.kernel.org/process/
index.html#dealing-with-bugs, 2024.

[62] The e1000 NIC driver in Rust. https://github.com/
fujita/rust-e1000, 2024.

[63] The ebpf project. https://ebpf.io/, 2024.

[64] The gpio driver written in Rust. https:
//github.com/Rust-for-Linux/linux/blob/
rust/drivers/gpio/gpio_pl061_rust.rs, 2024.

[65] The io_uring project. https://github.com/axboe/
liburing, 2024.

[66] The issue labels in the Rust-for-Linux Github. https:
//github.com/Rust-for-Linux/linux/issues,
2024.

[67] The Mac GPU driver in Rust. https://github.com/
AsahiLinux/linux/tree/gpu/rust-wip, 2024.

[68] The null block driver written in Rust.
https://lore.kernel.org/rust-for-linux/
20230503090708.2524310-1-nmi@metaspace.dk/,
2024.

[69] The nvme device driver written in Rust. https://
github.com/metaspace/linux/tree/nvme, 2024.

[70] The semaphore driver written in Rust.
https://github.com/Rust-for-Linux/linux/
blob/rust/samples/rust/rust_semaphore.rs,
2024.

[71] Vytautas Astrauskas, Christoph Matheja, Federico Poli,
Peter Müller, and Alexander J. Summers. How do
programmers use unsafe rust? Proc. ACM Program.
Lang., 4(OOPSLA), nov 2020.

https://www.intel.com/content/www/us/en/developer/topic-technology/open/linux-kernel-performance/overview.html
https://www.intel.com/content/www/us/en/developer/topic-technology/open/linux-kernel-performance/overview.html
https://www.intel.com/content/www/us/en/developer/topic-technology/open/linux-kernel-performance/overview.html
https://docs.kernel.org/doc-guide/kernel-doc.html
https://docs.kernel.org/doc-guide/kernel-doc.html
https://kangrejos.com/2023/Inlining%20and%20LTO%20for%20Rust%20Kernel%20Modules.pdf
https://kangrejos.com/2023/Inlining%20and%20LTO%20for%20Rust%20Kernel%20Modules.pdf
https://lore.kernel.org/rust-for-linux/
https://lore.kernel.org/rust-for-linux/
https://lore.kernel.org/rust-for-linux/170263322444.1975.17234929609368010648.git-patchwork-notify@kernel.org/
https://lore.kernel.org/rust-for-linux/170263322444.1975.17234929609368010648.git-patchwork-notify@kernel.org/
https://lore.kernel.org/rust-for-linux/170263322444.1975.17234929609368010648.git-patchwork-notify@kernel.org/
https://kangrejos.com/2023/
https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html
https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html
https://github.com/Rust-for-Linux/linux/commit/90e53c5e70a69159ec255fec361f7dcf9cf36eae
https://github.com/Rust-for-Linux/linux/commit/90e53c5e70a69159ec255fec361f7dcf9cf36eae
https://github.com/Rust-for-Linux/linux/commit/90e53c5e70a69159ec255fec361f7dcf9cf36eae
https://lore.kernel.org/rust-for-linux/20231213004211.1625780-5-fujita.tomonori@gmail.com/
https://lore.kernel.org/rust-for-linux/20231213004211.1625780-5-fujita.tomonori@gmail.com/
https://lore.kernel.org/rust-for-linux/20231213004211.1625780-5-fujita.tomonori@gmail.com/
https://www.rust-lang.org/
https://www.rust-lang.org/
https://people.kernel.org/kuba/more-development-statistics
https://people.kernel.org/kuba/more-development-statistics
https://github.com/Rust-for-Linux/linux/issues/998
https://github.com/Rust-for-Linux/linux/issues/998
https://github.com/rust-lang/miri
https://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project
https://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project
https://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project
https://lore.kernel.org/rust-for-linux/CY6W7MLYLYEI.1DX1F6OL9IIDV@suppilovahvero/T/#mbadc4049b874d7cc9621e0c4abced36ec4bf9e4b
https://lore.kernel.org/rust-for-linux/CY6W7MLYLYEI.1DX1F6OL9IIDV@suppilovahvero/T/#mbadc4049b874d7cc9621e0c4abced36ec4bf9e4b
https://lore.kernel.org/rust-for-linux/CY6W7MLYLYEI.1DX1F6OL9IIDV@suppilovahvero/T/#mbadc4049b874d7cc9621e0c4abced36ec4bf9e4b
https://lore.kernel.org/rust-for-linux/CY6W7MLYLYEI.1DX1F6OL9IIDV@suppilovahvero/T/#mbadc4049b874d7cc9621e0c4abced36ec4bf9e4b
https://lore.kernel.org/all/?q=Rust+pin-init+API+for+pinned+initialization+of+structs
https://lore.kernel.org/all/?q=Rust+pin-init+API+for+pinned+initialization+of+structs
https://lore.kernel.org/all/?q=Rust+pin-init+API+for+pinned+initialization+of+structs
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://github.com/Darksonn/linux
https://github.com/Darksonn/linux
https://lwn.net/Kernel/LDD3/
https://lwn.net/Kernel/LDD3/
https://docs.kernel.org/process/index.html#dealing-with-bugs
https://docs.kernel.org/process/index.html#dealing-with-bugs
https://github.com/fujita/rust-e1000
https://github.com/fujita/rust-e1000
https://ebpf.io/
https://github.com/Rust-for-Linux/linux/blob/rust/drivers/gpio/gpio_pl061_rust.rs
https://github.com/Rust-for-Linux/linux/blob/rust/drivers/gpio/gpio_pl061_rust.rs
https://github.com/Rust-for-Linux/linux/blob/rust/drivers/gpio/gpio_pl061_rust.rs
https://github.com/axboe/liburing
https://github.com/axboe/liburing
https://github.com/Rust-for-Linux/linux/issues
https://github.com/Rust-for-Linux/linux/issues
https://github.com/AsahiLinux/linux/tree/gpu/rust-wip
https://github.com/AsahiLinux/linux/tree/gpu/rust-wip
https://lore.kernel.org/rust-for-linux/20230503090708.2524310-1-nmi@metaspace.dk/
https://lore.kernel.org/rust-for-linux/20230503090708.2524310-1-nmi@metaspace.dk/
https://github.com/metaspace/linux/tree/nvme
https://github.com/metaspace/linux/tree/nvme
https://github.com/Rust-for-Linux/linux/blob/rust/samples/rust/rust_semaphore.rs
https://github.com/Rust-for-Linux/linux/blob/rust/samples/rust/rust_semaphore.rs


[72] Yechan Bae, Youngsuk Kim, Ammar Askar, Jungwon
Lim, and Taesoo Kim. Rudra: Finding Memory Safety
Bugs in Rust at the Ecosystem Scale. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating
Systems Principles, SOSP ’21, page 84–99, New York,
NY, USA, 2021. Association for Computing Machin-
ery.

[73] Abhiram Balasubramanian, Marek S. Baranowski, An-
ton Burtsev, Aurojit Panda, Zvonimir Rakamari, and
Leonid Ryzhyk. System programming in rust: Beyond
safety. SIGOPS Oper. Syst. Rev., 51(1):94–99, sep
2017.

[74] Inyoung Bang, Martin Kayondo, HyunGon Moon, and
Yunheung Paek. TRust: A compilation framework
for in-process isolation to protect safe rust against un-
trusted code. In 32nd USENIX Security Symposium
(USENIX Security 23), pages 6947–6964, Anaheim,
CA, August 2023. USENIX Association.

[75] Stephen M Blackburn, Perry Cheng, and Kathryn S
McKinley. Oil and water? high performance garbage
collection in java with mmtk. In Proceedings. 26th
International Conference on Software Engineering,
pages 137–146. IEEE, 2004.

[76] Vikas S Chomal and Jatinderkumar R Saini. Signif-
icance of software documentation in software devel-
opment process. International Journal of Engineering
Innovations and Research, 3(4):410, 2014.

[77] Michael Coblenz, April Porter, Varun Das, Teja Nal-
lagorla, and Michael Hicks. A multimodal study of
challenges using rust. Plateau Workshop.

[78] Albert Danial. cloc: v1.92, 2023.

[79] Ana Nora Evans, Bradford Campbell, and Mary Lou
Soffa. Is rust used safely by software developers?
In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, ICSE ’20, page
246–257, New York, NY, USA, 2020. Association for
Computing Machinery.

[80] Sishuai Gong, Deniz Altinbüken, Pedro Fonseca, and
Petros Maniatis. Snowboard: Finding kernel concur-
rency bugs through systematic inter-thread communi-
cation analysis. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles,
pages 66–83, 2021.

[81] Amélie Gonzalez, Djob Mvondo, and Yérom-David
Bromberg. Takeaways of Implementing a Native
Rust UDP Tunneling Network Driver in the Linux
Kernel. In Proceedings of the 12th Workshop
on Programming Languages and Operating Systems,
pages 18–25, 2023.

[82] Liwei Guo, Shuang Zhai, Yi Qiao, and Felix Xiaozhu
Lin. Transkernel: bridging monolithic kernels to pe-
ripheral cores. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19), pages 675–692, 2019.

[83] Sandra Höltervennhoff, Philip Klostermeyer, Noah
Wöhler, Yasemin Acar, and Sascha Fahl. “I wouldn’t
want my unsafe code to run my pacemaker”: An in-
terview study on the use, comprehension, and per-
ceived risks of unsafe rust. In 32nd USENIX Security
Symposium (USENIX Security 23), pages 2509–2525,
Anaheim, CA, August 2023. USENIX Association.

[84] Thuan Quang Huynh and Abhik Roychoudhury.
A memory model sensitive checker for c#. In
International Symposium on Formal Methods, pages
476–491. Springer, 2006.

[85] Mohamed Ismail and G Edward Suh. Quantitative over-
head analysis for python. In 2018 IEEE International
Symposium on Workload Characterization (IISWC),
pages 36–47. IEEE, 2018.

[86] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers,
and Derek Dreyer. Rustbelt: Securing the founda-
tions of the rust programming language. Proc. ACM
Program. Lang., 2(POPL), dec 2017.

[87] Asim Kadav and Michael M. Swift. Under-
standing modern device drivers. In Proceedings
of the Seventeenth International Conference on
Architectural Support for Programming Languages
and Operating Systems, ASPLOS XVII, page 87–98,
New York, NY, USA, 2012. Association for Computing
Machinery.

[88] Paul A Karger and Roger R Schell. Multics se-
curity evaluation: Vulnerability analysis. In 18th
Annual Computer Security Applications Conference,
2002. Proceedings., pages 127–146. IEEE, 2002.

[89] Paul Kirth, Mitchel Dickerson, Stephen Crane, Per
Larsen, Adrian Dabrowski, David Gens, Yeoul Na,
Stijn Volckaert, and Michael Franz. Pkru-safe: Au-
tomatically locking down the heap between safe and
unsafe languages. In Proceedings of the Seventeenth
European Conference on Computer Systems, EuroSys
’22, page 132–148, New York, NY, USA, 2022. Asso-
ciation for Computing Machinery.

[90] Michalis Kokologiannakis and Viktor Vafeiadis.
Genmc: A model checker for weak memory mod-
els. In International Conference on Computer Aided
Verification, pages 427–440. Springer, 2021.

[91] Benjamin Lamowski, Carsten Weinhold, Adam Lack-
orzynski, and Hermann Härtig. Sandcrust: Auto-
matic sandboxing of unsafe components in rust. In



Proceedings of the 9th Workshop on Programming
Languages and Operating Systems, PLOS’17, page
51–57, New York, NY, USA, 2017. Association for
Computing Machinery.

[92] Stefan Lankes, Jens Breitbart, and Simon Pickartz. Ex-
ploring rust for unikernel development. In Proceedings
of the 10th Workshop on Programming Languages
and Operating Systems, PLOS’19, page 8–15, New
York, NY, USA, 2019. Association for Computing Ma-
chinery.

[93] Amit Levy, Michael P. Andersen, Bradford Campbell,
David Culler, Prabal Dutta, Branden Ghena, Philip
Levis, and Pat Pannuto. Ownership is theft: Experi-
ences building an embedded os in rust. In Proceedings
of the 8th Workshop on Programming Languages and
Operating Systems, PLOS ’15, page 21–26, New York,
NY, USA, 2015. Association for Computing Machin-
ery.

[94] Amit Levy, Bradford Campbell, Branden Ghena,
Daniel B. Giffin, Pat Pannuto, Prabal Dutta, and Philip
Levis. Multiprogramming a 64kb computer safely and
efficiently. In Proceedings of the 26th Symposium
on Operating Systems Principles, SOSP ’17, page
234–251, New York, NY, USA, 2017. Association for
Computing Machinery.

[95] Amit Levy, Bradford Campbell, Branden Ghena, Pat
Pannuto, Prabal Dutta, and Philip Levis. The case for
writing a kernel in rust. In Proceedings of the 8th
Asia-Pacific Workshop on Systems, APSys ’17, New
York, NY, USA, 2017. Association for Computing Ma-
chinery.

[96] Hongyu Li, Jiangtao Hu, Qichen Qiu, Yuxuan Shan,
Bochen Wang, Jiajun Du, Yexuan Yang, Xinge Wang,
Shangguang Wang, and Mengwei Xu. RROS: A Dual-
kernel Real-time Operating System in Rust, December
2023.

[97] Zhuohua Li, Jincheng Wang, Mingshen Sun, and
John CS Lui. Securing the device drivers of
your embedded systems: framework and prototype.
In Proceedings of the 14th International Conference
on Availability, Reliability and Security, pages 1–10,
2019.

[98] Zhuohua Li, Jincheng Wang, Mingshen Sun, and
John C.S. Lui. MirChecker: Detecting Bugs in Rust
Programs via Static Analysis. In Proceedings of the
2021 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’21, page 2183–2196,
New York, NY, USA, 2021. Association for Computing
Machinery.

[99] A. Light, Thomas W. Doeppner, and Shriram Krishna-
murthi. Reenix: Implementing a unix-like operating
system in rust. 2015.

[100] Peiming Liu, Gang Zhao, and Jeff Huang. Secur-
ing unsafe rust programs with xrust. In Proceedings
of the ACM/IEEE 42nd International Conference on
Software Engineering, ICSE ’20, page 234–245, New
York, NY, USA, 2020. Association for Computing Ma-
chinery.

[101] Vikram Narayanan, Tianjiao Huang, David Detweiler,
Dan Appel, Zhaofeng Li, Gerd Zellweger, and Anton
Burtsev. Redleaf: Isolation and communication in
a safe operating system. In Proceedings of the 14th
USENIX Conference on Operating Systems Design
and Implementation, OSDI’20, USA, 2020. USENIX
Association.

[102] Pierre Olivier, Jalil Boukhobza, and Eric Senn. Flash-
mon v2: Monitoring raw nand flash memory i/o re-
quests on embedded linux. Acm Sigbed Review,
11(1):38–43, 2014.

[103] Boqin Qin, Yilun Chen, Zeming Yu, Linhai Song, and
Yiying Zhang. Understanding memory and thread
safety practices and issues in real-world rust pro-
grams. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and
Implementation, PLDI 2020, page 763–779, New York,
NY, USA, 2020. Association for Computing Machin-
ery.

[104] Elijah Rivera, Samuel Mergendahl, Howard Shrobe,
Hamed Okhravi, and Nathan Burow. Keeping safe
rust safe with galeed. In Annual Computer Security
Applications Conference, ACSAC ’21, page 824–836,
New York, NY, USA, 2021. Association for Computing
Machinery.

[105] Aaron Weiss, Olek Gierczak, Daniel Patterson, and
Amal Ahmed. Oxide: The essence of rust. arXiv
preprint arXiv:1903.00982, 2019.

[106] Jorge Arturo Wong-Mozqueda, Robert Haines, and
Caroline Jay. Is code quality related to test cover-
age? In Proceedings of the International Workshop
on Sustainable Software Systems Engineering, pages
1–2, 2015.

[107] Xinmeng Xia, Yang Feng, and Qingkai Shi. Under-
standing bugs in rust compilers. pages 138–149, 10
2023.

[108] Hui Xu, Zhuangbin Chen, Mingshen Sun, Yangfan
Zhou, and Michael R. Lyu. Memory-safety challenge
considered solved? an in-depth study with all rust cves.
ACM Trans. Softw. Eng. Methodol., 31(1), sep 2021.



[109] Duo Zhang, Om Rameshwar Gatla, Wei Xu, and Mai
Zheng. A study of persistent memory bugs in the linux
kernel. In Proceedings of the 14th ACM International
Conference on Systems and Storage, SYSTOR ’21,
New York, NY, USA, 2021. Association for Computing
Machinery.

[110] Yuchen Zhang, Yunhang Zhang, Georgios Portoka-
lidis, and Jun Xu. Towards understanding the run-
time performance of rust. In Proceedings of the 37th
IEEE/ACM International Conference on Automated
Software Engineering, ASE ’22, New York, NY, USA,
2023. Association for Computing Machinery.

[111] Xiaoye Zheng, Zhiyuan Wan, Yun Zhang, Rui Chang,
and David Lo. A Closer Look at the Security Risks in
the Rust Ecosystem. ACM Transactions on Software
Engineering and Methodology, 33(2):1–30, 2023.

[112] Shuofei Zhu, Ziyi Zhang, Boqin Qin, Aiping Xiong,
and Linhai Song. Learning and programming chal-
lenges of rust: A mixed-methods study. In Proceedings
of the 44th International Conference on Software
Engineering, pages 1269–1281, 2022.

A Case study: Rust programming inflexibility
in the kernel space

We give a real example [96] when Rust safety rules get in the
way of kernel programming conventions in Figure 13. The
example shows the implementation of a dynamic array of char
devices in the kernel and in Rust. The structure definition is
in Figure 13 (a). While the two versions of implementation
look alike, Rust suffers from a key drawback – the N which
specifies the size of the factory is immutable once set, e.g.
N equals 256 in this case. This immutable N applies to each
instance of factory, regardless of their particular needs. For
example, a thread factory may want to have a larger size
of 256 elements while a proxy factory may only need 8
elements, yet under Rust safety rules, both will have to be
of the same size, i.e. either 256 or 8. Such limitation likely
creates holes or fragmentation in memory. In comparsion, the
kernel simply modifies len field via pointers to achieve vari-
able sizes of the array, easily allowing dynamic registration
of char devices.

It is, however, possible to overcome the limitation. To
do so, the developer may apply a series of workarounds,
shown in Figure 13 (b). First, the developer must manu-
ally specify a dyn_num trait and its usage (i.e. the function
use_elements); it dyn trait type suggests the object is dy-
namically dispatched. Then, she uses const generic type pa-
rameter T to indicate the number of elements may vary from
one instance to another. Lastly, she implements the trait over
the generic type to specify the exact size of the instance (i.e.
256 for thread_factory and 8 for proxy_factory). The

workarounds not only incur development overhead but also
add runtime checks, lowering the performance.

B Driver overhead with debug information

For debugging purposes, the developer may preserve the de-
bugging info of Rust drivers. As illustrated in Figure 14, with
debugging information (e.g., debug_foo section), Rust drivers
are 3.9×–6.6× larger than the C counterparts, even for the
Rust drivers with partial features implemented. The debug
info of Rust is much heavier than C because Rust exploits
generic programming, which results in more symbols and
longer symbol names. Such increased sizes of Rust drivers are
non-trivial in resource-constrained embedded devices, whose
flash and memory sizes are around MB level [102]. Thus,
reducing the driver size is critical for enabling debugging in
embedded systems [87].

C The kernel community view of Rust

To better understand how the kernel community views Rust,
we collect the posts about writing Rust drivers from lwn and
ycombinator until 2023/08/05, and use Chatgpt to analyze
them. The analysis consists of two parts. The first is senti-
ment analysis which classifies the opinions into positive and
negative ones. The second is opinion mining, which sets to
find the reasons behind the opinions. The results can be seen
in the Figure 15. In general, Rust is popular for its security
and good performance. Yet, its steep learning curve is the
biggest concern of the developers. The results suggest Rust
still needs time to prove itself in the kernel.



Figure 13: An example explaining the inflexibility of writing RFL drivers.

C
Rust

*N
VM

E

C
Rust

*n
bl
k

C
Rust

*e
10

00

C
Rust

bi
nd

er

C
Rust

gp
io

0
25
K

50
K

75
K

10
0K

12
5K

C
Rust

se
m

0
50
0K 1M 2M

text data bss debug

Figure 14: Comparison of Rust and C driver size with the
debug segment. * indicates that the Rust driver has not imple-
mented full features as C.

Figure 15: The opinions of the developers towards using RFL
in Linux.


	Introduction
	A Primer on Rust in Linux
	RQ1: What is the status quo of RFL
	RFL development status
	Methodology
	Results

	Rustify Linux with safe abstraction
	Rustify device drivers

	RQ2: Does RFL live up to the hype?
	RFL makes Linux more ``securable''
	Does rust bring any overhead?
	How does Rust improve Linux development?

	RQ3: What are the experiences and lessons?
	Related Works
	Conclusions
	Case study: Rust programming inflexibility in the kernel space
	Driver overhead with debug information
	The kernel community view of Rust

