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Background
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Deep Learning on edge devices

usage detailed usage as core feature
photo beauty: 97 94 (96.9%)

face detection: 52 44 (84.6%)

augmented reality: 19 5(26.3%)

image: 149 | face identification: 8 7 (87.5%)
image classification: 11 6 (54.5%)

object recognition: 10 9 (90%)

text recognition:11 4 (36.3%)

word&emoji prediction: 15 15 (100%)

auto-correct: 10 10 (100%)

text:26 translation: 7 3 (42.8%)
text classification: 4 2 (50%)

smart reply: 2 0 (0%)

audio: 24 speech recogI?iFion: 18 7 (38.9%)
sound recognition: 8 8 (100%)
recommendation: 11 2 (18.1%)

movement tracking: 9 4 (44.4%)

Fhesis simulation: 4 . 4 (100%)
abnormal detection: 4 4 (100%)

video segment: 2 1(50%)

action detection: 2 0 (0%)

total: 211 171 (81.0%)

Table 1: The DL usage in different apps. Note: as one app may
have multiple DL uses, the sum of detailed usage (column 2)
might exceed the corresponding coarse usage (column 1).
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Figure 4: Numbers of DL apps using various mobile DL
frameworks. “other lib”: the DL apps developed on the
frameworks in Table 2 but not itemized here, e.g. mace, SNPE,
and xnn. “no lib”: apps with DL functions but using no DL
frameworks from Table 2. Note that the number in “TOTAL”
is lower than the sum of others since some DL apps have in-
tegrated multiple frameworks.



Open Issue

However, the training stage of deep learning is still commonly placed on data centers.




Ubiquitous Learning

Methods: Federated Learning, Split Learning, Local Transfer Learning, etc.

»\Whether edge devices can really afford training modern NN models?
»And if so, do current libraries efficiently support that?



Mobile Neural Network (MNN)

MNN

Mobile Neural Network

Lightweight
Versatility
High performance

Easy to use

Testing Training Training time (ms)
platform library BS=1 | BS=2 BS=4
Samsung | MNN 516 812 1365
Note 10 DL4J 3,032 6,129 | OOM
MNN 6698 | 10,6561 | OOM
RPI 3B+ | TensorFlow 10,468 | 14,157 | 27,574
PyTorch 48274 | 79,097 | OOM




Experiment Setups
* Devices  Models

Specifications - m-

Redmi Note 9 Pro  Snapdragon 720G, 6GB RAM 2020 § LeNet 3.2K
Xiaomi MI 9 Snapdragon 855, 6GB RAM 2019 AlexNet 3 61M
Huawei Mate 30  Kirin 990, 8GB RAM 2019 MoileNetv2 53 3.4M
Meizu 16T Snapdragon 855, 6GB RAM 2019 SqueezeNet 18 411.2K
Samsung S8 Plus Snapdragon 835, 6GB RAM 2017 GooglLenet 22 6.8M

Huawei Honor 8 Kirin 950, 3GB RAM 2016



Overall Latency
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» Training time >> Inference time (Up to 17.8 X gap W|th MoblleNet and BatchS|ze 16)

« Setting the number of CPU core as 4 performs bette@ @ @ @




CPU Usage
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The CPU usage during training is already close to maximal with relatively small batchsize
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Cross-device Comparison
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Latency Breakdown

Raster operator is a unified implementation EEE Roster BB MatMul BB BinartOp I Others
of all traditional operators that are related to
tensor shape transformations, including MobileNet
slice, concat, reshape, broadcast, efc.
AlexNet
[ ] GooglLeNet
SqueezeNet
MatMul LeNet
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Memory footprint
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To keep the memory usage under 1GB, the upper bound of batchsize may be limited to 4!
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Energy consumption
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Using larger batchsize can be more energy-efficient. .



Impacts of CPU parameters

Time (s) Energy (J)
CPU Conf. o] M T T TM T
1> | 42 04 108 (106 &80 6.9
Big 25|26 32 64 |89 %27 2.0
4x [ 3.3 8.4 7.1 8.7 8.2
1x 125.0 339 gl 10.4 7.2 £33
omall 2x | 133 18.0 318|101 84 48
4% | 8.0 11.0 523|114 96 8.2
Hybrid 8x | 3.8 6.5 50.4|134 139 144

* Using 4 big cores with the highest frequency
achieves the best performance.

* Using only one small core with the lowest
CPU frequency leads to the lowest usage of
energy consumption. Its energy
consumption is only 43.7% of the optimal case
of training time, despite it runs 28.9 X slower.
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Thermal dynamics

Such heterogeneous thermal dynamics may complicate the ubiquitous learning process, e.g., the
device selection in federated learning.
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Mobile CPU vs. Mobile GPU
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(b) Redmi Note 9 Pro (Adreno)
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Conclusion

* First measurement of on-
device-training performance

At the dawn of “learning
everywhere and anything”

Future Work

» Generating efficient operators
* Memory optimizations

* Tuning system parameters



MobiSys 2021, 5t International Workshop on Embedded and Mobile Deep Learning (EMDL '21)

Thank you

https://github.com/UbiquitousLearning/Benchmark-On-Device-Training

18



