
TaintStream: Fine-Grained Taint Tracking 
for Big Data Platforms through Dynamic 

Code Translation

Chengxu Yang, Yuanchun Li, Mengwei Xu, Zhenpeng Chen
Yunxin Liu, Gang Huang, Xuanzhe Liu



Privacy Compliance in Big Data Platforms

Data audit team

Data provider
(e.g. end-users and customers)

Data analysts
(e.g. developers and researchers)

Provide raw data Submit scripts to process data

Name Email Date

Alice Hi there, … 07/11

Bob Let’s meet … 06/30

Clare Dear Prof. … 06/01

… … …

df.filter(date > 06/01)
.groupBy(name)
.aggregate(wordCount)
…

Ensure privacy compliance 
of data and scripts



Privacy Compliance in Big Data Platforms

User data can be used only if:
• The requester has the permission
• Data is within retention period
• Data is properly anonymized
• The user doesn’t choose opt-out
• …

Privacy requirements
(e.g. GDPR, HIPAA, COPPA, data 
provider’s requirements, etc.)



Privacy Compliance in Big Data Platforms

User data can be used only if:
• The requester has the permission
• Data is within retention period
• Data is properly anonymized
• The user doesn’t choose opt-out
• …

Privacy requirements
(e.g. GDPR, HIPAA, COPPA, data 
provider’s requirements, etc.)

Current practice:

Lots of manual code/data review

Case-by-case solution for each privacy requirement

Only support coarse-grained data management



Privacy Compliance in Big Data Platforms

User data can be used only if:
• The requester has the permission
• Data is within retention period
• Data is properly anonymized
• The user doesn’t choose opt-out
• …

Privacy requirements
(e.g. GDPR, HIPAA, COPPA, data 
provider’s requirements, etc.)

Current practice: Problems:

A more systematic solution is needed!

Lots of manual code/data review

Case-by-case solution for each privacy requirement

Only support coarse-grained data management

Time-consuming

Error-prone

Data fragmentation & redundancy



An Example

• Sensitive information may be propagated across various datasets
• Data is transformed by complicated scripts
• Different compliance policies need to apply to all the datasets



Potential Solution: Taint Tracking

• The original data is tainted with a tag
• e.g. variable c is tagged as “sensitive”

• Taint tags are propagated during program execution
• e.g. 𝑎 is tainted after 𝑎 = 𝑏 + 𝑐

• Privacy policies can be enforced by checking the tags
• e.g. 𝑎 cannot be leaked if it’s tagged as “sensitive”

Typical way to achieve taint tracking:

System modification
• Add a taint tag field to each register/variable
• Propagate taint tags in each operator

[TaintDroid OSDI’10, LIFT MICRO’06]



Challenges

• Privacy compliance is not a set of precise 
computational rules 
• The taint tags should be flexible enough to support 

diverse privacy polices

• Big data platforms are complex and difficult to do 
system hacking
• Runtime modification is unwanted for security and 

maintainability reasons

• Static approaches usually have oversimplified 
assumptions for real programs
• Data schema is difficult to infer statically

Taint flexibility 
required

System modification 
unwanted

Runtime information 
needed



Our approach (TaintStream)
Idea: Statically rewrite the script to let it self-translate at runtime and propagate 
taint tags embedded in data frames. Meanwhile, support diverse compliance 
requirements with formal and flexible policy definition.



Our approach (TaintStream)

• Create a parallel element to store taint tags for each data element 
The tag type can be flexibly customized according to the privacy policy

• Annotate the scripts through static code instrumentation
Program logic is changed by modifying the scripts instead of the system

• Complete translation at runtime and propagate taint tags on the fly
Data schema is obtained in the dynamic context

Inspirations from source-to-source compilation approaches [JFlow POPL’99, TaintART
CCS’16], while tailored for big data processing.

Idea: Statically rewrite the script to let it self-translate at runtime and propagate 
taint tags embedded in data frames. Meanwhile, support diverse compliance 
requirements with formal and flexible policy definition.



Workflow of TaintStream



Flexible support of diverse privacy management tasks

Data Retention (GDPR)
The raw data and the data inferred from 
it must be deleted after a certain 
retention period (e.g., three months)

Access Control (organizational)
The access to certain data should be 
restricted if the requester is 
unauthorized. 

User Data Erasure (GDPR)
When a user requests to be forgotten, 
the data collected from him/her and 
generated based on it must be deleted.



Dynamic translation

Translation rules subset

Two design principles of translation rules:
1. (Non-interference) The translated code must not 

change the effect of the original code.
2. (Conservativeness) Should not tolerant false 

negatives.

Other designs:
• Correctness guarantee: Formally prove the non-

interference property of the rules
• Exception handling: Snapshot and fallback to the 

conservative taint status on exceptions
• Performance optimization: Fuse non-conflicting 

taint propagation operations to save time

Parse the code at runtime and recursively apply 
the rules until no rule can apply.



Demo: The datasets in TaintStream with taint tags

• Example: each taint tag is a Boolean value

The output dataset of the original script The output dataset when running with TaintStream



Experiment setup

• Query scripts: 7 real-world scripts and 33 self-built scripts
• Baseline: PlanAnlyzer, PySa (SOTA static analyzers)
• Environment: 4-node cluster
• Metrics:
• precision, recall
• running time, storage overhead



Accuracy 93.0% precision and 100% recall



System Overhead

12.7% running time overhead 2.06% storage overhead



Take Away

• Light-weight fine-grained taint tracking for big data platforms
• Various privacy management tasks with little overhead
• With no changes to the system and developers

Thanks! Data and framework:
https://github.com/PrivacyStreams/TaintStream

yangchengxu@pku.edu.cn

https://github.com/PrivacyStreams/TaintStream

