
TaintStream: Fine-Grained Taint Tracking for Big Data
Platforms through Dynamic Code Translation

Chengxu Yang∗†
Key Lab of High Confidence Software
Technologies (Peking University),

MoE
Beijing, China

yangchengxu@pku.edu.cn

Yuanchun Li†‡
Microsoft Research

Beijing, China
Yuanchun.Li@microsoft.com

Mengwei Xu∗
State Key Laboratory of Networking
and Switching Technology, Beijing

University of Posts and
Telecommunications

Beijing, China
mwx@bupt.edu.cn

Zhenpeng Chen
Key Lab of High Confidence Software
Technologies (Peking University),

MoE
Beijing, China
czp@pku.edu.cn

Yunxin Liu∗
Institute for AI Industry Research

(AIR), Tsinghua University
Beijing, China

liuyunxin@air.tsinghua.edu.cn

Gang Huang
Xuanzhe Liu‡

Key Lab of High Confidence Software
Technologies (Peking University),

MoE
Beijing, China
hg@pku.edu.cn

liuxuanzhe@pku.edu.cn

ABSTRACT
Big data has become valuable property for enterprises and enabled
various intelligent applications. Today, it is common to host data in
big data platforms (e.g., Spark), where developers can submit scripts
to process the original and intermediate data tables. Meanwhile,
it is highly desirable to manage the data to comply with various
privacy requirements. To enable flexible and automated privacy
policy enforcement, we propose TaintStream, a fine-grained taint
tracking framework for Spark-like big data platforms. TaintStream
works by automatically injecting taint tracking logic into the data
processing scripts, and the injected scripts are dynamically trans-
lated to maintain a taint tag for each cell during execution. The
dynamic translation rules are carefully designed to guarantee non-
interference in the original data operation. By defining different
semantics of taint tags, TaintStream can enable various data man-
agement applications such as access control, data retention, and
user data erasure. Our experiments on a self-crafted benchmark
suite show that TaintStream is able to achieve accurate cell-level
taint tracking with a precision of 93.0% and less than 15% overhead.
We also demonstrate the usefulness of TaintStream through several
real-world use cases of privacy policy enforcement.

∗This work was done while Chengxu Yang, Mengwei Xu, and Yunxin Liu were working
at Microsoft (as an intern, visiting scholar, and researcher, respectively). † Chengxu
Yang and Yuanchun Li contributed equally. ‡ Correspondence goes to Yuanchun Li
and Xuanzhe Liu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’21, August 23–28, 2021, Athens, Greece
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8562-6/21/08. . . $15.00
https://doi.org/10.1145/3468264.3468532

CCS CONCEPTS
• Security and privacy→ Information flow control; Informa-
tion accountability and usage control.

KEYWORDS
Taint tracking, big data platform, privacy compliance, GDPR
ACM Reference Format:
Chengxu Yang, Yuanchun Li, Mengwei Xu, Zhenpeng Chen, Yunxin Liu,
Gang Huang, and Xuanzhe Liu. 2021. TaintStream: Fine-Grained Taint
Tracking for Big Data Platforms through Dynamic Code Translation. In
Proceedings of the 29th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’21),
August 23–28, 2021, Athens, Greece. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3468264.3468532

1 INTRODUCTION
In the past decade, we have witnessed an explosion of data and rapid
advances in data analysis techniques. To handle the massive amount
of data and complicated data processing requests, several big data
analytics engines [19, 37, 55] are proposed. Today, managing big
data with a unified platform that stores data in distributed file
systems (e.g., HDFS) and offers data processing ability with Stream-
like APIs (e.g., Spark) has become a standard in industry [7].

There are typically three roles involved in a big data platform,
including data providers, data analysts, and data managers. Data
providers are typically the end-users or consumers that contribute
the raw data to the platform. For example, each user of an email
service would produce her email messages to the service maintainer.
Data providers are usually subject to privacy protection, and thus
the data provided by them must be managed properly to ensure pri-
vacy compliance.Data analysts are individuals or organizations that
submit code to process the data. They may have different identities
(from different teams, companies, or countries), with different per-
missions, and/or have different purposes (for advertising, product

https://doi.org/10.1145/3468264.3468532
https://doi.org/10.1145/3468264.3468532

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Chengxu Yang, Yuanchun Li, Mengwei Xu, Zhenpeng Chen, Yunxin Liu, Gang Huang, and Xuanzhe Liu

development, scientific research, etc.). Data managers are usually
the platform maintainers whose job is to ensure that the data is
used legitimately. They should arrange the data, sweep the data
periodically, and manage data access to avoid privacy violations. In
this work, we stand in the role of data managers and try to provide
a generic solution for privacy protection.

The current industrial practice of privacy protection for big
data platforms is mainly based on manual code review and coarse-
grained control. To meet different privacy requirements, various
non-trivial mechanisms and rules for data storage, access, and pro-
cessing are designed [24, 29]. Both the analysts and the managers
are required to learn the rules, and any script submitted to the
platform must go through a time-consuming review process to
ensure compliance. Privacy policies such as data retention and ac-
cess control are usually enforced in a per-dataset manner, which
forces the data manager and analysts to make a difficult choice
between convenience and data utilization ratio: if they want to
fully utilize the data, they must manually organize the dataset in
fragments, so that the expiration and sensitivity of one fragment
do not affect the availability of others. Maintaining and processing
the data fragments are also cumbersome for developers. As a result,
a more automated, flexible, and fine-grained solution for privacy
compliance is highly desirable.

Taint analysis [11, 13, 40, 42] is a promising technique for fine-
grained data tracking and privacy protection. The goal of taint anal-
ysis is to detect whether the sensitive information from a source
point (e.g., original personal data) may be propagated to a target
point (e.g., unauthorized third parties). Taint analysis can be con-
ducted statically by analyzing the reachability in data-flow graphs,
or dynamically by tracking the variable definitions and assignments
at runtime.

Porting existing taint analysis techniques to big data platforms
involves several challenges: (1) Data processing scripts (e.g., Spark
scripts) are designed to describe high-level operations over the
whole dataset (select, filter, groupBy, etc.) rather than direct
information propagation (mov, add, etc.), which makes it difficult
for static taint analysis methods to extract fine-grained data flow.
(2) The data in the platforms is usually scattered and transferred
across different computing and storage nodes, which makes it diffi-
cult to apply traditional (register or memory-based) dynamic taint
tracking methods [13, 42]. (3) Big data platforms have a higher
requirement for stability and maintainability of the runtime envi-
ronment, so directly modifying the system to achieve tracking is
usually unacceptable for its high risk and maintenance cost.

In this paper, we propose TaintStream, a fine-grained taint track-
ing framework for big data platforms. TaintStream solves the above
challenges through dynamic code translation, which converts the
original data processing script at runtime to additionally maintain
a taint tag for each data cell (the minimum unit in a dataset). Such
a method combines the advantages of static and dynamic analy-
sis techniques: The code rewriting is performed statically before
running the script so that the rewritten script can seamlessly be
executed in the unmodified analytic engine. The data processing
pipeline translation is completed dynamically at runtime when
the necessary information for taint propagation logic injection
is available. Since the injected taint propagation logic is flexible
and customizable similar to classic data-flow analysis frameworks,

TaintStream is able to fulfill various privacy protection requirements
in fine granularity.

Specifically, given a data processing script pending execution,
TaintStream first scans the code and wraps the data processing
operations with a translation function 𝜙 . When the rewritten script
is executed, 𝜙 is invoked to interpret the data processing operations.
The interpretation follows a set of translation rules, which are care-
fully designed to ensure the conservativeness of taint propagation
and the non-interference in the original data processing operations.
The translated data processing pipeline will operate on an extended
dataset where each cell has an accompanying taint tag field. The
taint tags are maintained during data processing, and the output
data will have taint tags as well. Based on the taint propagation
mechanism, various privacy policies can be automatically enforced
by formulating the policy in TaintStream’s format, i.e., defining the
tag type and initializing, merging, and sanitizing functions. For
example, in data retention, each taint tag is a timestamp indicating
the expiration date of the data. Such a method is generic across
most modern big data platforms.

We implement the prototype based on Spark [55] that is widely
used in practice. To ensure the robustness of the translated script,
we add an exception handling mechanism, which will roll back
the dataset to a safe and conservative state once the translation
fails. We also include some simple rules to fuse data propagation
operations to improve the efficiency of translated scripts.

We evaluate TaintStream with two sets of scripts. The first is
a self-built benchmark that contains 33 scripts that cover most
common data processing operations. The second one is a set of
real-world scripts obtained from a production data platform in in-
dustry. The results show that TaintStream is able to accurately track
taint tags in the cell-level granularity with a precision of 93.0%
and a recall of 100.0%, which outperforms baselines that can track
only column-level taint propagation with an accuracy lower than
TaintStream. We also conduct a qualitative comparison between
TaintStream and the current privacy enforcement methods in indus-
try, which shows TaintStream’s benefits in reducing manual efforts
and improving data utilization. The average time overhead and
storage overhead of TaintStream are 12.7% and 2.06%, respectively,
which are acceptable as compared with the extra manual efforts
required by existing solutions.

We summarize our contributions as follows.

• We propose a fine-grained taint tracking framework 1 to
flexibly support various privacy requirements on big data
platforms while overcoming the limitations of existing static
and dynamic taint analysis techniques.
• We introduce a benchmark for evaluating the performance
of information flow tracking methods for big data platforms.
Our method achieves a high precision of 93.0% and a 100%
recall with respect to the benchmark.
• We demonstrate various privacy enforcement cases where
TaintStream can be used to largely automate the process and
improve protection granularity, as compared with existing
solutions in practice.

1Our code is open-sourced at https://github.com/PrivacyStreams/TaintStream.

https://github.com/PrivacyStreams/TaintStream

TaintStream: Fine-Grained Taint Tracking for Big Data Platforms through Dynamic Code Translation ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 1: Syntax of stream-like data processing APIs.

𝑑 𝑓 ::= 𝑠𝑜𝑢𝑟𝑐𝑒

| 𝑑 𝑓 .𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 ::= 𝑠𝑒𝑙𝑒𝑐𝑡 (𝐶𝑜𝑙)
| 𝑑𝑟𝑜𝑝 (𝐶𝑜𝑙)
| 𝑜𝑟𝑑𝑒𝑟𝐵𝑦 (𝐶𝑜𝑙)
| 𝑓 𝑖𝑙𝑡𝑒𝑟 (𝐶𝑜𝑙)
| 𝑗𝑜𝑖𝑛(𝑑 𝑓 , 𝑜𝑛 = 𝐶𝑜𝑙)
| 𝑢𝑛𝑖𝑜𝑛(𝑑 𝑓)
| 𝑤𝑖𝑡ℎ𝐶𝑜𝑙𝑢𝑚𝑛(𝑠𝑡𝑟,𝐶𝑜𝑙)
| 𝑔𝑟𝑜𝑢𝑝𝐵𝑦 (𝐶𝑜𝑙1).𝑎𝑔𝑔(𝐹𝑎𝑔𝑔1 (𝐶𝑜𝑙2), 𝐹𝑎𝑔𝑔2 (𝐶𝑜𝑙3), ...)
| 𝑚𝑎𝑝 (𝐹𝑢𝑛𝑐) .𝑟𝑒𝑑𝑢𝑐𝑒 (𝐹𝑢𝑛𝑐)
| ...

𝐶𝑜𝑙 ::= 𝑐𝑜𝑙𝑢𝑚𝑛_𝑛𝑎𝑚𝑒

| 𝑐𝑜𝑛𝑠𝑡

| 𝐹𝑢𝑛𝑐 (𝐶𝑜𝑙1,𝐶𝑜𝑙2, ...)
| 𝐹𝑎𝑔𝑔 (𝐶𝑜𝑙)

2 BACKGROUND AND MOTIVATION
In this section, we first introduce some background, including the
general syntax of stream-like data processing APIs (§2.1) and pri-
vacy compliance requirements in big data platforms (§2.2). We then
introduce a simple but full-fledged example to show the necessity
of fine-grained taint tracking.

2.1 Stream-like Data Processing API
Most big data processing engines including Spark [2], Hadoop [37],
Kafka [27], etc. adopt a stream-like API for data processing. The
core concept of stream-like APIs is to view the data as a sequence
of elements and support sequential and parallel functional-style
operations over the elements.

Table 1 shows the general syntax of the stream-like data pro-
cessing APIs. The data source (e.g., a table loaded from storage, a
live data stream generated from users, etc.) is loaded as a dataframe
(df), which can be viewed as a sequence of elements with named
columns. The dataframe can be transformed into another dataframe
with various operations, including select, filter, map/reduce, etc. For
example, some operations are used to include, exclude, or create
columns (select, drop, withColumn), some are to filter, convert, or
group elements (filter, map, groupBy), and some are to merge the
data from different streams (join, union). The parameters of these op-
erations are typically column names, constant values, and functions
(Func, 𝐹𝑎𝑔𝑔 , etc.).

Such a pipeline-style data processing API is similar to SQL. In
fact, stream-like APIs and SQL APIs are interchangeable in some
cases [39]. However, the stream-like APIs have become the most
common interface in most data platforms [2] due to its simplic-
ity, flexibility (seamless support of customized functions), paral-
lelizability (support of efficient operations like map/reduce), and
real-time processing ability (the data source can be real-time data
streams). Our taint tracking method can be applied to traditional
SQL databases as well.

2.2 Data Management and Taint Tracking
The data processed on big data platformsmust be properly managed
to ensure privacy compliance because it is usually collected or
generated from users.

There are several laws and regulations related to user privacy
protection all around the world, such as GPDR [50], HIPAA [51],
COPPA [49], etc. These regulations apply to a broad range of enter-
prises that are processing the personal information of individuals
under protection. In addition, many companies and data platform
owners introduce more strict data access, processing, and sharing
policies to further ensure data security and earn users’ trust.

Below we highlight three typical examples of data management
tasks that will be commonly used throughout the paper:

(1) Data retention. A data retention policy regulates how long
the personal data can be retained by the data collector. The
raw data and the data inferred from it must be deleted after
a certain retention period (e.g., three months). The retention
period may vary for different types of data. Data retention
requirements are common in many regulations including
GDPR and HIPAA.

(2) Access control. Access control is needed when multiple
parties are sharing the data platform. The access to certain
data should be restricted if the requester is unauthorized. For
example, in an international company with multiple teams,
the teams in one country may not be allowed to access the
data from another country, and the advertisement team may
not be allowed to read children’s data.

(3) User data erasure. GDPR also emphasizes the users’ right
to erasure (i.e., the right to be forgotten). When a user re-
quests erasure, the data collected from him/her and gener-
ated based on it must be deleted.

Taint tracking (aka. information flow tracking) is a common tech-
nique to achieve the goal of privacy-preserving data management.
In a taint tracking system, the data records are tagged with marks
indicating whether and how the record is tainted, and the tags may
be propagated during computation to keep track of the information
flow. A straightforward example is the access control mechanism
in modern operating systems. Each file is typically tagged with its
owner and/or access mode (readable, writable, executable, etc.), and
the files computed from it will inherit the tags. Then the system can
simply check the permission tags to decide whether an operation
of a user is allowed on the files.

2.3 Motivating Example and Challenges
We are motivated to investigate the problem of taint tracking in big
data platforms based on our experience working with an industrial
data management team (represented as Team A in the rest of this
paper) who operates a big data platform. We believe the motivation
is shared by many other companies and data platforms.

In such data platforms, confidential user data is continuously
generated from end-users and/or stored in a large database, and
the raw user datasets are processed by various developers like
data scientists and business analysts for different purposes, includ-
ing supporting personalized services, mining user behavior, and
gaining new business insights. Ensuring data security and privacy
compliance is usually necessary for these platforms.

A motivating scenario is shown in Figure 1. Team A has a data
platform hosting the data generated from client-side applications.
The data is open to different teams through Spark APIs [2, 55] to fa-
cilitate data analytic and development of new features. We assume

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Chengxu Yang, Yuanchun Li, Mengwei Xu, Zhenpeng Chen, Yunxin Liu, Gang Huang, and Xuanzhe Liu

Raw user data

Continuous
user data
streams

Data processing
script

Generated
data

…

A	sample	data	processing	script:

user-defined function that constructs email reply pairs
func build_pairs(arg, …) {…}
dataset "emails” contains emails in different conversations
select conversations containing more than one email
convs = emails.groupBy($conversationId)

.agg(count(*).alias($count),
collect_list($msg).alias($msgList))

.filter($count > 1)
construct email reply pairs
emails = emails.join(convs, on=$conversationId, "inner")
emails = emails.orderBy($date)
emails = emails.withColumn($replyPairs, build_pairs($msgList))
write_to_hdfs(emails)

Information flow in
big data platform

A	record	created	on	Jan	10	that	
must	be	deleted	before	April	10	
according	to	GDPR

Figure 1: Amotivating scenario for fine-grained taint tracking. The expired records in the raw datasets and generated datasets
must be deleted to fulfill GDPR data retention requirements.

the privacy policy to be enforced is a simplified version of data
retention, which requires any personal data records created three
months ago must be deleted, so do other data records computed
from it. Deleting the expired data is challenging because the expi-
ration date information may be missing in the datasets generated
by the analytic scripts. An example script is shown on the right
side of Figure 1, which is simplified from a real-world script that
takes user messaging data as input and generates training data for
a smart-reply machine learning model. Note that the scripts are
chainable, i.e., the output of a script can be the input of another
script, making the data management even more complicated.

The current practice in Team A to ensure privacy compliance is
mainly based on manual code review and coarse-grained dataset lin-
eage analysis. For example, the datasets are partitioned and labeled
with different data types and sensitivity levels that are propagated
to the generated datasets. The privacy-related requirements are
enforced based on these dataset labels in an all-or-nothing man-
ner, e.g., the whole dataset needs to be deleted if any record in it
is expired. In cases where coarse-grained automated checking is
insufficient, the developers must follow some coding rules to keep
track of sensitive data (e.g., manually maintain a user ID column
for each record to handle user erasure requests) when writing the
scripts and submit the scripts for expert review before actually
executing them, which typically takes hours or days. The current
solutions are time-consuming, inconvenient, and hard to maintain,
since both developers and code reviewers are required to learn and
obey complicated privacy requirements. An automated solution to
fine-grained information flow tracking is highly desirable.

Taint analysis is a popular technique to achieve fine-grained data
tracking in traditional programs. However, directly applying them
to our problem involves the following technical challenges:

(1) Missing traceable information in scripts. Static data-
flow analysis [4, 25, 46, 48] can extract data dependency
between variables in a program. However, a script in big data
platforms describes only the high-level operations (e.g., map,
groupBy, etc.) to be performed on the dataset, rather than
the detailed assignments and computations (mov, add, etc.)
between variables. Meanwhile, the schema and actual values
of the datasets are missing in the scripts, making it difficult

to extract fine-grained data-flow between data records from
high-level operations.

(2) Complicated low-level computation and storage. Dy-
namic taint tracking techniques [6, 13, 35, 42] can track in-
formation propagation in traditional systems at the register,
memory, and file level. However, applying these techniques
to big data platforms is difficult because the storage and com-
putation in big data platforms may be distributed, replicated,
and out-of-order.

(3) Diverse and flexible privacy policies. Moreover, the pri-
vacy requirements may vary across different countries and
organizations and evolve quickly. Supporting them in sys-
tem level may require frequent system updating and reboot-
ing. This would significantly harm the system stability and
service quality, since many data processing jobs are long-
running non-interruptable tasks.

To sum up, an ideal taint tracking mechanism for big data plat-
forms should achieve three objectives: fine granularity (tracking
values rather than datasets), lightweight (tracking at the semantic
level rather than variable level), and ease of use (supporting flexible
privacy policies).

3 OUR APPROACH: TAINTSTREAM
We introduce TaintStream, a fine-grained taint tracking technique
for big data platforms. The core idea of TaintStream is to translate
the data processing scripts during script execution to add taint
propagation logic while retaining the fidelity of original operations.

3.1 Overview
The workflow of TaintStream is shown in Figure 2. For each data
processing script submitted to the platform, we first instrument
the script by wrapping the original stream pipeline with a dynamic
translation function 𝜙 . The instrumented script is then executed in
the original runtime (e.g., Spark) where 𝜙 is invoked to interpret
the stream pipeline.

The instrumented script operates on an extended version of the
original dataset, in which each data cell is attached a (or multiple)
taint tag(s). The taint tags for the raw data are generated upon
dataset creation by the data managers according to the privacy

TaintStream: Fine-Grained Taint Tracking for Big Data Platforms through Dynamic Code Translation ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Original	script

conversationId msg date
xxx​ “Hi,	I	am	…”​ 10/3
yyy “Thanks	…”​ 12/4
… … …

conversationId msg date
val tag val tag val tag
xxx​ false “Hi,	I	am	…”​ true 10/3 false
yyy false “Thanks	…”​ true 12/4 false
… … … … … …

conversationId replyPairs date
val tag val tag val tag
yyy false [“Hi	…”,	“Thanks …”] true 10/3 false
… … … … … …

Attach	
taint	tag

...
context = getContext() # extract context
code = "emails = emails.orderBy($date)"
emails = 𝜙(code, context) # dynamic code translation
context = getContext()
code = "emails = emails.withColumn($replyPairs,

build_pairs($msgList))"
emails = 𝜙(code, context)
...

Script	after	static	rewriting

Rewrite	
code

Original	data Data	with	taint	tag

Unmodified	
runtime

(e.g.,	Spark)

Output	data	with	taint	tag

...
emails = emails.orderBy($date)
emails = emails.withColumn($replyPairs,

build_pairs($msgList))
...

Policy	
Checker

Privacy
Policies

Allow
or

Deny

...
emails = emails.orderBy($date.val)
emails = emails.withColumn($replyPairs,

tagMerge(build_pairs($msgList.val), $msgList.tag))
...

Script	after	dynamic	
translation

Figure 2: TaintStream workflow.

policies, and the extended versions of intermediate datasets are
generated by our translated scripts. If the data cell has a hierarchical
structure (e.g., a ⟨𝐼𝑛𝑡, 𝑆𝑡𝑟𝑖𝑛𝑔⟩ pair), the taint tags are attached to
the lowest-level values rather than the whole cell.

The type and semantic meaning of the taint tags are customizable
based on the privacy policy to enforce. For example, in access
control, the taint tag of each record can be set as the owner of the
data, and anyone other than the owner can be denied to access the
information. In date retention, each record can be tagged with its
expiration date, so that data cleaning can be performed periodically
to delete the expired records. For simplicity, the taint tags in Figure 2
are boolean values.

Based on how the data is processed in the original pipeline, the
function 𝜙 determines how the taint tags should be propagated
in each operation. The taint propagation logic is written as a nor-
mal stream operation and weaved into the original pipeline, so
that the translated pipeline is also executable in the original run-
time. For example, in 𝑤𝑖𝑡ℎ𝐶𝑜𝑙𝑢𝑚𝑛 operation, a new field (in this
paper, we use field and column mutually) will be created for each
element in the stream with a function that takes other fields as
inputs. When being interpreted by 𝜙 , the 𝑤𝑖𝑡ℎ𝐶𝑜𝑙𝑢𝑚𝑛 operation
will additionally aggregate the taint tags of input fields and pass
the aggregated tag to the new field’s tag. The aggregation function
is also customizable based on the tracking objective. For example,
when aggregating multiple values with different expiration dates,
the earliest expiration date should be kept to ensure strict com-
pliance. When aggregating two records with different authorized
groups, the output record should be tagged with the intersection
of the groups. Meanwhile, the aggregation function can also be
customized based on the underlying data processing operation. For
example, if the operation is to compute the average message length
of users’ messages, the taint tags can be cleared since the output
value is no longer sensitive.

Finally, the translated script will produce output data with cell-
wise taint tags. Privacy policy enforcement can be performed by
checking the taint tags. For example, to enforce data retention, we
can periodically scan the datasets and sweep the records that have
reached the expiration date. To support fine-grained access control,

we can make sure the records are only visible to the developers in
authorized groups.

Here we explain how TaintStream addresses the challenges de-
scribed in §2.3. First, our method combines the benefits of static
analysis and dynamic analysis. The static code rewriting phase
overwrites the original data processing pipeline with a modified
(extended) pipeline, and the statically-unavailable information such
as data schema is available during runtime dynamic translation.
Second, our solution is light-weight, because the taint propagation
logic is injected into the script through code rewriting rather than
system modification, which hides the details about how the data is
actually stored and processed at the low level. Last but not least, the
injected taint propagation logic can be customized with code trans-
lation rules, and thus able to support flexible privacy requirements
by defining different types of taint tags, aggregation functions, etc.

The following sections will introduce the core components of
TaintStream in more detail.

3.2 Static Code Rewriting
In TaintStream, a script submitted to the data platform is first passed
through a static code rewriting phase, in which the script is instru-
mented to redirect the control flow to the translation functions.

Specifically, we first scan the script to locate the data processing
pipelines. This can be achieved by parsing the script and searching
the parsed syntax tree for the stream APIs described in §2.1. For
instance, in PySpark (Python interface for Spark) scripts, the data
processing operations can be located by finding the transformation
functions invoked on Dataframe instances.

In the rewritten script, each data processing pipeline is wrapped
with a translation function 𝜙 . The function takes the original lines
of code (i.e., the code to be translated at runtime) as input together
with a context variable. The context variable includes the current
data schema, types, variables, etc., which are used to provide neces-
sary information for the dynamic code translation. We introduce a
getContext function to collect the context information at runtime.
Both the getContext function and the code translation function 𝜙

are packed as a library and linked to the script during running.

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Chengxu Yang, Yuanchun Li, Mengwei Xu, Zhenpeng Chen, Yunxin Liu, Gang Huang, and Xuanzhe Liu

Table 2: Examples of dynamic code translation rules.𝜙 (𝑐𝑜𝑑𝑒)
represents applying translation rules to the code. ⟨𝑣𝑎𝑙𝑢𝑒, 𝑡𝑎𝑔⟩
is to pack a value field and a taint tag field into a structured
value field (the new field name is set to the same as the
value field name).𝑉𝐶𝑜𝑙 and𝑇𝐶𝑜𝑙 are used to get the value and
tag of the column respectively. 𝑡𝑎𝑔𝑀𝑒𝑟𝑔𝑒 (𝑡𝑎𝑔1, 𝑡𝑎𝑔2, ...) and
𝑡𝑎𝑔𝐴𝑔𝑔(𝑡𝑎𝑔) are to merge multiple taint tags or aggregate a
group of tags using a customized merging function. ⊥ repre-
sents the default tag for const/insensitive values.

Index Original Translated

1 𝜙 (𝑠𝑜𝑢𝑟𝑐𝑒) 𝑠𝑜𝑢𝑟𝑐𝑒𝑡𝑎𝑔𝑔𝑒𝑑
2 𝜙 (𝑑 𝑓 .𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) 𝜙 (𝑑 𝑓) .𝜙 (𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛)
3 𝜙 (𝑠𝑒𝑙𝑒𝑐𝑡 (𝐶𝑜𝑙)) 𝑠𝑒𝑙𝑒𝑐𝑡 (𝜙 (𝐶𝑜𝑙))
4 𝜙 (𝑑𝑟𝑜𝑝 (𝐶𝑜𝑙)) 𝑑𝑟𝑜𝑝 (𝜙 (𝐶𝑜𝑙))
5 𝜙 (𝑜𝑟𝑑𝑒𝑟𝐵𝑦 (𝐶𝑜𝑙)) 𝑜𝑟𝑑𝑒𝑟𝐵𝑦 (𝑉𝜙 (𝐶𝑜𝑙))
6 𝜙 (𝑓 𝑖𝑙𝑡𝑒𝑟 (𝐶𝑜𝑙)) 𝑓 𝑖𝑙𝑡𝑒𝑟 (𝑉𝜙 (𝐶𝑜𝑙))
7 𝜙 (𝑗𝑜𝑖𝑛(𝑑 𝑓2, 𝑜𝑛 = 𝐶𝑜𝑙)) 𝑗𝑜𝑖𝑛(𝜙 (𝑑 𝑓2), 𝑜𝑛 = 𝑉𝜙 (𝐶𝑜𝑙))
8 𝜙 (𝑢𝑛𝑖𝑜𝑛(𝑑 𝑓2)) 𝑢𝑛𝑖𝑜𝑛(𝜙 (𝑑 𝑓2))
9 𝜙 (𝑤𝑖𝑡ℎ𝐶𝑜𝑙𝑢𝑚𝑛(𝑠𝑡𝑟, 𝑐𝑜𝑙)) 𝑤𝑖𝑡ℎ𝐶𝑜𝑙𝑢𝑚𝑛(𝑠𝑡𝑟, 𝜙 (𝑐𝑜𝑙))

10
𝜙 (𝑔𝑟𝑜𝑢𝑝𝐵𝑦 (𝐶𝑜𝑙1)
.𝑎𝑔𝑔(𝐹𝑎𝑔𝑔1 (𝐶𝑜𝑙2), ...))

𝑔𝑟𝑜𝑢𝑝𝐵𝑦 (𝑉𝜙 (𝐶𝑜𝑙1))
.𝑎𝑔𝑔(𝑡𝑎𝑔𝐴𝑔𝑔(𝑇𝜙 (𝐶𝑜𝑙1)), 𝜙 (𝐹𝑎𝑔𝑔1 (𝐶𝑜𝑙2), ...)
.𝑚𝑎𝑝 (𝑥 → (⟨𝑥1, 𝑥2⟩, 𝑥3, 𝑥4, ...))

11

𝜙 (𝑚𝑎𝑝 (𝑥 →
(𝐹𝑖 (𝑥𝑖1 , 𝑥𝑖2 , ...),
𝐹 𝑗 (𝑥 𝑗1 , 𝑥 𝑗2 , ...),
...)))

𝑚𝑎𝑝 (𝑥 →
(⟨𝐹𝑖 (𝑉𝑥𝑖1 ,𝑉𝑥𝑖2 , ...), 𝑡𝑎𝑔𝑀𝑒𝑟𝑔𝑒 (𝑇𝑥𝑖1 ,𝑇𝑥𝑖2 , ...)⟩,
⟨𝐹 𝑗 (𝑉𝑥 𝑗1

,𝑉𝑥 𝑗2
, ...), 𝑡𝑎𝑔𝑀𝑒𝑟𝑔𝑒 (𝑇𝑥 𝑗1

,𝑇𝑥 𝑗2
, ...)⟩,

...))

12
𝜙 (𝑟𝑒𝑑𝑢𝑐𝑒 (𝑎, 𝑏 →

(𝐺𝑖 (𝑎𝑖 , 𝑏𝑖), ...)))
𝑟𝑒𝑑𝑢𝑐𝑒 (𝑎, 𝑏 →

(⟨𝐺𝑖 (𝑉𝑎𝑖 ,𝑉𝑏𝑖), 𝑡𝑎𝑔𝑀𝑒𝑟𝑔𝑒 (𝑇𝑎𝑖 ,𝑇𝑏𝑖)⟩,
⟨...⟩, ...)

13 𝜙 (𝑐𝑜𝑙𝑢𝑚𝑛_𝑛𝑎𝑚𝑒)) 𝑐𝑜𝑙𝑢𝑚𝑛_𝑛𝑎𝑚𝑒

14 𝜙 (𝑐𝑜𝑛𝑠𝑡) ⟨𝑐𝑜𝑛𝑠𝑡,⊥⟩

15 𝜙 (𝐹𝑢𝑛𝑐 (𝐶𝑜𝑙1,𝐶𝑜𝑙2, ...)) ⟨𝐹𝑢𝑛𝑐 (𝑉𝜙 (𝐶𝑜𝑙1) ,𝑉𝜙 (𝐶𝑜𝑙2) , ...),
𝑡𝑎𝑔𝑀𝑒𝑟𝑔𝑒 (𝑇𝜙 (𝐶𝑜𝑙1) ,𝑇𝜙 (𝐶𝑜𝑙2) , ...)⟩

16 𝜙 (𝐹𝑎𝑔𝑔 (𝐶𝑜𝑙)) ⟨𝐹𝑎𝑔𝑔 (𝑉𝜙 (𝐶𝑜𝑙)), 𝑡𝑎𝑔𝐴𝑔𝑔(𝑇𝜙 (𝐶𝑜𝑙))⟩

3.3 Dynamic Translation Rules
The static code rewriting phase sets up a proxy between the script
and the original code interpreter. The actual code logic translation is
completed dynamically when the modified script is being executed.

The core of the dynamic translation phase is the function 𝜙 that
converts the original data processing pipeline to add the effect of
taint propagation. The translation is based on a set of carefully de-
signed rules as shown in Table 2. The rules are applied recursively
on the stream APIs in a top-down manner, which starts from the
overall pipeline (e.g., 𝑑 𝑓 .𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛∗) to the individual trans-
formation operations (𝑠𝑒𝑙𝑒𝑐𝑡 , 𝑔𝑟𝑜𝑢𝑝𝐵𝑦, etc.) and the arguments to
the operations (𝐶𝑜𝑙 , 𝐹𝑢𝑛𝑐 , etc.). Below shows how the first state-
ment in Figure 2 is translated:

𝜙 (𝑒𝑚𝑎𝑖𝑙𝑠 .𝑜𝑟𝑑𝑒𝑟𝐵𝑦 ($𝑑𝑎𝑡𝑒))
→ 𝜙 (𝑒𝑚𝑎𝑖𝑙𝑠).𝜙 (𝑜𝑟𝑑𝑒𝑟𝐵𝑦 ($𝑑𝑎𝑡𝑒)) 𝑅𝑢𝑙𝑒 2
→ 𝑒𝑚𝑎𝑖𝑙𝑠𝑡𝑎𝑔𝑔𝑒𝑑 .𝑜𝑟𝑑𝑒𝑟𝐵𝑦 (𝑉𝜙 ($𝑑𝑎𝑡𝑒)) 𝑅𝑢𝑙𝑒 1 , 𝑅𝑢𝑙𝑒 5

→ 𝑒𝑚𝑎𝑖𝑙𝑠𝑡𝑎𝑔𝑔𝑒𝑑 .𝑜𝑟𝑑𝑒𝑟𝐵𝑦 (𝑉$𝑑𝑎𝑡𝑒) 𝑅𝑢𝑙𝑒 13
The rules are designed with two principles: non-interference and

conservativeness. Non-interference means that the translated data
processing pipeline must have the identical effect as the original
script on the original data, so that the developers’ tasks are cor-
rectly executed by TaintStream. We validate the non-interference
of our translation rules through formal proofs 2, in which we try

2Details in our repository.

$usrID$hashID

$hashID
(filtered)

$usrID

$usrID Others	
Columns	… df1=read_from(inputPath)

df2=df1.withColumn($hashID,
hash($usrID))

df3=df2.filter($hashID
== hash("Alice"))

Policy: Column “usrID” can never be filtered upon.

Others	
Columns	…

Others	
Columns	…

Figure 3: An example of the data flow graph built by
TaintStream.

to demonstrate that the dataframe produced by the translated op-
eration after removing taint tags is equivalent to the dataframe
produced by the original operation.

Second, we make sure that the taint tag of a cell is propagated to
any cell that is computed from it. Similar to common data-flow anal-
ysis techniques, TaintStream is designed to ensure conservativeness,
i.e., any cell that carries sensitive information is marked as tainted,
while there might be cells marked as tainted that are actually not
sensitive (false positives). The conservativeness is guaranteed in the
translation rules. First, similar to classic lattice-theoretic data-flow
analysis approaches [26], the taint tag merging function is designed
to be a conservative approximation to avoid false negatives pro-
duced during tag merging. Second, in each translation rule, all of the
arguments that can possibly contribute to the output computation
are passed into the tag merging function to produce the output tag.
Specifically, for user-defined functions, we conservatively assume
that the function return value is dependent on all arguments, no
matter what the function actually does.

3.4 Handling Implicit Flow
Our dynamic translation rules are also to pass taint tags between
the inputs and outputs of operations, while in some cases, sensitive
information may be leaked to values that are not the direct output
of the operation.

A typical example is the 𝑓 𝑖𝑙𝑡𝑒𝑟 operation, which scans the data
and filters out the records that do not satisfy certain conditions. As a
result, all the remaining records in the produced data would satisfy
the specified conditions. Another example is the 𝑠𝑜𝑟𝑡𝐵𝑦 operation,
which sorts the records in the dataframe according to certain key(s),
and thus the first or last few records in the sorted dataframe would
convey ranking information.

Such implicit information propagation operations are mostly
performed on a whole column rather than on a value or a group
of values. Thus, tracking such information flow in cell granularity
may be inappropriate. Instead, we design a column-level data-flow
graph (DFG) to track these operations.

Specifically, we maintain a graph for each dataframe to represent
how each column in the dataframe is generated from raw data. As
shown in Figure 3, the graph contains multiple layers, each of
which represents a dataframe state. The last layer is the current
dataframe and the first layer represents the original dataframe, and
the middle layers are the intermediate dataframes. Each node in a
layer represents a column and the edge between nodes represents

TaintStream: Fine-Grained Taint Tracking for Big Data Platforms through Dynamic Code Translation ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

the dependency between cross-dataframe columns. For example,
we can know that the $ℎ𝑎𝑠ℎ𝐼𝐷 column in Figure 3 is generated from
the $𝑢𝑠𝑟𝐼𝐷 column in the original dataframe. If an implicit flow
operation is performed, the corresponding column will be marked
with the operation name (e.g., filter, sort, etc.).

Various checking rules can be defined on such column-level
DFGs to restrict implicit information flows. For example, in Figure
3, one can require that “the column user id can never be filtered
upon”, and the requirement can be checked by seeing whether
the relevant columns are tagged with implicit operations. These
checking rules are designed to prohibit hazardous data processing
requests (e.g., extracting information of a specific user as shown
in Figure 3), which are independent from the taint tag-based pri-
vacy enforcement mechanisms that are designed to enforce general
privacy policies.

4 IMPLEMENTATION
We implement the prototype of TaintStream on Spark [55] through
the PySpark APIs. Both the Spark platform and its Python APIs
are widely used in industry. We use astroid 2.4.2 [5], a library for
python code static analysis, to parse and rewrite the scripts. The
implementation contains ∼4.9k lines of code. Other platforms can
be easily supported by customizing the parser and operation trans-
lation rules accordingly. Here we further introduce our efforts on
making TaintStream more robust and efficient.

Exception handling. TaintStream may fail in some cases, for
example, when it encounters an unsupported operator or the trans-
lated code causes crashes (details in § 5.2). To ensure the completion
of data processing operations, we handle the failures by sacrificing
some precision. The high-level idea is to run the original operations
on the untainted dataset and then re-taint the dataset conservatively.
Specifically, when TaintStream catches a failure during executing
a translated operation, it first calculates an upper-bound taint tag
by merging all tags in the dataset before the operation, and un-
taints the dataset by removing all taint tags. Then we execute the
original operation on the untainted dataset to get the untainted
post-operation dataset. Finally, we recover the taint tags in the
dataset using the upper-bound taint tag. With this mechanism,
TaintStream can robustly deal with complicated and unseen scripts,
although the precision may be sacrificed in rare cases. The overhead
of exception handling is minimal (𝑂 (𝑛) where 𝑛 is the number of
tags) as compared with a typical data processing task.

Performance optimization. Inspired by compiler optimiza-
tion techniques [1, 42], we implement two key operation fusion
rules to reduce redundant computations. (1) When the translated
code matches the pattern of𝑉⟨𝑣𝑎𝑙𝑢𝑒,𝑡𝑎𝑔⟩ or𝑇⟨𝑣𝑎𝑙𝑢𝑒,𝑡𝑎𝑔⟩ , TaintStream
simply translates the corresponding code snippets to 𝑣𝑎𝑙𝑢𝑒 and 𝑡𝑎𝑔.
This optimization can reduce redundant operations to pack and get
value/tag. (2) Another optimization is applied when TaintStream
finds nested 𝑡𝑎𝑔𝑀𝑒𝑟𝑔𝑒 operations in the translated code. We im-
plement 𝑡𝑎𝑔𝑀𝑒𝑟𝑔𝑒 as a function accepting arbitrary numbers of
parameters, so nested calls can be simplified to a single call of
𝑡𝑎𝑔𝑀𝑒𝑟𝑔𝑒 . For example, suppose a code snippet in the translated
code is 𝑡𝑎𝑔𝑀𝑒𝑟𝑔𝑒 (𝑇𝑎𝑔1, 𝑡𝑎𝑔𝑀𝑒𝑟𝑔𝑒 (𝑇𝑎𝑔2,𝑇𝑎𝑔3)), TaintStream will
optimize the code snippet to 𝑡𝑎𝑔𝑀𝑒𝑟𝑔𝑒 (𝑇𝑎𝑔1,𝑇𝑎𝑔2,𝑇𝑎𝑔3). These
two optimizations effectively reduce 24% time overhead on average.

More advanced optimization rules will be added in the future to
further improve the performance.

5 EVALUATION
Our evaluation addresses the following research questions:

(1) What is the accuracy of TaintStream on taint tracking? How
does it compare with baselines? (§5.2)

(2) What is the system overhead of TaintStream on running time
and storage? (§5.3)

(3) How can TaintStream support real-world data management
tasks in big data platforms? (§5.4)

5.1 Experiment Setup
We first introduce how we set up our experiments, including bench-
marks, baselines, and the experimental environment.

Benchmarks. There are benchmark suites designed for mea-
suring the performance of data processing [44] or evaluating the
accuracy of taint analysis inWeb/Android applications [3, 41]. How-
ever, to the best of our knowledge, there is no existing benchmark
suite tailored for big data taint analysis tasks. Thus, we decide
to create our own benchmark suite to evaluate the accuracy of
TaintStream.

We construct two test suites based on a set of real-world data
processing scripts obtained from an industry data platform (the
platform managed by Team A as we mentioned before). The first
one is called CellBench, which contains 33 hand-crafted data pro-
cessing scripts that are abstracted from the real-world scripts by
extracting the common operations and custom functions from the
original scripts and combining them into executable data process-
ing pipelines. The pipelines in CellBench are similar to real-world
scripts, while the operations are simplified in order to run on fake
data (fake data generated with Fake [17]). The scripts are grouped
into six categories, each of which is designed to evaluate a rep-
resentative class of operations, such as operations that group the
data (GroupBy), operate on structured data (Structured Data), or use
user-defined functions (UDF). The second one is ProBench, which
contains 7 real-world scripts that can be executed on a subset of
data that we have access to (the authors’ personal data). The other
scripts are not used because they rely on end-user datasets that
we do not have access to. CellBench is used to evaluate the accu-
racy of taint analysis because we can automatically generate the
ground truth by customizing the operations and datasets. ProBench
is primarily used to measure the overhead of TaintStream since its
scripts and datasets are more realistic.

We use a value-based approach to generate the ground truth
in CellBench. Specifically, we randomly pick some cells from the
input dataset and add a unique property to the cell values. For
example, the string-typed cells are attached with a special string
and the numerical cells are added a huge number, indicating the
cells are tainted. The data processing operations in CellBench are
designed to keep the taint properties when propagating informa-
tion. For example, only string concatenation and number addition
are allowed when generating new cells with existing cells. Thus
the output dataset will automatically carry the ground truth taint
information, i.e., a cell should be tainted only if its value contains
the predefined taint property. Figure 4 shows an example, in the

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Chengxu Yang, Yuanchun Li, Mengwei Xu, Zhenpeng Chen, Yunxin Liu, Gang Huang, and Xuanzhe Liu

userId​ msg​ date​
xxx​​ “[tainted]	Hi,	I	am	…”​​ 12/3​
yyy​ “Thanks	…”​​ 10/4​
…​ …​ …​

taint	property

Script

lower(msg)​ date​
“[tainted]	hi,	i am	…”​​ 12/3​

“thanks	…”​​ 10/4​
…​ …​

Input	dataset Output	dataset

taint	property	
will	be	propagated

Figure 4: A simplified test case in CellBench. Each test case
includes a script, an input dataset, and a ground-truth out-
put dataset.

input dataset, the first msg field is tainted and its string value is
inserted a “[tainted]” substring in the beginning. After processing,
suppose themsg field goes through a lower operation that converts
all letters to the lower case, the cells that contain the “[tainted]”
substring should be identified as tainted cells.

Baselines. To evaluate the taint tracking accuracy, we choose
two baselines to compare against. The first one is PySa [16], a
generic static taint analysis framework for Python code developed
by Facebook. PySa is designed to detect information flow between
variables in code, thus it can only support dataset-level tracking,
i.e., analyzing a dataset is tainted or not. The second baseline is
PlanAnalyzer , which builds a column-level data flow graph (DFG)
based on the Spark logical execution plan [2]. The latter is generated
by Spark at runtime to decide how to execute the data processing
pipeline. The DFG created from PlanAnalyzer is similar to the one
shown in Figure 3. An output column is considered tainted if there
is a flow from a tainted input column to the output column. We do
not compare with other existing approaches [12, 34, 43] mainly due
to the unavailability of their source code [12, 34] or the difficulty
in porting them to our benchmark [43].

In the case study (§5.4), the baselines are the current approaches
of Team A to three common data management tasks. We qualita-
tively compare TaintStream with current approaches to show its
usefulness.

Experimental environment. The experiments are conducted
on a cluster with four worker nodes and each node is equipped
with an Intel Xeon E5-2665 processor, 128GB memory, and 3TB
storage. The server runs a 64-bit Ubuntu 18.04. The Spark version
is 2.4.3 built on JAVA 1.8 and Scala 2.11. The Python version is 3.7.6.

5.2 Accuracy of Taint Tracking
We use the scripts and datasets in CellBench to measure the taint
tracking accuracy of TaintStream and other baselines. To simplify
the measurement, we consider the taint tags to be tracked are
booleans indicating whether each cell is sensitive. 50% random
cells in 20% random columns (i.e., 10% of all cells) in the input
datasets are marked as sensitive (carrying “True” tags), and the taint
tracking accuracy is measured by examining whether the sensitive
columns/cells in the output datasets are correctly labeled with the
“True” tag. Specifically, the precision is measured by #𝑇𝑃

#𝑇𝑃+#𝐹𝑃 and
the recall is #𝑇𝑃

#𝑇𝑃+#𝐹𝑁 .
Since the baselines do not support cell-level tracking, we addi-

tionally design a column-tracking experiment to compare TaintStream

Table 3: The taint analysis accuracy ofTaintStream and base-
lines onCellBench. The * sign represents that exceptionhan-
dling is triggered on the corresponding script.

Script Name
Column Level Cell Level

PySa PlanAnalyzer TaintStream TaintStream
correct/total precision recall

Basic
orderBy_1 4/6 6/6 6/6 100.0% 100.0%
orderBy_2 1/3 3/3 3/3 100.0% 100.0%
select_1 3/6 6/6 6/6 100.0% 100.0%
select_2 1/2 2/2 2/2 100.0% 100.0%
withColumn_1 3/3 3/3 3/3 100.0% 100.0%
withColumn_2 3/5 5/5 5/5 100.0% 100.0%
withColumn_3 3/3 3/3 3/3 100.0% 100.0%

GroupBy
count_1 1/3 3/3 3/3 100.0% 100.0%
count_2 2/3 3/3 3/3 100.0% 100.0%
count_3 2/5 5/5 5/5 100.0% 100.0%
count_4 2/4 4/4 4/4 100.0% 100.0%
statistics_1 4/5 5/5 5/5 100.0% 100.0%
statistics_2 3/5 5/5 5/5 100.0% 100.0%

Join
inner_join_1 2/4 4/4 4/4 100.0% 100.0%
inner_join_2 3/5 5/5 5/5 100.0% 100.0%
inner_join_3 2/5 5/5 5/5 100.0% 100.0%
left_join 3/5 5/5 5/5 100.0% 100.0%
right_join 3/5 5/5 5/5 100.0% 100.0%
outer_join 3/5 5/5 5/5 100.0% 100.0%

Structured Data
array_type_1 * 4/5 5/5 4/5 80.0% 100.0%
array_type_2 2/3 3/3 3/3 100.0% 100.0%
struct_type_1 2/5 1/5 4/5 100.0% 100.0%
struct_type_2 2/3 2/3 3/3 100.0% 100.0%
struct_type_3 * 3/4 2/4 3/4 66.7% 100.0%

UDF
udf_1 1/4 4/4 4/4 100.0% 100.0%
udf_2 1/1 1/1 1/1 100.0% 100.0%
udf_3 0/1 0/1 0/1 0.0% 100.0%
class_udf_1 2/2 2/2 2/2 100.0% 100.0%
class_udf_2 1/1 1/1 1/1 100.0% 100.0%

Map Reduce
map_reduce_1 0/2 0/2 2/2 100.0% 100.0%
map_reduce_2 1/4 0/4 4/4 100.0% 100.0%
map_reduce_3 1/4 0/4 4/4 100.0% 100.0%
map_reduce_4 * 1/4 0/4 1/4 21.9% 100.0%
Summary 69/125 103/125 118/125 93.0% 100.0%

with the baselines. A column is considered tainted if any of its cells
is tainted. We measure how many columns in the output datasets
are correctly labeled for each tracking method.

The detailed results are shown in Table 3.
Column tracking results. We observe that TaintStream cor-

rectly labels all the columns in Basic (28/28), GroupBy (25/25), and
Join (29/29) categories and gets more correct results on other cat-
egories compared to the baselines. It labels wrong tags on some
columns mainly for two reasons, i.e., exception handling mecha-
nism and missing of the dataflow in UDFs. We will explain them in
detail in the more strict cell tracking experiments.

PlanAnalyzer gains comparable results in Basic, GroupBy, Join,
and UDF categories. However, its accuracy is worse in Structured
Data category and poor in Map Reduce category. For the Structured
Data category, PlanAnalyzer treats structured columns as a whole
due to the non-trivial cost on achieving field-sensitive in the DFG.
For the Map Reduce category, PlanAnalyzer cannot determine the
column dependencies for the map/reduce operations because it
cannot infer the output schema from the Spark execution plan.

TaintStream: Fine-Grained Taint Tracking for Big Data Platforms through Dynamic Code Translation ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

PySa is worse than the other two tools in all categories. This is
reasonable because, as a generic taint analysis framework, PySa is
column-agnostic and supports only dataset-level tracking. Conse-
quently, it gets many false positives results.

Cell tracking results. Given that baselines are worse than
TaintStream in the column tracking experiment and they do not
support a cell-level tracking, their results cannot be improved in
the more strict cell tracking experiment. As a result, we report only
TaintStream’s results.

As shown in Table 3, TaintStream achieves 100% recall on all
scripts, this is because we carefully design the translation rules
to ensure soundness (refer to §3.3). TaintStream achieves a high
precision of 93.0% on average. The false-positive results come from
two reasons, i.e., the exception handlingmechanism and themissing
of data flow in UDFs. TaintStream successfully handles exceptions
such as unsupported operators, missing taint tags, etc. For example,
in script “struct_type_3”, a “from_json” function that accepts a
JSON string as the parameter is invoked in the pipeline, TaintStream
cannot determine each field’s taint tag and thus throws an exception.
For the second reason, TaintStream conservatively merges all the
parameters’ tags without analyzing if there is a flow from UDF’s
parameter to the return value. For example, in script “udf_3”, a UDF
takes a tainted column as a parameter but never uses it.

Conclusion. From the two experiments, we can conclude that
TaintStream can not only achieve more accurate results compared to
baselines at column level but also track data at cell level with a pre-
cision of 93.0% and perfect recall. Handling data flow in UDFs and
reducing exception triggered are two of the optimization directions.

5.3 System Overhead
The overhead of TaintStream is measured with real-world scripts
in ProBench. Specifically, we run each script in ProBench with or
without TaintStream enabled and compare their running time and
storage space. Similar to the previous experiments, we consider the
boolean taint tags to simplify the measurement (cases that use more
complicated tags are also measured but reported in the case study
for clearer organization). For time assessment, we measure the end-
to-end running time, including reading, processing, and writing,
and the results are shown in Figure 5. For storage assessment, we
compare the tag size with the original output size and the results
are shown in Table 4.

Running time. As shown in Figure 5, with the increase of the
time spent by the original scripts, the running time of TaintStream
increases proportionally. TaintStream is slower than the original
scripts by 12.7% on average, with a maximum value of 17.0% (on the
script “action provider”). The input data of this script contains many
complicated structured columns. Propagating taint tags in these
columns requires more operations (refer to §3) because TaintStream
needs to first package a sub-column’s value and tag and then pack-
age this sub-column to its parent column.

We further break down to investigate what are the main reasons
for the overhead. The overhead can be divided into three parts,
i.e., static code rewriting, dynamic translation, and injected taint
propagation logic. Among them, the former two can be precisely
measured. The results show that TaintStream spends 0.28s on static

Figure 5: TaintStream’s overhead on running time.

Table 4: The storage overhead of TaintStream. We use 𝑥 to
represent the average size of a taint tag. The “overhead” col-
umn reports the overheadwhen the average tag size is 1 byte.

Script Name Original Output Size (Byte) Tag Size Overhead
email tokenizer 2,697,017 19,952𝑥 0.74%
never replied emails 246,129 5,000𝑥 2.03%
top name 16,229 153𝑥 0.94%
action provider 32,073 636𝑥 1.98%
email provider 10,246,702 44,275𝑥 0.43%
data statistics 633 25𝑥 3.95%
extract documents 1,097 48𝑥 4.38%

code rewriting and 0.87s on dynamic translation on average. Al-
though they are slightly influenced by the length of the script, the
maximum value does not exceed three seconds given a script of
around 300 lines of code. Given that the time spent on taint propaga-
tion could increase proportionally with the growth of the input data,
we can conclude that TaintStream’s overhead mainly comes from
the taint propagation and the time spent on static code rewriting
and dynamic translation is negligible.

According to the results, TaintStream introduces a 12.7% over-
head on the running time on average. Considering the time and
manpower saved for various stakeholders, as we will show in §5.4,
this cost is rather acceptable.

Storage. By comparing the tag size and the original output size
in Table 4, we derive the following observations.

The size of the taint tags and the original output are positively
correlated. This is reasonable because TaintStream tracks data at
the cell level. When we set the taint tag to a boolean value, the
storage overhead is 2.06% on average. The overhead would grow
larger if more advanced taint tags are adopted. We believe that the
overhead can be further decreased after compression, because taint
tags may contain many duplicated values.

Conclusion.We test TaintStream on ProBench and compare the
results with the original scripts in terms of running time and storage.
The results show that the TaintStream introduces a 12.7% overhead
on the running time and 2.06% overhead on the storage. Considering
the manpower saved, this overhead is rather acceptable.

5.4 Case Study
Finally, we show how TaintStream can be used to enforce three
common and important privacy policies, including data retention,

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Chengxu Yang, Yuanchun Li, Mengwei Xu, Zhenpeng Chen, Yunxin Liu, Gang Huang, and Xuanzhe Liu

Table 5: Comparison between TaintStream and the current practice on three data management tasks.

Task Approach Storage
Overhead

Running Time
Overhead

Code
Review Extra efforts for data managers and data analysts Granularity

Current practice - - No
Data managers organize the raw data by date and maintain a dataset linage
graph that records the relationship between datasets. Once the raw data expire,
all related datasets will be deleted. No requirements for data analysts.

dataset levelData Retention

TaintStream 3.19% 10.47% No Data managers formulate the privacy policy in TaintStream format. cell level

Current practice - - Yes
Data managers assign storage space with different access permissions to data
analysts. Reading from or writing to an unauthorized space is prohibited
through a process of code review.

dataset levelAccess Control

TaintStream 3.97% 16.67% No Data managers formulate the privacy policy in TaintStream format. cell level

Current practice - - Yes

Data managers maintain a data linage graph to track the data movement. Once
a user opts to delete her data, all the records (rows) in related datasets will be
deleted according to the user identifier. Data analysts are required to properly
maintain and propagate the user identifier column. This will be enforced by a
process of code review.

row levelUser data Erasure

TaintStream 2.56% 15.69% No Data managers formulate the privacy policy in TaintStream format. cell level

access control, and user data erasure. We qualitatively compare
the solutions enabled by TaintStream with the current solutions in
Team A to demonstrate its advantages.

Data retention. In current practice, data managers organize the
raw data by date and the platform maintains a data linage graph
that records the input/output relationship between datasets. Once
some of the raw data expires, all related datasets will be deleted
by a sweeper. For TaintStream, a feasible policy can be defined as
follows.
Tag type: Integer 𝑇 . # timestamp of the expiration date
Tag init: : Set 𝑇 to the time when the data expires.
Tag merge:𝑀𝑖𝑛𝑖𝑚𝑢𝑚(𝑇1,𝑇2)
Enforcement: Periodically scan the datasets and delete any
record 𝑥 if the current timestamp is behind its timestamp 𝑇𝑥 .
Access control. In current practice, data analysts are provided

storage spaces in different confidentiality levels. They also have
different access rights to these storage spaces. Any reading/writing
access to an unauthorized space will be prohibited. They are also
required to store confidential data in certain spaces only unless the
data is sanitized, which is enforced by code review. The control
is based on dataset level. TaintStream could achieve a more fine-
grained control by defining the following policy.
Tag type: Set of identifiers 𝑆 . # set of authorized analysts
Tag init: : 𝑆𝑥 ← the analysts with access to the raw data 𝑥 .
Tag merge: 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 (𝑆1, 𝑆2)
Enforcement: A data record 𝑥 is only visible to the analysts in
its authorized analysts set 𝑆𝑥 .
User data erasure. In current practice, data managers build a

data linage graph same as the one in the data retention graph. Data
analysts are required to keep the user ID of each record in the
dataset, which will be enforced by the code review. Once a user
opts to delete her data, all the records (rows) in related datasets
will be deleted according to the user ID. With TaintStream, we can
define the following policy so that data analysts no longer need to
maintain the user ID in the datasets.
Tag type: Set of identifiers 𝑆 . # set of involved data providers
Tag init: : 𝑆𝑥 ← the provider the raw data 𝑥
Tag merge:𝑈𝑛𝑖𝑜𝑛(𝑆1, 𝑆2)
Enforcement: If a user𝑢 asks to be forgotten, delete any record
𝑥 whose tag 𝑆𝑥 contains 𝑢.

Since taint tags in the user data erasure task are sets of identifiers
and the merge function is set union, the taint tag size may grow
infinitely. To avoid this issue, we set the tag to “all” once the set size
is larger than a threshold (e.g., 100). Also, to save computational
cost, the user erasure requests are processed in batches periodically.

Comparison.We qualitatively compare TaintStream with cur-
rent practice and summarize the results in Table 5.

(1) Additional code review. In current practice, two out of
three tasks need a code review, which takes hours or days before
the script is approved to be executed in the platform. (2) Extra
manual efforts and restrictions. To support these tasks, data
managers take non-trivial efforts, including developing specialized
features and organizing raw data properly. Data analysts are also
restricted by many rules when writing scripts. (3) Coarse granu-
larity. Current practice usually works in a coarse granularity. For
example, in the data retention task, a dataset will be deleted once
it contains an expiration record even if most of the records do not
expire. These non-expiration data are falsely deleted, causing a
waste of valuable computational resources.

By contrast, TaintStream realizes these tasks more automatically.
No code review is required and no restrictions for data analysts.
Data managers only need to formulate the policy in TaintStream
format and a fine-grained result is reported. To realize the tasks,
TaintStream brings a less than 4% overhead on the storage and an
averaged 14.23% overhead on the running time. This is a rather ac-
ceptable proportion considering the convenience and saved efforts
for various stakeholders as aforementioned.

6 RELATEDWORK
Our work is close to two classes of research.

Taint analysis is a widely studied technique to track informa-
tion flow in a program. It can be done statically or dynamically.
The static approach is performed on the source code or byte code
without executing the program, while the dynamic taint tracking
operates during programming execution.

Taint analysis has been implemented for various platforms, in-
cluding Android [4, 13, 23, 42, 52, 54], JavaScript [6, 10, 22], We-
bAssembly [20], etc. Among them, TaintART [42] adopted similar
design ideas as TaintStream, which implemented an instrumented
compiler that inserts code blocks to handle taint propagation be-
tween variables. As explained in §2.3, these approaches can hardly

TaintStream: Fine-Grained Taint Tracking for Big Data Platforms through Dynamic Code Translation ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

be ported to big data platforms due to the lack of traceable infor-
mation and the complicated storage and computation mechanisms.

There are also several taint tracking solutions proposed for data
management systems. Schütte et al. [34] introduced a data usage
control system, which models a query script as a column-level
data flow graph similar to the one in Figure 3. DBTaint [12] was
designed for dynamic taint tracking in SQL engines, which extended
the data types in databases and modifies some SQL operations to
maintain the extended data types. FLOWDEBUG [43] proposed
to analyze fine-grained data provenance by extending the Scale
type system and inserting custom data abstractions through source-
to-source transformation. TaintStream is conceptually similar to
these approaches (especially FLOWDEBUG), while having several
differences: (1) TaintStream is a generic framework that can serve
various privacy compliance tasks, while the prior approaches were
designed for other purposes (e.g., debugging) or specific scenarios
(e.g., access control). (2) TaintStream is able to perform non-intrusive
taint tracking with no modification to the legacy systems like Spark
runtime or Scala type system, while prior work needs to integrate
extra modules to the systems. (3) TaintStream is tailored for Stream-
like data processing engines that havemore complicated and flexible
operations than traditional SQL, such as𝑚𝑎𝑝/𝑟𝑒𝑑𝑢𝑐𝑒 , customized
functions, etc.

Privacy policy enforcement.There aremany other approaches
related to automated privacy policy enforcement.

Many researchers have attempted to formulate privacy policies
in machine-readable formats. For example, Tschantz et al. [45] pro-
vided semantics of purpose restrictions to describe whether an
action is for a purpose or not. Chowdhury et al. [9] presented a
policy specification language which can capture the privacy re-
quirements of HIPAA. Wang et al. [47] introduced a formal policy
language that can govern how the data is processed. We also have
a specific format for policy definition. These formats are designed
for different purposes and checking mechanisms, and there isn’t
any policy format that is universally agreed upon today.

Based on the formalized privacy policies, privacy compliance
can be examined by analyzing the program behavior and checking
its consistency with the policies. There have been a great deal of
methods in tracking or restricting information flows in programs,
including language-based [18, 32, 33], role-based [8, 30, 31, 38],
and purpose-based [14] approaches. To facilitate privacy risk as-
sessment and privacy compliance checking, researchers have also
proposed new programming languages and frameworks that can
weave privacy policies into the code [21, 33, 53] or simplify the
analysis of program behaviors [15, 28]. For big data platforms, exist-
ing privacy compliance checking approaches are either tailored for
a specific type of privacy requirements such as access control [36],
or based on a new framework or paradigm that requires non-trivial
adaption efforts from developers [47]. TaintStream is able to support
flexible and fine-grained policy enforcement without any manual
modification to the analytic script and runtime engine.

7 CONCLUSION AND DISCUSSION
We have presented TaintStream, a light-weight fine-grained taint
tracking framework for Spark-like big data platforms. By customiz-
ing the injected taint propagation logic, TaintStream is able to fulfill

various privacy protection requirements such as data retention,
access control, user data erasure, etc. Experiments on a self-built
benchmark and several real-world cases show that TaintStream is
able to achieve accurate cell-level tracking with 93.0% precision
and 100% recall and is able to flexibly support various privacy re-
quirements with acceptable overhead.

A potential obstacle to adopting TaintStream in practice is the
over-conservative taint propagation, i.e., taint tags may be propa-
gated tomany irrelevant cells, even thewhole dataset, by insensitive
operations (e.g., count, mean, etc.). This may also lead to huge stor-
age overhead if the taint tag size is large. A possible countermeasure
is to define “exception” operations in which the taint tags should
not be propagated. Another limitation of TaintStream is that the
tracking mechanisms may be evaded by intentional data analysts,
e.g., by obfuscating the scripts or using complicated custom func-
tions. Although in most cases the analysts are honest, we believe
some mechanisms to regulate code style and/or detect abnormal
code would be helpful in the future.

ACKNOWLEDGMENT
We thank all anonymous reviewers for the valuable feedback. This
work was partly supported by the National Key Research and Devel-
opment Program of China under the grant number 2020YFB2104100,
the National Natural Science Foundation of China under the grant
number 61725201, the Beijing Outstanding Young Scientist Program
under the grant number BJJWZYJH01201910001004, and PKU-Baidu
Fund Project under the grant number 2020BD007. Mengwei Xu was
partly supported by National Industrial Internet Innovation and
Development Project (No.TC190A3X1). For any questions about
the code and data, please contact Yuanchun Li.

REFERENCES
[1] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. 1986. Compilers, principles,

techniques. Addison wesley 7, 8 (1986), 9.
[2] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K

Bradley, Xiangrui Meng, Tomer Kaftan, Michael J Franklin, Ali Ghodsi, et al.
2015. Spark sql: Relational data processing in spark. In Proceedings of the 2015
ACM SIGMOD international conference on management of data. 1383–1394. https:
//doi.org/10.1145/2723372.2742797

[3] Steven Arzt. 2021. DroidBench 2.0. https://github.com/secure-software-
engineering/DroidBench. Accessed February 4th, 2021.

[4] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware
taint analysis for android apps. Acm Sigplan Notices 49, 6 (2014), 259–269.
https://doi.org/10.1145/2594291.2594299

[5] Python Code Quality Authority. 2021. Astroid’s documentation. http://pylint.
pycqa.org/projects/astroid/en/latest/. Accessed February 25, 2021.

[6] Abhishek Bichhawat, Vineet Rajani, Deepak Garg, and Christian Hammer. 2014.
Information flow control in WebKit’s JavaScript bytecode. In International Con-
ference on Principles of Security and Trust. Springer, 159–178.

[7] Muhammad Bilal, Lukumon O Oyedele, Junaid Qadir, Kamran Munir, Saheed O
Ajayi, Olugbenga O Akinade, Hakeem A Owolabi, Hafiz A Alaka, and Maruf
Pasha. 2016. Big Data in the construction industry: A review of present status,
opportunities, and future trends. Advanced engineering informatics 30, 3 (2016),
500–521. https://doi.org/10.1016/j.aei.2016.07.001

[8] Niklas Broberg and David Sands. 2010. Paralocks: role-based information flow
control and beyond. In Proceedings of the 37th annual ACM SIGPLAN-SIGACT
symposium on principles of programming languages. 431–444.

[9] Omar Chowdhury, Andreas Gampe, Jianwei Niu, Jeffery von Ronne, Jared Bennatt,
Anupam Datta, Limin Jia, and William H Winsborough. 2013. Privacy promises
that can be kept: a policy analysis method with application to the HIPAA privacy
rule. In Proceedings of the 18th ACM symposium on Access control models and
technologies. 3–14.

https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1145/2723372.2742797
https://github.com/secure-software-engineering/DroidBench
https://github.com/secure-software-engineering/DroidBench
https://doi.org/10.1145/2594291.2594299
http://pylint.pycqa.org/projects/astroid/en/latest/
http://pylint.pycqa.org/projects/astroid/en/latest/
https://doi.org/10.1016/j.aei.2016.07.001

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Chengxu Yang, Yuanchun Li, Mengwei Xu, Zhenpeng Chen, Yunxin Liu, Gang Huang, and Xuanzhe Liu

[10] Ravi Chugh, Jeffrey A Meister, Ranjit Jhala, and Sorin Lerner. 2009. Staged infor-
mation flow for JavaScript. In Proceedings of the 30th ACM SIGPLAN conference
on programming language design and implementation. 50–62.

[11] James Clause, Wanchun Li, and Alessandro Orso. 2007. Dytan: a generic dynamic
taint analysis framework. In Proceedings of the 2007 international symposium on
software testing and analysis. 196–206.

[12] Benjamin Davis and Hao Chen. 2010. DBTaint: Cross-Application Information
Flow Tracking via Databases. WebApps 10 (2010), 12.

[13] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. 2014.
TaintDroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. ACM Transactions on Computer Systems (TOCS) 32, 2 (2014),
1–29.

[14] Tomoya Enokido and Makoto Takizawa. 2011. Purpose-based information flow
control for cyber engineering. IEEE Transactions on Industrial Electronics 58, 6
(2011), 2216–2225.

[15] Michael D Ernst, René Just, Suzanne Millstein, Werner Dietl, Stuart Pernsteiner,
Franziska Roesner, Karl Koscher, Paulo Barros Barros, Ravi Bhoraskar, Seungyeop
Han, et al. 2014. Collaborative verification of information flow for a high-
assurance app store. In Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security. 1092–1104.

[16] Facebook. 2021. PySa Overview. https://pyre-check.org/docs/pysa-basics/. Ac-
cessed February 4th, 2021.

[17] Daniele Faraglia. 2021. Welcome to Faker’s documentation! https://faker.
readthedocs.io/en/master/. Accessed February 4th, 2021.

[18] Andrew Ferraiuolo, Rui Xu, Danfeng Zhang, Andrew C Myers, and G Edward
Suh. 2017. Verification of a practical hardware security architecture through
static information flow analysis. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and Operating
Systems. 555–568. https://doi.org/10.1145/3037697.3037739

[19] Apache Software Foundation. 2021. Apache Storm. https://storm.apache.org/.
Accessed December 16, 2020.

[20] William Fu, Raymond Lin, and Daniel Inge. 2018. Taintassembly: Taint-based in-
formation flow control tracking for webassembly. arXiv preprint arXiv:1802.01050
(2018).

[21] Daniel B Giffin, Amit Levy, Deian Stefan, David Terei, David Mazieres, John C
Mitchell, and Alejandro Russo. 2012. Hails: Protecting data privacy in untrusted
web applications. In 10th {USENIX} Symposium on Operating Systems Design and
Implementation (OSDI 12). 47–60.

[22] Salvatore Guarnieri, Marco Pistoia, Omer Tripp, Julian Dolby, Stephen Teilhet,
and Ryan Berg. 2011. Saving the world wide web from vulnerable JavaScript. In
Proceedings of the 2011 International Symposium on Software Testing and Analysis.
177–187.

[23] Wei Huang, Yao Dong, AnaMilanova, and Julian Dolby. 2015. Scalable and precise
taint analysis for android. In Proceedings of the 2015 International Symposium on
Software Testing and Analysis. 106–117. https://doi.org/10.1145/2771783.2771803

[24] Priyank Jain, Manasi Gyanchandani, and Nilay Khare. 2016. Big data privacy:
a technological perspective and review. Journal of Big Data 3, 1 (2016), 1–25.
https://doi.org/10.1186/s40537-016-0059-y

[25] Simon Holm Jensen, Magnus Madsen, and Anders Møller. 2011. Modeling the
HTML DOM and browser API in static analysis of JavaScript web applications. In
Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference
on Foundations of software engineering. 59–69.

[26] Gary A Kildall. 1973. A unified approach to global program optimization. In
Proceedings of the 1st annual ACM SIGACT-SIGPLAN symposium on Principles of
programming languages. 194–206.

[27] Jay Kreps, Neha Narkhede, Jun Rao, et al. 2011. Kafka: A distributed messaging
system for log processing. In Proceedings of the NetDB, Vol. 11. 1–7.

[28] Yuanchun Li, Fanglin Chen, Toby Jia-Jun Li, Yao Guo, Gang Huang, Matthew
Fredrikson, Yuvraj Agarwal, and Jason I. Hong. 2017. PrivacyStreams: Enabling
Transparency in Personal Data Processing for Mobile Apps. Proc. ACM Interact.
Mob. Wearable Ubiquitous Technol. 1, 3, Article 76 (Sept. 2017), 26 pages. https:
//doi.org/10.1145/3130941

[29] Abid Mehmood, Iynkaran Natgunanathan, Yong Xiang, Guang Hua, and Song
Guo. 2016. Protection of big data privacy. IEEE access 4 (2016), 1821–1834.

[30] Andrew C Myers and Barbara Liskov. 2000. Protecting privacy using the decen-
tralized label model. ACM Transactions on Software Engineering and Methodology
(TOSEM) 9, 4 (2000), 410–442.

[31] Shigenari Nakamura, Dilewaer Doulikun, Ailixier Aikebaier, Tomoya Enokido,
and Makoto Takizawa. 2014. Role-based information flow control models. In
2014 IEEE 28th International Conference on Advanced Information Networking and
Applications. IEEE, 1140–1147. https://doi.org/10.1109/AINA.2014.139

[32] François Pottier and Vincent Simonet. 2003. Information flow inference for ML.
ACM Transactions on Programming Languages and Systems (TOPLAS) 25, 1 (2003),

117–158.
[33] Andrei Sabelfeld and Andrew C Myers. 2003. Language-based information-flow

security. IEEE Journal on selected areas in communications 21, 1 (2003), 5–19.
[34] Julian Schütte and Gerd Stefan Brost. 2016. A data usage control system using

dynamic taint tracking. In 2016 IEEE 30th International Conference on Advanced
Information Networking and Applications (AINA). IEEE, 909–916. https://doi.org/
10.1109/AINA.2016.127

[35] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All you ever
wanted to know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask). In 2010 IEEE symposium on Security and
privacy. IEEE, 317–331.

[36] Shayak Sen, Saikat Guha, Anupam Datta, Sriram K Rajamani, Janice Tsai, and
Jeannette M Wing. 2014. Bootstrapping privacy compliance in big data systems.
In 2014 IEEE Symposium on Security and Privacy. IEEE, 327–342. https://doi.org/
10.1109/SP.2014.28

[37] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010.
The hadoop distributed file system. In 2010 IEEE 26th symposium on mass storage
systems and technologies (MSST). Ieee, 1–10.

[38] Xiaodan Song, Yun Chi, Koji Hino, and Belle L Tseng. 2007. Information flow
modeling based on diffusion rate for prediction and ranking. In Proceedings of
the 16th international conference on World Wide Web. 191–200.

[39] Apache Spark. 2021. Document of PySpark SQL module. http://spark.apache.
org/docs/latest/api/python/pyspark.sql.html. Accessed February 21, 2021.

[40] Manu Sridharan, Shay Artzi, Marco Pistoia, Salvatore Guarnieri, Omer Tripp, and
Ryan Berg. 2011. F4F: taint analysis of framework-based web applications. In Pro-
ceedings of the 2011 ACM international conference on Object oriented programming
systems languages and applications. 1053–1068.

[41] Stanford. 2021. Securibench Micro. https://github.com/too4words/securibench-
micro. Accessed February 4th, 2021.

[42] Mingshen Sun, Tao Wei, and John CS Lui. 2016. Taintart: A practical multi-level
information-flow tracking system for android runtime. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security. 331–342.
https://doi.org/10.1145/2976749.2978343

[43] Jason Teoh, Muhammad Ali Gulzar, and Miryung Kim. 2020. Influence-based
provenance for dataflow applications with taint propagation. In Proceedings of
the 11th ACM Symposium on Cloud Computing. 372–386.

[44] TPC. 2021. TPCx-BB is a Big Data Benchmark. http://www.tpc.org/tpcx-bb/.
Accessed December 17, 2020.

[45] Michael Carl Tschantz, Anupam Datta, and Jeannette MWing. 2012. Formalizing
and enforcing purpose restrictions in privacy policies. In 2012 IEEE Symposium
on Security and Privacy. IEEE, 176–190.

[46] Kai Wang, Aftab Hussain, Zhiqiang Zuo, Guoqing Xu, and Ardalan Amiri Sani.
2017. Graspan: A single-machine disk-based graph system for interprocedural
static analyses of large-scale systems code. ACM SIGARCH Computer Architecture
News 45, 1 (2017), 389–404. https://doi.org/10.1145/3037697.3037744

[47] Lun Wang, Joseph P Near, Neel Somani, Peng Gao, Andrew Low, David Dao,
and Dawn Song. 2019. Data capsule: A new paradigm for automatic compliance
with data privacy regulations. In Heterogeneous Data Management, Polystores,
and Analytics for Healthcare. Springer, 3–23. https://doi.org/10.1007/978-3-030-
33752-0_1

[48] Fengguo Wei, Xingwei Lin, Xinming Ou, Ting Chen, and Xiaosong Zhang. 2018.
Jn-saf: Precise and efficient ndk/jni-aware inter-language static analysis frame-
work for security vetting of android applications with native code. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security.
1137–1150. https://doi.org/10.1145/3243734.3243835

[49] Wikipedia. 2021. Children’s Online Privacy Protection Act. https://en.wikipedia.
org/wiki/Children%27s_Online_Privacy_Protection_Act. Accessed February 13,
2021.

[50] Wikipedia. 2021. General Data Protection Regulation. https://en.wikipedia.org/
wiki/General_Data_Protection_Regulation. Accessed February 13, 2021.

[51] Wikipedia. 2021. Health Insurance Portability and Accountability Act. https://en.
wikipedia.org/wiki/Health_Insurance_Portability_and_Accountability_Act. Ac-
cessed February 13, 2021.

[52] Lok Kwong Yan and Heng Yin. 2012. Droidscope: Seamlessly reconstructing the
OS and dalvik semantic views for dynamic android malware analysis. In 21st
USENIX Security Symposium (USENIX Security 12). 569–584.

[53] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. 2012. A language for
automatically enforcing privacy policies. ACM SIGPLAN Notices 47, 1 (2012),
85–96.

[54] Zhemin Yang and Min Yang. 2012. Leakminer: Detect information leakage on
android with static taint analysis. In 2012 Third World Congress on Software
Engineering. IEEE, 101–104.

[55] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, Ion
Stoica, et al. 2010. Spark: Cluster computing with working sets. HotCloud 10,
10-10 (2010), 95.

https://pyre-check.org/docs/pysa-basics/
https://faker.readthedocs.io/en/master/
https://faker.readthedocs.io/en/master/
https://doi.org/10.1145/3037697.3037739
https://storm.apache.org/
https://doi.org/10.1145/2771783.2771803
https://doi.org/10.1186/s40537-016-0059-y
https://doi.org/10.1145/3130941
https://doi.org/10.1145/3130941
https://doi.org/10.1109/AINA.2014.139
https://doi.org/10.1109/AINA.2016.127
https://doi.org/10.1109/AINA.2016.127
https://doi.org/10.1109/SP.2014.28
https://doi.org/10.1109/SP.2014.28
http://spark.apache.org/docs/latest/api/python/pyspark.sql.html
http://spark.apache.org/docs/latest/api/python/pyspark.sql.html
https://github.com/too4words/securibench-micro
https://github.com/too4words/securibench-micro
https://doi.org/10.1145/2976749.2978343
http://www.tpc.org/tpcx-bb/
https://doi.org/10.1145/3037697.3037744
https://doi.org/10.1007/978-3-030-33752-0_1
https://doi.org/10.1007/978-3-030-33752-0_1
https://doi.org/10.1145/3243734.3243835
https://en.wikipedia.org/wiki/Children%27s_Online_Privacy_Protection_Act
https://en.wikipedia.org/wiki/Children%27s_Online_Privacy_Protection_Act
https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
https://en.wikipedia.org/wiki/Health_Insurance_Portability_and_Accountability_Act
https://en.wikipedia.org/wiki/Health_Insurance_Portability_and_Accountability_Act

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Stream-like Data Processing API
	2.2 Data Management and Taint Tracking
	2.3 Motivating Example and Challenges

	3 Our Approach: TaintStream
	3.1 Overview
	3.2 Static Code Rewriting
	3.3 Dynamic Translation Rules
	3.4 Handling Implicit Flow

	4 Implementation
	5 Evaluation
	5.1 Experiment Setup
	5.2 Accuracy of Taint Tracking
	5.3 System Overhead
	5.4 Case Study

	6 Related Work
	7 Conclusion and Discussion
	References

