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Abstract. Intelligent applications heavily rely on deep neural network
(DNN) inference services executed on edge devices to fulfill functional
prerequisites while safeguarding user data privacy. However, the execu-
tion of such DNN services on resource-constrained edge devices poses a
significant challenge: low throughput of inference tasks. To this end, this
paper proposes Niagara, a novel system designed to maximize system
throughput by judiciously scheduling DNN inference services on hetero-
geneous processors available on edge devices. Niagara faces two critical
challenges: uncertain workload dynamics and high scheduling complex-
ity. To effectively address these challenges, Niagara employs a predictive
model to anticipate incoming workload patterns and orchestrates the
allocation of services across heterogeneous processors through a combi-
nation of offline scheduling optimization and online service dispatching
strategies. We have implemented Niagara and conducted thorough ex-
periments. The results demonstrate that Niagara surpasses state-of-the-
art approaches by elevating DNN inference throughput by up to 4.67x,
all while satisfying the same stringent inference latency requirements.
Furthermore, Niagara has been successfully deployed in real-world power
supply substations to detect violations, ensuring uninterrupted, accident-
free operation during its six-month deployment period.

Keywords: Edge Computing, Heterogeneous Processors, DNN Infer-
ence Service
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1 Introduction

Recent years have witnessed various intelligent edge applications (e.g., health-
care, entertainment, and smart home applications) becoming integral compo-
nents of our daily lives [13]. These applications often rely on deep neural net-
works (DNNs) for sophisticated sensory interpretation, such as user context and
physical surroundings. To ensure a seamless user experience, these edge applica-
tions, such as violation operation detection [39], immersive online shopping [41]
and AR emoji [38], typically prefer to employ a set of flexible and reliable edge
DNN inference services [22,28,35,38]. For instance, violation operation detection,
which determines whether operators in a state grid corporation wear wear valid
helmets and gloves during operations, necessitates at least four DNN inference
services: human detection, pose estimation, and helmet/gloves classification.

However, executing DNN inference services on resource-constraint edge de-
vices often encounters the low throughput problem [22,35,38,39]. Previous stud-
ies have primarily focused on optimizing the execution of individual DNN ser-
vices [23,30, 31, 37], which limits their effectiveness in addressing performance
bottlenecks within a multi-service environment.

To tackle this issue, we have observed that various types of heterogeneous

processors on edge devices [3,5-7,12] (e.g., ARM A57 cores [1] and the NVIDIA
Pascal GPU on Jetson TX2 [3]) can be harnessed to deliver high-throughput
DNN services. To this end, we present Niagara, the first scheduling engine for
DNN inference services on edge devices. The core idea behind Niagara is to
monitor processor status, predict incoming workload dynamics, and efficiently
schedule DNN inference services across heterogeneous processors. Niagara faces
two primary challenges:
e High complexity in scheduling design. As will be elaborated in §2, opti-
mizing DNN-inference-service-to-processor affinity, enabling parallel execution,
and efficiently batching inputs have the potential to significantly enhance DNN
inference services execution. However, the multiple interdependent optimization
choices render the scheduling of DNN services to processors a challenging task.
e Unknown and mutative DNN inference service workload. The design
of Niagara grapples with a dilemma between the need for global knowledge and
timely decision-making. Theoretically, having advanced knowledge of upcoming
requests could offer more scheduling opportunities. However, services depend on
future input, which is only accessible when the corresponding DNN inference
service (e.g., person detection) has been executed.

To address the above two challenges, we incorporate two novel techniques: (1)
Offtine optimizer and online service scheduler. We have identified that DNN ser-
vice request patterns can be abstracted into several typical service graph tem-
plates. Based on that, Niagara optimizes the service-to-processor scheduling
strategy for each service graph template offline, caches the strategy, and matches
the appropriate strategy to user requests belonging to specific templates online.
The offline optimizer accounts for inter-service dependency, batch /parallel execu-
tion, and resource constraints. (2) Dynamic input predictor. We have found that
the service graph tends to be more stable than the content, providing an oppor-
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tunity for prediction. Consequently, we construct a time series model [16,33] of
the DNN service graph based on the latest and global historical data and employ
a combined prediction algorithm to forecast the future DNN service graphs.

Implementation and evaluation We implement an end-to-end prototype
of Niagara on the Android OS. Our evaluation comprises 8 types of DNN in-
ference service combinations, including 11 distinct DNN services, 3 real-world
video stream requests, and 3 different edge devices. These experiments have
been conducted in real-world settings. Compared to the state-of-the-art base-
lines, Niagara can enhance overall processing throughput by up to 4.67x while
maintaining the same response requirements on identical hardware.

In-the-wild deployment Niagara has been integrated into a custom-made
IP camera on a Snapdragon 865 development board and deployed in several
power supply substations that serve millions of people in a large Chinese city.
This deployment aims to enhance the safety of operators working on electric
switching operations. During the 6-month pilot run, which included over 18,000
maintenance jobs, zero accidents were reported, representing a significant im-
provement over traditional human-based supervision. In the near future, Niagara
will be extended to thousands of substations, showcasing how edge intelligence
can contribute to society.

The key contributions of this paper are summarized as follows.
— We quantitatively analyze the challenges and opportunities of DNN inference
service execution on edge devices.
— We propose Niagara, the first DNN inference services scheduling engine on
heterogeneous edge processors. It incorporates two key techniques, including a
service graph predictor and a template-based optimizer that judiciously sched-
ules DNN services across processors.
— We evaluate our scheduling strategy and system on popular CNN services with
real-world datasets. The results show that Niagara and its scheduling solution
can effectively improve the overall processing throughput.

2 Background and Related Work

To enhance the quality of edge services, numerous prior studies [14,19,21,24-26,
34,36,40] have centered their efforts on augmenting the scheduling efficiency of
offloading tasks in the realm of mobile-edge computing, considering factors such
as service caching, service dependencies, and multiple application scenarios. For
instance, some of these investigations have concentrated on scheduling offload-
ing tasks while simultaneously taking service caching into account [14,24,34,40].
Their objective is to harness caching mechanisms for storing and retrieving fre-
quently used services at the edge, thereby diminishing the necessity for task
offloading and mitigating latency. Other studies have underscored the schedul-
ing of dependent services on fog or edge nodes, considering service priorities or
catering to multiple applications [19,25,26]. These works meticulously address
the dependencies between services and prioritize their execution to meet applica-
tion requirements and bolster overall performance. However, our work, Niagara,
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Table 1. Latency and utilization of DNN services on SnapDragon 865 SoC.

. Latency Utilization
DNN service  |DNN model CPU| GPU| DSP| CPU|GPU|DSP
Person detection |SSD-quant 112.1ms|79.9ms|103.1ms|361%| 56%| 77%
Pose estimation |CenterNet 22.9ms| 31.7ms -1287%| 30% -
Helmet detection|SSD-helmet-quant| 25.6ms| 8.4ms| 5.9ms|[195%| 58% | 85%
Gloves detection |pole-gloves 6.7ms| 3.2ms -1198%| 34% -
Text recognition |OCR-recognition |30.8ms| 38.1ms -1295%| 35% -

focuses specifically on maximizing the utilization of heterogeneous processors
available on edge devices for efficient and high-throughput service scheduling.

Another critical issue in DNN services scheduling pertains to the unantic-
ipated dynamic inputs. Several studies have endeavored to forecast future re-
quests by harnessing deep learning methodologies [20, 32]. Meanwhile, other
research endeavors [18,27] have taken it a step further by jointly addressing
scheduling challenges alongside input prediction. However, these undertakings
often prove excessively intricate for practical application in online DNN services
prediction scenarios.

In summary, the distinctive hardware specifications of edge devices and the
unique computing paradigm associated with DNN model inference render the
scheduling of edge services notably distinct from conventional web services and
offloading tasks. For instance, the Snapdragon 865 SoC, commonly deployed
as the main board for IP cameras [5], includes CPU, GPU, and DSP, whereas
other edge devices may feature an Edge TPU or NPU instead. Typically, differ-
ent DNN models executed on such heterogeneous processors exhibit divergent
behaviors. To gain a comprehensive understanding of these distinctive features,
we conducted preliminary offline experiments on the Snapdragon 865 SoC, as
summarized in Table 1.

e Service-processor affinity and hardware support. Our preliminary of-
fline experiments (Table 1) have yielded a crucial insight: a discernible service-
processor affinity exists. In other words, there is no one-size-fits-all processor
to which all services can be indiscriminately scheduled. For instance, the per-
son detection service achieves its optimal performance on the GPU, while the
pose estimation service exhibits superior execution on the CPU. This affinity
arises from the highly varied characteristics inherent in modern DNNs, includ-
ing network architecture, layer shapes, and input sizes [29]. Additionally, certain
processors, such as the Hexagon DSP, lack support for floating-point arithmetic,
thereby rendering services reliant on quantized models, like helmet detection,
more compatible with specific hardware compared to their floating-point coun-
terparts, which can be executed on a wider array of hardware platforms.

e Parallel or sequence execution. Different processors boast distinct capa-
bilities when concurrently executing multiple services (parallel execution), thus
maximizing hardware utilization. For instance, the CPU can achieve a maxi-
mum utilization of 400% in the Snapdragon 865 SoC, while the GPU and DSP
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Fig. 1. System workflow of Niagara.

are capped at 100%. To ensure optimal performance, the resource consumption
by parallel execution on the same processor must not exceed the processor’s
capacity. Otherwise, processor contention can severely hamper inference perfor-
mance. Edge CPUs and GPUs typically support parallel execution, whereas edge
DSPs/NPUs do not.

e Batch execution is a common strategy to group several identical services
for simultaneous execution. This approach yields a longer instruction queue and
greater instruction parallelism, mitigating stalls in memory access. However,
since all these batched services end simultaneously, their output cannot be ob-
tained until all services have completed their execution. Consequently, batch
execution can bolster processor utilization and throughput while simultaneously
introducing longer per-service latency. For instance, in the case of pose esti-
mation and helmet detection, employing batching can achieve a throughput
improvement by 33-68%, albeit at the cost of incurring a 45-51% increase in
latency on the GPU. To that end, Niagara should meticulously design batch
execution strategies to mitigate these drawbacks.

Summary & implications. All the above factors must be carefully considered
when optimizing DNN inference service scheduling for heterogeneous edge pro-
cessors. Furthermore, the dynamic nature of hardware contexts in multi-tenant
devices necessitates continuous monitoring and real-time adaptation of schedul-
ing decisions by our system.

3 System Design

3.1 System Overview

Design goal The primary objective of Niagara is to achieve a high throughput
of DNN inference services by fully harnessing the computational capacity of
heterogeneous processors on edge devices, including CPUs, GPUs, and DSPs.

Workflow Figure 1 provides an overview of the workflow of Niagara. The fun-
damental concept underlying Niagara is the utilization of DNN inference service



6 Daliang Xu, et al.

Algorithm 1: Online service scheduling algorithm

Input : Cached template strategies cached strategies _map
Output: Scheduling strategy strategy

1 Current_service graph template template

2 while True do

3 Input data = user.request.Get() // Receive input data from users
4 service__graph = Dynamic_input _predictor(data) // Section 3.5
5 states = Processor _monitor() // Section 3.6
6 if temple == NULL or Euclidean_distance(service_ graph,template)
< threshold then
/* Section 3.4 Template-based strategy matcher */
for t,s € cached_ strategies map do
8 if states < t.S and Euclidean_distance(service_graph,t.G) >
Euclidean _distance(service_graph, template.G) then
9 ‘ template = t, strategy = s
10 end
11 end
12 strategy = Strategy _adapter(strategy) // Section 3.4
13 return strategy
14 end
15 end

graph templates. These templates consist of a set of elements: <a service graph
G, the number of requested services RA/, the resource status S, and a maximum
latency requirement LatZ9 >. Specifically, it signifies that each of the RN sub-
sequent service requests will follow the same service graph G. Furthermore, these
service graphs are executed on heterogeneous processors, taking into account the
current processor status S, which could indicate the availability of idle CPUs
or the utilization of busy GPUs. Each inference service within G must respond
within the latency requirement latFmazx.

Niagara employs these service graph templates to generate feasible strategies
offline for various scenarios. These strategies subsequently schedule real-time
online services onto the heterogeneous processors.

The input to Niagara aconsist of user-initiated service requests and the cor-
responding response requirements. Once deployed on an edge device, Niagara
operates in two distinct stages:

— Offline optimizer (Section 3.3) In the offline stage, Niagara formulates the
DNN inference services serving problem as a scheduling problem. The inputs for
this scheduling problem encompass the service graph template and profiling data
related to the services and the heterogeneous processors. A solver is employed
to identify feasible solutions for each template.

— Online service scheduler. When the request data is received, Dynamic Input
Predictor (Section 3.5) predicts the service graph within the data frame, while
the Processor Monitor (Section 3.6) continuously monitors the status of the pro-
cessors. Based on response requirements, processors status, and service graph,
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the Template-based strategy matcher (Section 3.4) selects the most suitable strat-
egy from the precomputed offline strategies and adapts it to accommodate the
real service graph. This allows services to be dispatched effectively to heteroge-
neous processors. The scheduling algorithm is illustrated in Algorithm 1.

3.2 Problem Formulation

Preliminaries. Niagara considers how to schedule various DNN inference ser-
vices onto heterogeneous processors. Notably, Niagara does not modify the
structural aspects of the DNN models within these services, in order to main-
tain accuracy and performance. As a result, it is incumbent upon the developers
of each DNN inference service to provide configurations that specify essential
details about the DNN model and the processors. These configurations include
information about the processors on which the DNN models can potentially ex-
ecute and the utilization of processors by each model. Users, in turn, are only
required to invoke the DNN inference services and supply their input data.
DNN inference service graph model. Within Niagara, it is assumed that
an edge device needs to process RN continuous requests, producing a total of
N services, denoted by V = {v1,v2,- - ,vn} which belong to L (L < N) types.
Niagara employs a directed acyclic graph (DAG) G = (V,€) to represent the
dependent relationships among DNN inference services, where )V signifies the
service set and & represents the set of edges symbolizing the dependencies among
these services. If there exists an edge e; , between any two services ¢ and k, it
implies that the output of service i serves as input to service k, signifying that
service k cannot commence execution until service ¢ has completed its task.s.
Batch Execution Latency Model. Niagara employs a linear model [28] to
characterize batch execution latency:

batch _lat(b) = a(b— 1) + lat_single (1)

where b signifies the batch size and a represents the additional latency in-
curred when a new service input is appended to an existing batch execution.
Notably, due to the diversity in services and processors, the parameter a is a
two-dimensional matrix with dimensions equal to the number of service types
and the number of processor types. Determining these parameters can be ac-
complished through linear fitting, utilizing profiling results.

Heterogeneous processors execution model. Niagara posits the existence
of M types of heterogeneous processors, denoted as R = {ry,rs,--- ,ra}. Each
processor r; € R possesses its unique processing capacity denoted by Ej;. Service
v; has the flexibility to execute on any processor r; € Ri in various modes such
as sequential, batch, or parallel. However, it is essential to emphasize that service
execution is exclusive to a single processor at any given time. Regardless of the
execution mode, services must not be interrupted or preempted, and they must
complete their execution within the user-defined real-time threshold Lat®®mazx.
When multiple services execute in parallel, their combined hardware utilization
must not exceed the capacity of the processor.
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Table 2. Notation table of problem definition in Niagara.

Variable ‘ Notation ‘ Description
Placement x;,j| Whether service v; € V executes on the processor ; € R.
Batch B; k,j| Whether services v;,vx € V are batched on processor r; € R.
Parallel PL; 1, ;|Whether services v;,vr € V execute in parallel on processor r; € R.
Starting time t;|Starting time of service 1.

The i-th service’s latency when running on the j-th type processor.
Execution time T If the i-th service executes separately, the value equals Lj; ;.
intermediate variable “7|When the i-th service executes in batch, based on Eq. (1),

the value is formulated as T; ; = “Zj Zgzl Bik,j+ Lij

Scheduling problem definition. Given the service graph G and associated
profiler information, including latency (L; ;) and hardware utilization (U; ;) for
each service, processor capacity (F;), and user-defined response requirement
(LatEQ@ ), Niagara DNN service-to-processor selection, batch execution, and
parallel execution simultaneously. This entails the introduction of four primary
decision variables and one intermediate variable are summarized in Table 2.
Our solution should satisfy the following constraints:

e DNN service-to-processor selection constraint. Any service should execute on
exactly one supported processor. Niagara does not allow multiple processors to
cooperate to complete single DNN service inference.

> mi;j=1VieN (2)
JER:
e Dependency constraint: Any service can start iff all precedent services are
completed, formulated as for any edge < i,k >€ &, vy can start iff v; finishes.
M
t; + Zl’i,jTi,j <t (3)
j=1
e Sequence execution constraint: Any service’s execution cannot be interrupted.
For any service i and k, if they execute on the same processor j in sequence and
t; < t, then the service vy must wait until v; completes.
lp — 1t
i ik (1= PLik)(1 = Big;j)

e Parallel constraint: Paralleling services’ execution times must overlap, meaning
when services i and j both execute on the resource j and execute in parallel, their
start time distance must be less than or equal to their execution time.

Tij* X * PL; g j % abs(ty, — t;) < min(Ty, T;) (5)

> Tk, (4)

e Batch constraint: Batch services must begin simultaneously, meaning when
services 1 and j execute on the resource j and are batched, their start time
distance must be zero.

Tij % Tk * Bigj* (e —1:) <0 (6)
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e Request real-time constraint: Any services within a request RQ should com-

plete before users’ requirement LatZ% to guarantee a real-time response.

Yo, v € ROt — t; < Latfi? (7)

max

e Capacity constraint: When several services execute in parallel, their hardware
utilization cannot exceed the processor’s capacity. The overall hardware utiliza-
tion will be nearly equal to the combined hardware utilization of individual
services running independelj%[tly.

Y PLikjUs;+ Uiy < Ej (8)

k=1
e Objective and optimization model. Our goal is to find a feasible solution with a
maximum throughput which is denoted by C' = 1/ max{t; + ZJM:1 x; 57155,V €
N,Vj € M}. Thus, the problem can be formulated as the following model:

maxC  s.t. Eq. (3) — (9) 9)
NP-Hard problem. It is important to note that the scheduling problem within
Niagara is an instance of a classical NP-Hard problem, the Traveling Salesman
Problem (TSP) [17]. Consequently, determining the optimal scheduling strategy
for this problem is also NP-hard.

3.3 Template-Based Scheduling Strategy Generator

In addressing our scheduling problem, we have found success in leveraging the
cutting-edge GUROBI solver [2]. This solver yields solutions with an optimality
loss of less than 10% since our service decision variables remain relatively small,
numbering around 100. Nevertheless, it is imperative to acknowledge that obtain-
ing an approximately optimal solution through this method may entail several
hours of computational effort, rendering it impractical for online scheduling.

To circumvent this challenge, Niagara introduces an innovative offline-online
hybrid heuristic algorithm. Our insight stems from the observation that the ma-
jority of service request patterns exhibit remarkable stability over time. For
instance, tasks such as face recognition consistently involve sub-tasks such as
person detection, face detection, and facial recognition. In response to this ob-
servation, we introduce the concept of service graph templates, which encapsulate
common service patterns frequently encountered in real-world scenarios. For ex-
ceptional and unexpected cases, we also offer an adaptation mechanism designed
to modify the scheduling strategy in real-time, aligning it with the specific re-
quirements of dispatching online DNN cascades to heterogeneous processors (as
detailed in Section 3.4).

Each service graph template comprises four essential components: service
graph G, request number RN, resource status S, latency requirement latZ<, .
Through the analysis of existing request data, we endeavor to identify as many
request patterns for services within a single frame as possible. For the second
parameter, request number, the range is 1-N, with N representing the maxi-
mum number of frames that can be processed within a single second. In addi-
tion, Niagara conducts a comprehensive exploration of the status of heteroge-
neous processors, as elaborated in Section 3.6. Taking the Snapdragon 865 SoC
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Fig. 2. The workflow of strategy matcher.

as an exemplar, Niagara systematically considers all feasible combinations of
CPU cores, GPUs, and DSPs, encompassing various resource-status scenarios,
thereby ensuring adaptability to the underlying hardware configurations. Re-
garding the final parameter, the response requirement, Niagara endeavors to
generate scheduling strategies for all possible scenarios within intervals of 50ms,
ranging from 50ms to 1000ms. In practice, Niagara has the capacity to generate
a multitude of service graph templates and their corresponding feasible schedul-
ing strategies, all of which are stored locally on edge devices. This storage incurs
a minimal overhead of less than 10MB.

3.4 Template-Based Strategy Matcher

The matcher takes into account two primary inputs: the real-time service graph
and the processor’s status. We outline its workflow as illustrated in Figure 2.
The service graph is stored in a two-dimensional matrix format, with a value
of 1 indicating the presence of a dependency between services. The Matcher,
guided by the processor’s status, is responsible for selecting appropriate template
strategies under conditions that are no worse than the input circumstances. To
achieve this, Niagara utilizes the Euclidean distance metric [15] to quantify the
disparity between the online service graph (derived from the current image) and
the service graph template, ultimately identifying the most suitable strategy.
The matcher includes the following steps:
— Step (D): When the distance between the online service graph and the current
service graph template falls below a predefined threshold (e.g., 0.5), Niagara
continues to employ the current template. This process is depicted in Figure 2(D).
— Step 2): If the distance exceeds the threshold, Niagara discontinues the cur-
rent scheduling strategy and selects a new one that closely matches the online
service graph. For instance, in Figure 2(2), the blue template is chosen due to
its minimal distance, and it corresponds to a scheduling strategy.
— Step (3): Recognizing that the online service graph may not always align per-
fectly with the template, Niagara incorporates an adaptation mechanism to
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Algorithm 2: Dynamic predictor algorithm

Input : First order_exponential predictor A, Holt Winters predictor B

1 CSGP = NULL // CSGP: current_service_graph_prediction
2 while True do
3 Input data = user.request.Get() // Receive request data from user
4 itmage_info= Main_DNN _inference(data)
5 service__graph = Graph__generator(image _info)
6 if CSGP.service_graph != service_graph then
7 CSGP.service__graph = service__graph
8 if A.history_accuracy > B.history accuracy then
9 | CSGP.last_number = A.Predict(service_graph)
10 else
11 ‘ CSGP.last_number = B.Predict(service__graph)
12 end
13 end
14 CSGP.service _graph.Ezecute()
15 A.Update(number), B.Update(number)
16 end

accommodate unexpected variations. As demonstrated in Figure 2(3), Niagara
first reorganizes the current service graph. It endeavors to match online graph
services with template services as closely as possible. Services that do not find a
match, such as v6 and v7 in Figure 2, are flagged, while the scheduling positions
of matching services remain consistent with the template’s corresponding strat-
egy. Notably, v6 represents an extra service, while v7 is a newly added service.
— Step @): Niagara selects the first unmatching newly added service (e.g., v7)
and places it within the earliest available idle period, as depicted in Figure 2(%).
In cases where the template scheduling strategy includes extraneous, redundant
services, such services are eliminated (e.g., v6). Other services commence as early
as possible while adhering to any applicable constraints.

3.5 Dynamic Input Predictor

The predictor is a crucial component in forecasting future service graphs, denoted
as pairs of <service graph, request number>. Algorithm 2 shows its functionality.

Different scenarios often exhibit distinct recurring patterns in their service
graphs. For instance, in the context of a parking system, events such as license
plate recognition at an entrance gate may occur at regular intervals, while vio-
lation operation detection is more likely to follow a pattern similar to the most
recent historical data. To address these diverse scenarios, Niagara employs a
combined prediction approach, encompassing first-order prediction and triple
exponential smoothing (Holt-Winters method), to capture both the latest and
global historical patterns. It operates as follows:

— The predictor initiates the first DNN service inference in accordance with
the ongoing scheduling strategy or its associated processor, should no active
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strategy exist. After execution, the predictor obtains essential information such
as the count of people or cars, which forms the basis for predicting the service
graph within the current request.

— If the newly predicted service graph diverges from the current one, Niagara
proceeds to compare the historical accuracy of the predictors and selects the
more precise one. This selection informs the prediction of how many frames the
service graph will remain constant.

3.6 Processor Monitor

In this section, we discuss the processor monitoring mechanism implemented in
our system. The monitor leverages system files such as /proc/stat and /sys/class/
kgsl/kgsl-3d0/gpu_busy_ percentage to acquire real-time utilization data for the
CPU and GPU, and utilizes a benchmarking tool from the Hexagon DSP SDK
to obtain information about DSP utilization.

Our monitoring system continuously inspects the status of these processors
at intervals of 100 milliseconds. This monitoring frequency is deliberately set to
be smaller than the service inference time to ensure the precision of our mea-
surements while avoiding any adverse impact on the quality of service delivery.

4 Implementation and Evaluation

We have developed an end-to-end prototype of our system, comprising over 3,800
lines of code, built on the Android OS 10.0 platform. For DNN inference, we have
employed TFLite, a runtime environment capable of supporting on-device CPU,
GPU, and DSP inference. To ensure smooth execution of DNN inference while
preserving the desired strategy order, we have implemented a ThreadPool and
an InferenceFinishListener, enabling asynchronous processing.

4.1 Expriment Settings and Methodology

Hardware and OS. In order to assess the versatility of our scheduling strategy
across diverse heterogeneous processor platforms, we executed Niagara on three
SoCs configurations detailed in Table 4. These SoCs are widely employed in IP
cameras, as indicated by [5]. Each of these SoCs encompasses three heterogeneous
processors with varying capabilities. To maintain uniformity, all these devices
operated on the Android 10 system.

Baselines. To highlight the advantages of our approach, we conducted a com-
parative analysis of Niagara against the following existing methods:

— TFLite employs unmodified TensorFlow Lite 2.4.0 [11]. When a service request
for a model is received, TFLite immediately invokes a new runtime instance for
execution, consistently dispatching the service to its affinity processor.

— Greedy Algorithm consistently schedules the service to its affinity processor,
ensuring assignment until the processor becomes idle and can accommodate it.
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Table 3. Experimental combinations of 3 scenarios and their corresponding datasets.

DNN service combination  [Name  |Complexity| DNN1 |[DNN2 |DNN3 [Video Input |Video Description
VOD High SSD-Main Pole-gloves/
Violation Operation VOD-Y |Low Tiny-yolov3-quant CenterNet- SSD»hehnet’»quant Power grid site Resolution: 960*540
Detector (VOD) Keypoint Pole-gloves 1 week, 1 camera FPS:30
VOD-FH |Middle SSD-Main SSD-helmet !
VOD-FR[Low Fast-RCNN-quant Pole-gloves/
VOD-P_ |Low SSD-Main Posenet SSD-helmet-quant,
Vehicle License Plate Traffic cameras Resolution: : 960%¥540
Detector (LPR) LPR Low Tiny-yolov3-quant | Wpod OCR-recognizer |1 week, 20 cameras [28] FPS:30
- NI Middle  |SSD-Main T [ Power gud site Resolution: 416°416
Nameplate Identification (NT) X eI fiddle ™| Past RONN-quant| Xt detector| OCR-recogmizer |1 o' PPE.90

— FIFO Algorithm. Originally designed to optimize the scheduling of a DNN
service graph on heterogeneous edge nodes while minimizing total latency un-
der resource constraints, we have modified this algorithm to suit the on-device
heterogeneous processors’ environment.

— LSTM-Niagara algorithm uses the LSTM model as the dynamic predictor,
and other parts are the same as Niagara. We LSTM-Niagara to evaluate our
dynamic predictor efficiency.

Evaluation Scenarios. The assessment of Niagara encompasses 3 real applica-
tion (video surveillance) scenarios encompassing 8 distinct service combination
patterns, as outlined in Table 3. These scenarios make use of a range of pre-
trained DNN models, including publicly available models and those developed
by the authors, such as SSD-Helmet and pole-gloves.

2 10| mm TrLite
Table 4. Experimental platforms. Ts E E,Feoedy

SoC Description capacity 5 6l 5 0pTSC
CPU: 4%Kryo 585(A77)|  400% £ 7| = Nagara

SnapDragon 865 [10] |GPU: Adreno 650 100% w4
DSP: Hexagon 698 100% f») 5
CPU: 4*Kryo 485(A76)|  400% g

SnapDragon 855 [9] |GPU: Adreno 640 100% 0
DSP: Texagon 690 100% Snapdragon 855 So(i)eViceSSnapdragon 750G SoC
CPU: 2*Kryo 570(A76)|  200%

SnapDragon 750G [8]|GPU: Adreno 619 100%
DSP: Hexagon 694 100% Fig. 3. Processing throughput of VOD

atop two different devices.
Evaluation Datasets. The evaluation dataset comprises three video streams,

with two of them collected from real-world environments where Niagara has
been deployed, and one sourced from open repositories commonly utilized in
edge service benchmarks, as meticulously delineated in Table 3. All videos have
undergone uniform preprocessing to attain a frame rate of 30 frames per second
(fps), thus ensuring evaluation consistency.

The complexity classification, as presented in Table 3, elucidates the number
of services encompassed within a given request. Here, “high”, “middle”, and “low”
denote the presence of more than 10 services, 7-10 services, and less than 7
services, respectively.

4.2 Experiment Results

Different combinations We evaluate 8 combinations in Table 3 in three real
scenarios, as shown in Figure 4. Each pipeline’s result is averaged over 100 same
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Fig. 4. Processing throughput of all eight experimental combinations.
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Fig. 5. Throughput of one-minute real videos in three different situations.

requests. Overall, Niagara achieves a 3.0x, 1.9x, 2.0x, and 1.8x throughput
improvement compared with TFLite, FIFO, Greedy, and ODTSC on average,
respectively. That is because our strategy jointly considers batch and parallel
execution with DNN inference service-to-hardware selection. As the scenario is
more complex, the benefits Niagara obtains are more. VOD-Y is one of the best
examples. It uses a tiny-yolov3-quant model for person detection service, which
consumes the least hardware utilization. Thus, this service can be parallelized
with any other DNN services on the CPU, significantly reducing the critical path
length. On the contrary, the nameplate identification (NI) pipeline’s performance
improvement is not so obvious because the person detection service consumes
lots of hardware resources, and no one can be parallelized with it

Different edge devices. We also evaluate Niagara on different edge devices,
as shown in Table 4. From Figure 3, Niagara always achieves the lowest delay
compared with the other four baselines. For instance, Niagara’s throughput is 10
FPS on Snapdragon 855 SoC development board, while 5.46 FPS, 3.78 FPS, 3.74
FPS, and 2.84 FPS under ODT-SC CP, Greedy, FIFO, and TFLite baselines,
respectively. On Snapdragon 750G SoC development board, Niagara can achieve
4.56x, 1.87x, 1.52x, and 1.50x higher throughput, respectively.

Besides, comparing the two figures, Snapdragon 855 SoC achieves better

performance improvement than Snapdragon 750G SoC. That is because 855
SoC has a higher-performance SoC with a four-core CPU, while 750G SoC only
has two, providing more scheduling space for Niagara to exploit.
Real deployment. We have successfully deployed Niagara in an electric station
and conducted evaluations in three typical situations: stable, slowly changing,
and frequently changing, with a focus on violation operation detection (VOD in
Table 3). Additionally, we also analyzed Niagara’s performance over a 20-minute
work period to assess its efficiency.

The evaluation results, shown in Figure 5 and 6, demonstrate the effectiveness
of Niagara compared to state-of-the-art baselines. Niagara achieves throughput
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Fig. 6. Throughput comparison of a 20-minute real video.

improvements ranging from 1.26 to 2.33 x. Particularly, in scenarios with more
stable content, Niagara provides greater benefits, e.g., Figure 5(a) and Figure 6
200-250s. This can be attributed to Niagara accurately predicting unforeseen
service graphs, providing more scheduling space, which enables better utilization
of its offline strategies.

5 Discussion

Applicability of NPU in edge devices. Many contemporary edge devices are
furnished with Neural Processing Units (NPUs), such as the Kirin 9000 [4]. Since
Niagara is a hardware-agnostic framework, the integration of support for new
NPUs entails minimal alterations to existing algorithms and system design. This
integration process primarily involves the addition of NPU-specific support im-
plementations, encompassing profiling, hardware configurations, and hardware
status monitoring. Actually, Niagara already extends its support to NPUs, with
experimental deployments showcasing its compatibility with a particular NPU
architecture (Hexagon DSP) developed by Qualcomm.

6 Conclusion

This work proposed Niagara to achieve high throughput for serving DNN in-
ference services on edge devices. Niagara proposes an offline algorithm for the
on-edge-device DNN inference service scheduling problem. It then applies the
template scheduling strategies to the variable unforeseen DNN cascades applica-
tion with the help of an input predictor, processor monitor, and strategy matcher.
We have implemented a prototype of Niagara on commodity edge devices and
comprehensively evaluate its effectiveness via a set of experiments on typical
DNN inference service scenarios.
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