
Privacy as a Resource in Differentially Private
Federated Learning

Jinliang Yuan1, Shangguang Wang1, Shihe Wang1, Yuanchun Li2*, Xiao Ma1, Ao Zhou1 and Mengwei Xu1

1State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, China
2Institute for AI Industry Research (AIR), Tsinghua University, China

*Shanghai AI Laboratory, China
{yuanjinliang, sgwang, shihewang, maxiao18, aozhou, mwx}@bupt.edu.cn, liyuanchun@air.tsinghua.edu.cn

Abstract—Differential privacy (DP) enables model training
with a guaranteed bound on privacy leakage, therefore is widely
adopted in federated learning (FL) to protect the model update.
However, each DP-enhanced FL job accumulates privacy leakage,
which necessitates a unified platform to enforce a global privacy
budget for each dataset owned by users. In this work, we
present a novel DP-enhanced FL platform that treats privacy
as a resource and schedules multiple FL jobs across sensitive
data. It first introduces a novel notion of device-time blocks for
distributed data streams. Such data abstraction enables fine-
grained privacy consumption composition across multiple FL
jobs. Regarding the non-replenishable nature of the privacy
resource (that differs it from traditional hardware resources
like CPU and memory), it further employs an allocation-then-
recycle scheduling algorithm. Its key idea is to first allocate an
estimated upper-bound privacy budget for each arrived FL job,
and then progressively recycle the unused budget as training goes
on to serve further FL jobs. Extensive experiments show that our
platform is able to deliver up to 2.1× as many completed jobs
while reducing the violation rate by up to 55.2% under limited
privacy budget constraint.

I. INTRODUCTION

Federated learning (FL) is an emerging machine learning
paradigm that enables multiple mobile devices to collabora-
tively learn a global model in a privacy-preserving manner.
It underpins many killer applications nowadays, such as input
method [1], voice assistant [2], and financial services [3]. To
further protect the exchanged model update between clients
and server, FL deployment is often accompanied by other pri-
vacy enhancement methods [4]–[6]. Among them, differential
privacy (DP) [6] is one of the most widely adopted techniques
for its lightweight overhead and flexibility. Specifically, each
device introduces a local DP randomness (namely LDP) on
the model update before it is sent to an untrustworthy server.
The quantified randomness opens a rich trade-off between the
privacy protection levels and model training accuracy.

However, a key characteristic of DP-enhanced FL is that
privacy leakage can accumulate across multiple FL jobs [7],
[8]. That is, with iterative FL jobs issued and trained on the
same dataset (across clients), the private information exposed
to the FL developers can increase according to the DP com-
position theory [7], and thus the attacking surface widens, as
will be illustrated in Section II-B. Such iterative FL training
is common in practice: (i) The same model could be trained

through FL many times, e.g., to search for a proper model
architecture [9] or regularly updating [1], [2]. (ii) Different
models could be trained through FL on the same dataset.
For example, the input corpora from end users could be
used to fine-tune many natural language processing models
such as word prediction [1], sentiment analysis [10], question
answering [11], etc.

Unfortunately, we have conducted preliminary experiments
and found that privacy loss in multi-job settings can cause se-
rious performance degradation, but no prior work investigated
it. They mostly consider an FL job as one shot [12]–[14],
attempting to maximize the model accuracy under a privacy
budget. Therefore, how to maximize the utility of sensitive
data while preserving user privacy in multi-job settings is non-
trivial and opens a new dimension of research opportunity.

To this end, we propose a holistic DP-based user data man-
agement platform that manages data privacy as a resource.
On the one hand, it enables fine-grained privacy control by
allowing users to specify their own privacy budget for the data
they own. It also enforces the accumulated privacy leakage
of each user will not exceed a pre-specified global privacy
budget. On the other hand, it accepts FL jobs from developers
and seeks to maximize the number of FL jobs successfully
completed across sensitive user data. Those complete jobs
are required to guarantee a service-level objective (SLO) as
specified by FL developers. The platform bridges the privacy-
utility gap between FL developers and users (who are also data
owners). In a broader sense, we believe such a platform is a
key step towards the vision of “handing over data ownership
back to users” [15]–[17].

There are two unexplored challenges to enabling fine-
grained privacy resource management for multiple FL jobs.

First, previous DP-based approaches todata privacy control
mostly work on static, centralized datasets [18]–[20]. These
approaches do not apply to our real-world FL scenario,
where the data is distributed across clients and continuously
expanding with new samples generated. As we will show in
Section III-B, the privacy budget easily runs out with the state-
of-the-art DP-enhanced FL mechanism. Therefore, the device
and time dynamics in our FL scenario necessitate a new fine-
grained approach todata privacy control to avoid running out
of privacy budget quickly.

Second, unlike traditional hardware resources such as mem-
ory and CPU, the privacy budget is non-replenishable. Once
the privacy leakage reaches the enforced budget, the dataset
can never be used for training anymore. A job that is launched
but not successfully completed, not only degrades the quality
of service but also causes privacy budget waste. This leads
to an all-or-nothing principle for the scheduling of non-
replenishable privacy budget: an FL job is either allocated
with enough budget to satisfy the SLO requirement (i.e.,
convergence accuracy), or no budget at all. However, enforcing
this principle is difficult as the precise privacy budget con-
sumption of an FL job cannot be determined in advance. This
is because FL jobs are naturally integrated with client/data
sampling [21], [22], of which the concrete sampling strategy
cannot be obtained ahead of training with the devices dropping
in/out dynamically [23]. Those unique characteristics invali-
date traditional resource scheduling algorithms [24]–[26].

In this work, we propose the first unified differentially
private FL platform, namely FLScheduler, which inte-
grates two key techniques to address the above challenges. (i)
FLScheduler introduces the notion of device-time blocks
that splits the continuous data stream into fixed time-frame
blocks on each device. Users are able to configure a desirable
(ε,δ)-DP guarantee for each split block. FLScheduler
introduces a novel time-blocks composition theorem to enforce
a global (ε,δ)-DP guarantee on cross-device blocks in each
given period (e.g., a day), while maintaining the on-device
training on merged blocks. With this theorem, we can account
for the privacy loss at the granularity of time-blocks, instead
of the whole data stream. Moreover, newly generated time-
blocks will be assigned a clean privacy budget, which enables
endless FL jobs to be carried out as long as the data continues
to come. (ii) FLScheduler introduces a novel, fine-grained
privacy budget scheduling algorithm AaR, which maximizes
the number of completed jobs while reducing SLO violation
rate under the limited privacy budget constraint. Its key idea
is to first estimate and allocate enough privacy budget (an
upper bound) for each arrived job to ensure its completion
with guaranteed SLO; it then progressively recycles the unused
budget as more information is exposed during FL training to
serve more jobs. It employs a novel weighted thriftiest job first
strategy: the job with the smallest estimated privacy budget
consumption is always scheduled first to enable more jobs to
be completed, yet the estimated consumption is also weighted
by the job’s waiting time to prevent job starvation.

We have implemented FLScheduler atop the ShuffledFL
framework [14] and performed extensive experiments to com-
pare our FLScheduler with three competitive baselines. The
results show that it can deliver up to 2.1× as many complete
jobs while reducing the SLO violation rate by up to 55.2%.

The main contributions of this paper are as follows:

• We conduct preliminary experiments to reveal that pri-
vacy loss in multi-job settings causes serious performance
degradation. Then, we propose FLScheduler, a novel
differentially private FL platform that treats data privacy

as a resource to improve the utility of sensitive user data
while preserving user privacy.

• We introduce a time-blocks composition theorem to ac-
count for the privacy loss at the granularity of time-
blocks, instead of the whole data stream, while enforcing
a global DP guarantee. We also design AaR, a fine-
grained privacy budget scheduling algorithm that allo-
cates the non-replenishable privacy resource to serve
more FL jobs.

• We develop a prototype of FLScheduler platform and
conduct extensive experiments on it to demonstrate its
superior performance against three baselines.

II. BACKGROUND AND MOTIVATIONS

A. Differentially Private Federated Learning

Differential privacy is a system for sharing information
about a dataset by describing the patterns of groups within
the dataset while withholding information about individuals in
the dataset. The common way to achieve differential privacy
is introducing randomness to the computation, such that the
details of individual entries can be hidden.

Definition 1. (Differential Privacy - DP [6]). For ε,δ ≥ 0,
a randomized mechanism M : Xn → Y is said to be (ε,δ)-
differentially private (in short, (ε,δ)-DP), if for all neighbor-
ing datasets D,D′ ∈ Xn and every subset S⊆ Y , we have

Pr[M (D) ∈ S]≤ eε Pr[M (D′) ∈ S]+δ . (1)

Parameters ε and δ in the above definition quantify the
strength of the privacy guarantee. With a small ε , an algo-
rithm’s output gives little information about whether it ran on
the original dataset or its neighboring dataset. The privacy bud-
get ε upper-bounds the privacy loss of (ε,δ)-DP computation
with probability (1−δ). Because the computation’s output is
much more sensitive to the assigned ε than to δ , in this paper,
we will focus on ε as the sole global resource to schedule [27].

Recent studies have shown the intermediate results gener-
ated during the model training, such as updated gradients, may
also expose sensitive information about the original data [28].
As for differentially private deep learning [18], the goal is to
ensure that no specific data sample in the training dataset can
drastically affect the model obtained by the training procedure.
Such a goal is usually achieved by adding computed noise
to the gradients during training. Applying DP to FL is a
widely adopted approach to protect the sharing gradients from
exposing the privacy of original data, which is named as dif-
ferentially private FL [8]. There are two ways to employ DP in
FL: the curator and local models. A trusted server is required
in the curator model to collect users’ raw gradients [13], and
randomizes the aggregated results on the server. By contrast,
users send randomized gradients (not the raw gradients) to the
server in the local model approach, which does not assume
a trusted party. The local randomness mechanism provides a
stronger local privacy guarantee to avoid information leakage
in FL scenario.

Iters=0

Normal gradients

DP gradients

Iters=10 Iters=50 Iters=100 Original

𝛆

𝛆

Iters=0 Iters=50 Iters=200 Iters=400 Original

Normal gradients

DP gradients

Fig. 1: Illustration of privacy leakage on MNIST [32] and
CIFAR100 [33] with normal gradients and DP randomized
gradients with a Gaussian noise [28] ε ∼ N (0,σ2I). The
images are reversed from the accumulated gradients using the
attack method DLG [28]. The individual training samples can
be easily reversed with normal gradients.

Definition 2. (Local Differential Privacy - LDP [29]). For
ε0 ≥ 0, a randomized mechanism M : X → Y is said to be
ε0-local differentially private (in short, ε0-LDP), if it is for
every pair of input x,x′ ∈ X, we have

Pr[M (x) = y]≤ eε0Pr[M (x′) = y],∀y ∈ Y. (2)

Here, ε0 captures the privacy level, lower ε0 means a higher
privacy level. We succinctly denote the corresponding (ε0,0)-
DP. However, it suffers a low utility when using ε0-LDP
mechanism to provide a stronger privacy guarantee [29].

Recently, a shuffle scheme was proposed to enable signifi-
cantly better privacy-utility performance [30]. The anonymiza-
tion of shuffling can break the linkage from the received data
at the cloud to a specific client and decouple the gradient
updates sent from the same client in each iteration, thus
greatly improving the privacy guarantee. The shuffle scheme
has been widely applied to improve the low utility of ε0-LDP
mechanism in differentially-private FL [13], [14], [29], [31].
Among them, [14] obtained the state-of-the-art performance of
higher model accuracy at the lower expense of privacy budget
using a shuffled ε0-LDP mechanism.

B. Challenges of DP in Multi-job FL

While the shuffled ε0-LDP mechanism of [14] shows supe-
rior performance of privacy and utility trade-off, it is not able
to fully exploit the utility of sensitive user data in the context
of FL, due to the cumulative privacy budget introduced by
frequently issued FL jobs.

Theorem 1. (Basic DP composition [7]). For any ε > 0 and
δ ∈ [0,1], the class of (ε,δ)-differentially private mechanisms
satisfy (kε,kδ)-DP under k-fold adaptive composition.

The above composition theorem is known as a critical
characteristic of DP mechanism. It shows that the composition
of k queries, each of which is (ε,δ)-differentially private, is
at least (kε,kδ)-differentially private. Therefore, privacy loss
accumulates linearly with a sequence of DP computations,

10 30 50
of total arrived jobs

0
20
40
60
80

100

160

Av
er

ag
e

ac
cu

ra
cy

 (%
)

81
67 60

91 86 8084
69 61

Homo (LeNet)
Homo (ResNet)
Heter (LeNet+ResNet)

(a) Average accuracy

[90,100]4.5%

[80,90)
10.1%

[70,80)

21.3%

[0,70)

64.1%

(b) Accuracy distribution

Fig. 2: The accuracy of different jobs in differentially-private
multi-job FL settings using the FCFS scheduling policy. (a)
Average accuracy obtained with a different number of jobs.
(b) Accuracy distribution with 50 heterogeneous FL jobs. Note
that “homo” means the FL jobs have homogeneous models and
“heter” means the models are heterogeneous.

such as each round of model training with DP randomness.
Figure 1 illustrates that the risk of privacy leakage is increased
as the cumulative privacy budget grows.

Previous work considered FL as a one-shot process, which
focuses on a single model issued once [12]–[14]. In this paper,
we consider a more practical scenario that multiple FL jobs are
submitted by developers to train periodically over increasing
user data streams. For example, a developer may submit an
image classification model that is auto-trained daily or weekly
on a continuous image data stream generated as time goes by.
And, other developers may leverage the same stream to train
different models for object detection and recommendations.

In the following, we take a deeper look at the challenges
of running multiple FL jobs through extensive experiments
based on the previous work [14]. We adopt the first-come-
first-serve (FCFS) algorithm to schedule dynamically arrived
FL jobs. Each job is submitted to train a deep learning model
(LeNet [34] or ResNet [35]) on MNIST [32].

Figure 2(a) shows that average accuracy of allocated jobs
decreased significantly as the number of jobs increased. Es-
pecially as the number of arrived jobs increased to 50, the
average accuracy dropped to only 61% for heterogeneous jobs.
Figure 2(b) shows that only a very small number of jobs
(14.6%) obtained acceptable model accuracy (e.g., ≥ 80%),
and most jobs’ accuracy (60%) is too low (e.g., < 70%).
Those low-precision models not only degraded the quality of
service but also wasted a large portion of the privacy budget
because the budget consumed by them can’t be recycled for
other jobs. However, prior results in [14] revealed that it
can deliver higher accuracy while consuming a low budget
for single job, such as 91% model accuracy of LeNet and
ResNet at the expense of only ε = 3.5 and ε = 2.5. The main
reason behind this serious performance degradation is that
dynamically arrived jobs compete for limited privacy budget
without control, resulting in an unreasonable allocation of
privacy budget.

Thus, we believe that the privacy budget needs to be care-
fully scheduled in multi-job FL settings, in order to maximize
the utility of sensitive user data while preserving privacy.

C. System Model and Goals

Here we describe the motivating scenario of our work
in more detail. First, we assume a collection of devices
that agree to participate in the FL training with a shuffled
ε0-LDP mechanism. Each device maintains a sensitive data
stream, with its data continuously generated over time. User
can specify a threshold of privacy budget on the stream to
ensure data privacy. All operations on this stream beyond this
threshold are disallowed, which provides a strong local privacy
guarantee to avoid information leakage.

Second, we consider a practical scenario where multiple
FL jobs are submitted by developers to train periodically over
the user data streams. Each submitted job requests to train an
accurate model with an expected accuracy. We specify the
expected accuracy as the SLO requirement, such as a job
with LeNet model must achieve an accuracy of 90%. The
FL jobs dynamically arrive with different SLO requirements.
We define allocated job as a job that is allocated with certain
privacy budget, regardless of its expected accuracy. We define
complete job as a job that achieved its expected accuracy. If a
job is allocated some budget but does not achieve the expected
accuracy, it not only degrades the quality of service but also
wastes a large portion of the privacy budget, due to the non-
replenishable nature of the privacy budget. We define this job
as a failed job. We also define SLO violation rate as a ratio
of failed jobs to allocated jobs, which can measure the waste
portion of the privacy budget.

In this paper, our goal is to develop a unified platform that
coordinates dynamically arrived FL jobs with sensitive user
data streams. The platform aims to enforce a global (ε,δ)-DP
guarantee across participating devices to control the leakage
of user information. To improve the utility of sensitive user
data, it focuses on how to schedule the global privacy budget
to deliver more completed jobs and reduce SLO violation rate.

III. DIFFERENTIALLY PRIVATE FL PLATFORM

This section proposes a novel differentially private FL
platform, namely FLScheduler, to achieve our goals. The
key insight is to split the user data stream to separate data
blocks with user-specified privacy budget and treat them as a
resource to schedule. Moreover, we propose the time-blocks
that represents the data blocks generated in a given period
across all devices and enforce a global (ε,δ)-DP guarantee
on them. Finally, considering the non-replenishable nature of
the privacy budget, it employs a fine-grained privacy budget
scheduling algorithm to schedule more FL jobs.

A. Platform Overview

Figure 3 shows the overview of our proposed platform.
Multiple FL jobs dynamically arrive on this platform with
their SLO requirements. A collection of devices within this
platform introduce a user-specified (εg,δg)-DP guarantee to
rigorously control the access of their continuous data streams
by the access controller. The server comprises two compo-
nents: the scheduler schedules those submitted jobs with a
limited privacy budget of the proposed time-blocks, the FL

Scheduler

FL Coordinator

Server

Req #1

ML model #1 ML model #n

Multiple ML models

High Low

Different

SLO requirements

…

Middle
…

Req #n…

Developers

Device # 1

B1

Access Controller

ε0-LDP randomness

…

Device # 1

B1 time

budge

t

Access Controller

ε0-LDP randomness

#1

#m

Devices

job flow

noised and shuffled gradients share privacy budget info

private block with consumed budget (dark) and available budget (clean)

𝐵2 𝐵3

𝐵2 B3

𝜺𝒈

𝜺𝒈

raw gradients share

Job queue

budge

time

budget info

Time-blocks

FL jobs

Fig. 3: Overview of our differentially private FL platform.

coordinator coordinates each scheduled job to run FL training
using a shuffled ε0-LDP mechanism.

The access controller is introduced to manage the on-device
training on user’s sensitive data stream. It splits the data
stream into fixed timeframe data blocks as the data generation
time. Users can specify their own privacy budget for each
block to ensure data privacy within this block. The introduced
time-blocks represents the data blocks generated in a given
period (e.g., a day) across all devices. We also design the
time-blocks composition theorem to rigorously bound the
cumulative leakage of data within these time-blocks when
running multiple FL jobs on them. With this design, we can
account for the privacy loss of cross-device FL training at
the granularity of time-blocks. When the privacy loss for a
time-blocks reaches the enforced (εg,δg)-DP ceiling, all the
blocks in this time-blocks are retired without being accessed
anymore. Newly-generated data blocks are assigned a clean
budget by users for continuous job training. We illustrate the
time-blocks definition and time-blocks composition theorem
in Section III-B and Section III-C, respectively.

The scheduler is introduced to carefully orchestrate the
submitted FL jobs with the private data blocks distributed
across devices. Those jobs are submitted by developers with
different SLO requirements to obtain expected model accu-
racy. To facilitate the budget allocation, it converts the SLO
expected accuracy to a reasonable parameter requirement for
the LDP-based FL training process. Based on the pre-profiled
behaviors, we set the requirement as (r,ε0), which denotes the
round number of FL training and LDP randomness parameter.
We assume that, as long as this requirement is met, the
model can be guaranteed to obtain its expected accuracy. In
addition, the time-blocks composition theorem enables time-
blocks level privacy accounting for multiple FL jobs while
enforcing a (εg,δg)-DP guarantee. However, the scheduling of
this non-replenishable privacy resource differs from traditional
computation resources. Therefore, we propose a novel privacy
budget scheduling algorithm to fine-grained schedule these
time-blocks to serve more jobs in Section IV.

B. Global (εg,δg)-DP Guarantee on Time-blocks

FLScheduler seeks to maximize the utility of sensitive
user data to serve more FL jobs. However, the shuffled ε0-LDP

day #1

day #2

day #3

device #1

𝐵1,1

𝐵1,3

device #2 device #3

𝐵1,2

𝐵2,1

𝐵2,3

𝐵2,2

𝐵3,1

𝐵3,3

𝐵3,2

private block empty block device-blocks time-blocks

(a) device-blocks

day #1

day #2

day #3

device #1

𝐵1,1

𝐵1,3

device #2 device #3

𝐵1,2

𝐵2,1

𝐵2,3

𝐵2,2

𝐵3,1

𝐵3,3

𝐵3,2

(b) time-blocks

Fig. 4: Comparison of device-blocks and time-blocks on
example setting: private blocks of 3 devices in 3 days.

mechanism provides a global DP guarantee across devices,
which accounts for the privacy loss at the granularity of whole
data streams across all devices. This leads to the critical
challenge of global DP: running out of privacy budget quickly.
It comprises three obstacles to our goals in specific: (1) Unused
data points suffer the same privacy loss as the data points that
are sampled to update the local gradients on each device. (2)
Unused devices suffer the same privacy loss as the devices
that are sampled to collaboratively train the global FL model.
(3) Newly-generated data over time suffers the same privacy
loss as the old data that has been used for training. Previous
work [19] proposed a new privacy accounting method on the
split data block, namely block composition theorem, to enforce
a global DP guarantee on all data points in a centralized ML
platform. However, the centralized block composition can not
account for the privacy loss on blocks across different devices,
thus cannot be applied to FL settings.

We introduce the definition of device-blocks and time-
blocks that organize the private data blocks from the perspec-
tives of device and time, respectively. We denote device-blocks
as the data blocks of a device across all timeframes, and time-
blocks as the data blocks generated in a given period across
all devices. We illustrate the two types of data blocks with
an example in Figure 4. The data generated on each device
is split into timeframe data blocks for a given period, like
one day a block. A device-blocks denotes a collection of data
blocks generated on a device over continuous periods, which
is naturally maintained on this device. A time-blocks denotes
a collection of data blocks generated on the same day, but
on different devices as shown in Figure 4(b). We propose
a new time-blocks composition theorem to enforce a global
DP guarantee on each time-blocks in the next subsection. The
global privacy budget of each time-blocks must not exceed the
minimum user-specified budget of each block with this time-
blocks. Both the structure and budget information of time-
blocks are maintained on server for the subsequent scheduling.

C. Time-blocks Composition Theorem

This section presents the time-blocks composition theorem.
It is introduced to provide privacy accounting at the granularity
of time-blocks when running multiple FL jobs with different
shuffled ε0-LDP mechanisms. The new privacy accounting
method is used to address the challenge of running out of
privacy budget quickly by iterative FL jobs.

The classical DP composition theorem, as shown in Theo-
rem 1, proves that a (ε,δ)-DP mechanism iterates r rounds on
the same dataset is (∑r

i=1 εi,∑
r
i=1 δi)-DP, where (εi,δi) is the

DP parameter at round i. FLScheduler adopts a shuffled ε0-
LDP mechanism [14] that yields significant improvement of
approximate (ε,δ)-DP guarantee. Below, we provide a formal
statement of that result from Theorem 3 of previous work [14].

Lemma 1. For a shuffled ε0-LDP mechanism M , if we run
M over r iterations, then we have M is (ε,δ)-DP, where
δ > 0 and ε is upper-bounded by:

ε ≤ f (r,ε0). (3)

The above result provides a privacy accounting at the gran-
ularity of whole data streams in FLScheduler, which is
related to the round number of FL training r and LDP ran-
domness parameter ε0. Then, we extend the block composition
theorem [19] to prove that the privacy loss over the entire
dataset combined with multiple sampled time-blocks is the
same as the maximum privacy loss on each sampled time-
blocks. This enables the local update on the device-blocks
combined with sampled on-device blocks, but still accounts
for the privacy loss on the sampled time-blocks. Applying
Lemma 1 and extended result, we give the upper bound of
consumed privacy budget for single job when running shuffled
ε0-LDP mechanism on sampled time-blocks.

Theorem 2. (Upper bound of consumed privacy budget for
single job) For a shuffled ε0-LDP mechanism M , if a job run
r rounds of FL training using M with multiple sampled time-
blocks at each round, then the consumed privacy budget on
any sampled time-blocks t is upper-bounded by:

ε
t ≤ f (r′,ε0), and r′ ≤ r, (4)

where r′ represents the actual rounds that this job sampled
time-blocks t during total r rounds. For example, if this job
sampled this time-blocks every time, then we have r′ = r. The
implication of Theorem 2 is that privacy loss is accounted
at the granularity of individual time-blocks that is actually
used. And the precise consumed budget is related to the round
number of FL training that is actually sampled. In addition,
the un-sampled time-blocks are not accounted for the privacy
loss, which means that newly-generated data blocks can be
assigned a clean budget to allow continuous training.

Next, we introduce the composition theorem for multiple
FL jobs on time-blocks.

Theorem 3. (Time-blocks composition for multiple jobs) For
different shuffled εk

0 -LDP mechanisms, if n submitted jobs with
requirements {(rk,ε

k
0)}n

k=1 and each job k requests to run rk
rounds of FL training with LDP parameter εk

0 on multiple
sampled time-blocks at each round, then for any time-blocks at
any round r, the access controller enforces the total consumed
privacy budget on this time-blocks:

n

∑
k=1

f (r′k,ε
k
0)≤ εg, and r′k ≤ r, (5)

where r′k represents the actual rounds that job k samples this
time-blocks during total r rounds, and εg denotes the enforced
global privacy budget of this time-blocks that pre-specified
by users when its blocks are generated. The implication of
Theorem 3 is that we can still account for the privacy loss at
the granularity of time-blocks, even with dynamically arrived
FL jobs. This enables fine-grained privacy budget scheduling
of continuously generated time-blocks for more submitted FL
jobs as illustrated in next section.

IV. PRIVACY BUDGET SCHEDULING

FLScheduler incorporates the time-blocks as a new
resource unit to coordinate multiple FL jobs while enforcing
a global (ε,δ)-DP guarantee. This section explores how to
schedule such resource to maximize the number of complete
jobs while reducing the SLO violation rate. We first describe
why existing scheduling algorithms are not adequate in our
scenario. Then, we present the design of our new algorithm,
namely AaR (Allocate and Recycle).

A. Design Considerations

As discussed in Section II-B, privacy is a scarce resource
that should be carefully scheduled. However, the scheduling
scenario of our FLScheduler substantially differs from tra-
ditional resource scheduling systems in the following aspects.
• First, unlike traditional resources such as CPU time cycles

and memory footprint, privacy is a non-replenishable
resource. Once the consumed budget reaches the enforced
global privacy budget, the corresponding time-blocks can
never be used for training anymore.

• Second, an efficient privacy scheduler shall obey an all-
or-nothing principle, i.e., each FL job is either allocated
with enough privacy budget to satisfy the SLO (expected
accuracy), or no budget at all. A scheduled job that
violates this principle, not only degrades the quality of
service but also wastes the privacy budget.

• Third, FL is naturally integrated with client/data block
sampling. However, the concrete sampling strategy is
often determined on demand (i,e, ahead of each global
round) because the device can drop in/out from time
to time. Without apriori knowledge of which data will
be used for training, the scheduling algorithm design
becomes more complicated.

The above design considerations are ignored by the schedul-
ing algorithms on traditional hardware resources. For example,
existing resource schedulers [24], [25], [36], [37] in datacen-
ters deal with replenishable resources such as CPU and mem-
ory. A few recent scheduling algorithms [36], [37] specifically
designed for non-replenishable resource do not consider the
all-or-nothing principle. A recently proposed PrivateKube [27]
considers the scheduling of non-replenishable privacy resource
for centralized ML workloads. The proposed dominant private
block fairness algorithm (DPF) scheduled the privacy budget
of private blocks to improve ML system throughput. However,
it can not fully exploit the utility of privacy budget in our
scenario as it presumes a fixed selection of private blocks.

B. Algorithm Design

We propose AaR, the first-of-its-kind scheduling algorithm
for privacy resources in multi-job FL scenarios. It consists
of two core stages: a pre-allocation of an estimated upper-
bound privacy budget at each FL job arrival; and a progres-
sive recycling of the un-consumed privacy budget during FL
training. The rationales are twofold. First, the block sampling
strategy makes it impractical to obtain precise privacy budget
requirements for each time-blocks ahead of its execution.
With the aid of estimated upper bound in Theorem 2, the
pre-allocation can provide enough budget to guarantee the
all-or-nothing scheduling. Such a design helps to reduce the
SLO violation rate. Second, the upper bound of pre-allocation
may lead to a large portion of privacy budget waste, due to
the actual block sampling during the training process. With
the progressive recycling of the un-consumed budget, the
excessively allocated privacy can be recycled as the training
goes on, therefore more FL jobs can be possibly scheduled.

We next present the detailed workflow of AaR, with its pseu-
docode shown in Algorithm 1. For each time-blocks, we define
five budget fields: (1) εG denotes the initial budget as its first
creation, where εG = εg. (2) εU , called unlocked budget, which
denotes the unlocked budget as the jobs arrive. (3) εL, called
locked budget, where εU + εL = εG. (4) εAL, called allocated
budget, is the budget that has been allocated to jobs, where
εAL ≤ εU . (5) εAV , called available budget, is the available
budget that has been unlocked, where εAL+εAV = εU . For each
submitted job, we define two demand vectors: total demand
budget and next-round demand budget, denoted as dT and dN .
The former represents a demand vector of privacy budget on all
time-blocks of this job to complete the FL training as required
(r,ε0). The latter represents a demand vector of privacy budget
on all time-blocks of this job to run the next round of FL
training using a shuffled ε0-LDP mechanism.
AaR gradually unlocks the initial privacy budget as jobs

arrive (function OnArriveJob, Line 2): a new job with the
requirement (r, ε0) to obtain SLO expected accuracy. We
define a fair share privacy budget over the first arrived n jobs:
εFS = εG/n. As a job in the first n jobs arrives, we unlock a
fair share budget εFS on all time-blocks. The unlocked budget
is also used to update the available budget εAV and unlocked
budget εU (Line 18). Each arrived job is first scheduled into
a waiting queue (Line 3). Gradually unlocking the privacy
budget is key to dealing with a non-replenishable resource in
a dynamic setting.

When the waiting queue adds a new job, the scheduler
adopts a weighted-thriftiest-job-first strategy to schedule those
dynamically arrived jobs. This strategy considers the waiting
time and total demand budget to sort the jobs in the waiting
queue, which is defined as: β · dT

waiting time (Line 4). Then, the
job with the smallest dT tends to be scheduled first, yet it is
also weighted by the job’s waiting time to schedule the job
with a larger waiting time. We introduce a parameter β to
balance the two aspects of allowing more jobs and avoiding
job starvation. Moreover, it is impractical to obtain the precise

Algorithm 1: Allocate and Recycle (AaR)
input : the first n jobs, waiting queue, running queue,

εAV = εAL = εU = 0, εL = εG = εg
1 Function OnScheduleJob():
2 OnArriveJob(J)
3 schedule J to waiting queue
4 SortBy(waiting queue, dT , waiting time)

// strict scheduling stage
5 for each J in sorted waiting queue do
6 if dT ≤ εAV then
7 Allocate(dT), and schedule J to running queue
8 OnRunJob(running queue)

// best-effort scheduling stage
9 for each J in sorted waiting queue do

10 for each round i← 0 to r do
11 if dN ≤ εAV then
12 Allocate(dN)
13 T,D← SampleBlocks(J)
14 Local update on D, privacy loss on T
15 Recycle(T)
16 Else stop the scheduling
17 Function OnArriveJob(Job J):
18 εU = εU + εG

n , εAV = εAV + εU

19 Function Allocate(dT):
20 εAL = εAL +dT , εAV = εAV − εAL

21 Function OnRunJob(running queue):
22 for each J in running queue in parallel do
23 for each round i← 0 to r do
24 T,D← SampleBlocks(J)
25 Local update on D, privacy loss on T
26 Recycle(T , dN)
27 Function SampleBlocks(Job J):
28 T ← sample time-blocks
29 D← sample on-device blocks in each selected T
30 Function Recycle(T):
31 for each time-blocks t /∈ T do
32 εt ← pre-allocated but un-consumed privacy budget
33 εAL = εAL− εt , εAV = εAV + εt

dT for the uncertain time-blocks sampling. So, we follow
Theorem 2 to estimate the upper bound of demand privacy
budget on each time-blocks in demand vector dT . Then, it
compares each job’s dT in the waiting queue to the current
available budget εAV in order (Lines 5-7). A job with the
smallest dT is scheduled first, and then the next one. The
scheduled job will be allocated with all of the demanded
privacy budget on all time-blocks at once. The allocated budget
is also used to update the available budget εAV and allocated
budget εAL (function Allocate, Line 20). After that, this job
will be scheduled to the running queue.

When the running queue receives a new job, the FL coor-
dinator coordinates this job to run FL training with shuffled
ε0-LDP Mechanism (function OnRunJob, Line 8,21-26). Note
that this coordination is executed independently and parallelly
among these jobs in the running queue, which results from the
pre-allocation guided by the estimated upper bound strategy.
Then, for each job, it employs a block sampling strategy
to improve the performance of privacy and utility trade-off
(function SampleBlocks, Line 24). It first samples partial time-
blocks, and then samples partial on-device data blocks from

each sampled time-blocks. After the sampling, it distributes the
model to local update on those sampled device-blocks D, and
accounts for the privacy loss on those sampled time-blocks T
(Line 25). Then, it recycles the pre-allocated but un-consumed
privacy budget of un-sampled time-blocks (/∈ T) (function
Recycle, Line 26). Due to the control of the access controller in
Section III-A, this job doesn’t consume the privacy budget of
these un-sampled time-blocks. Thus, the pre-allocated but un-
consumed privacy budget are recycled to update the available
budget εAV , and used to re-schedule more jobs (Lines 31-33).

When all n jobs arrive and all running jobs finish, if the
available budget still does not satisfy the smallest total demand
budget, we relax the all-or-nothing guarantee to schedule the
jobs in the waiting queue on a best-effort basis. (Lines 9-15).
A job will be scheduled to run only a round, if the available
budget εAV is larger than its next-round demand budget dN
(Line 11). The budget allocated at one time is just enough to
run the next round of training (Line 12). Other processes are
the same as mentioned before (Lines 13-15).
AaR halts when there is not enough available budget to run

a round for the waiting job with the smallest dT (Line 16).

V. EVALUATION

A. Experiment Settings

We have built a prototype of FLScheduler atop Shuf-
fledFL [14], which consists of 4 major functional modules: a
LDP-based FL training with shuffled ε0-LDP mechanism; a
data preprocessing module that organizes training data sets
as the form of device-blocks and time-blocks; a privacy
accounting module to account for the privacy loss on time-
blocks during the training process; a scheduler module that
adopts various algorithms to schedule the dynamic arrival jobs
with designed time-blocks.

We compare FLScheduler to three baseline algorithms.
• First-come-first-serve (FCFS) that always allocates re-

sources for jobs by their order of arrival to the platform.
• Short-job-fisrt (SJF) that schedules jobs by their demands

to achieve the expected accuracy while considering all-
or-nothing principle, but without private blocks design.

• dominant-private-block-fairness (DPF) [27] that treats
each private block as a separate resource and allocates
requested blocks all-or-nothing to ensure their accuracy
goals. The main difference of DPF, compared to AaR,
is a prior and fixed time-blocks selection, which is a
coarse-grained algorithm without considering the unique
characteristics of FL scenario.

We mainly report two evaluation metrics: number of com-
pleted jobs and SLO violation rate, which are explained
in detail in Section II-C. We assume a random arrival of
submitted FL jobs at each time slot. In this experiment, we
use the FL training round as the time slot and each job
arrives to be scheduled at a round in total 4,000 rounds. We
generate two types of job that trains ML model LeNet [34] and
ResNet [35]. We split the total arrival jobs as 25% to 75% with
respective requirements (r,ε0) of (2,000,1.5) and (1,000,1.5),

10 20 30 40 50
of total arrival jobs (n)

8

12

16

20

24

of
 c

om
pl

et
e

jo
bs Ours

DPF
SJF
FCFS

(a) Increase complete jobs

10 20 30 40 50
of total arrival jobs (n)

0

10

20

30

40

50

60

SL
O

 v
io

la
tio

n
ra

te
 (%

)

Ours
DPF
SJF
FCFS

(b) Reduce violation rate

Fig. 5: End-to-end performance of FLScheduler (“Ours”)
compared to baselines under a different number of arrived jobs.

Algos V Rate Number of jobs Average accuracy
Complete Allocated Complete Allocated

Ours 3.8% 25 26 87.6% 84.6%
DPF 21.7% 18 23 86.4% 85.6%
SJF 0 16 16 90.5% 90.5%
FCFS 59% 12 30 85.7% 71%

TABLE I: End-to-end results in Figure 5 when n = 50. Note
that the V Rate denotes the SLO violation rate.

by default. The estimated upper bound of privacy budget is
ε = 3.5 and ε = 2.5, respectively. The initialized global privacy
budget is εg = 40 throughout this experiment. We extend and
split the MNIST [32] dataset to deploy 10,000 devices with
50 samples on each device. The 50 samples are split into 10
time-blocks with each having 5 samples. We randomly sample
a various number of time-blocks and 100 data blocks within
each sampled time-blocks for each round of FL training.

B. End-to-end Results

In this section, we show the end-to-end performance of
FLScheduler and three baselines under a different number
of total arrived jobs (10-50) and SLO expected accuracy (80%-
90%). Figure 5 and Table I show the results under different
arrived jobs with the expected accuracy 84%. We make fol-
lowing key observations. FLScheduler significantly outper-
forms FCFS’s: 2.1× as many complete jobs and 55.2% lower
SLO violation rate from Table I. Because the early arrived
jobs selfishly consume most of the budget, and thus leave not-
enough budget for subsequent jobs to achieve their expected
accuracy. Compared to SJF, FLScheduler achieves many
more completed jobs and a proximate violation rate from
Figure 5. As shown in Table I, FLScheduler is able to grant
up to 56.3% more completed jobs than SJF, but with only 2.8%
average accuracy degradation. FLScheduler’s violation rate
is only 3.8%. Yet, the violation rate of SJF is 0, because it
schedules FL jobs with all samples, therefore delivering higher
accuracy at the expense of too much privacy budget, and fewer
completed jobs.

Compared to DPF, FLScheduler achieves a much lower
violation rate with a significant improvement of complete
jobs from Figure 5. Specifically, in Table I, FLScheduler
reduces the violation rate by 17.9% and increases the complete
jobs by 38.9%, compared to DPF. The average accuracy of
allocated jobs in FLScheduler is only 1% lower than that

80 82 84 86 88 90
SLO expected accuracy (%)

0

5

10

15

20

25

of

 c
om

pl
et

e
jo

bs

Ours
DPF
SJF
FCFS

(a) Number of complete jobs

80 82 84 86 88 90
SLO expected accuracy (%)

0

20

40

60

80

100

SL
O

 v
io

la
tio

n
ra

te
 (%

)

Ours
DPF
SJF
FCFS

(b) SLO violation rate

Fig. 6: End-to-end performance of FLScheduler (“Ours”)
compared to baselines under different SLO expected accuracy.

in DPF, even though DPF selects 20% more time-blocks. Such
performance degradation is mainly attributed to the fixed time-
blocks selection mechanism in DPF. This mechanism causes
jobs in DPF to either decrease model accuracy due to fewer
selected time-blocks, or more selected time-blocks to decrease
the number of complete jobs. In contrast, FLScheduler
supports device-time block sampling strategies, which enables
better performance of privacy-utility trade-off in Section IV-B.

Figure 6 shows FLScheduler’s end-to-end performance,
compared to three baselines under different levels of expected
accuracy when n = 50. As the expected accuracy increases,
the number of complete jobs decreases and the violation
rate increases for each algorithm. However, FLScheduler
still delivers better performance than baselines. As shown
in Figure 6(a), even with a higher expected accuracy 88%,
FLScheduler allows 18 completed jobs, but the values of
FCFS and DPF are as low as 4 and 0. Figure 6(b) shows
that FLScheduler’s violation rate is only 14.2% at the
expected accuracy 88%, which is as much as 70.8% and 85.8%
lower than FCFS and DPF. All the jobs scheduled by SJF can
achieve their expected accuracy, but the number of complete
jobs is only 16, and unchanged even with lower expected
accuracy. The reason is that SJF does not adopt private blocks
to enabling fine-grained privacy budget scheduling.

C. Impact of Time-blocks Selection Rate

The time-blocks sampling complicates the design of our
scheduling algorithm to achieve more complete jobs with a
lower violation rate. Therefore, we further conduct experi-
ments with different values of time-blocks selection rate.

Figure 7 shows that FLScheduler achieves better trade-
off between the performance among completed jobs and
violation rate. Specifically, FLScheduler achieves more or
equal completed jobs than DPF under all settings. Moreover,
with fewer selected time-blocks such as 20% and 40%,
FLScheduler even delivers 4× and 29× more complete
jobs than DPF. For the violation rate, FLScheduler reduces
by 84%, 76% and 18% with fewer selected time-blocks,
and only a little higher when time-blocks selection rate ≥
80%. The rationale is that, compared to the prior and fixed
blocks sampling of DPF, FLScheduler’s device-time blocks
sampling strategy allows the model to be trained by more
samples at a lower expense of privacy budget.

20 40 60 80 100
time-blocks selection rate (%)

0

5

10

15

20

25

30

35

of

 c
om

pl
et

e
jo

bs
: b

ar 30
25

21
18 1618 18 16

1
5

Ours DPF

0

20

40

60

80

100

SL
O

 v
io

la
tio

n
ra

te
 (%

):
lin

eOurs DPF

Fig. 7: Impact of time-blocks selection rate on FLScheduler
(“Ours”) and DPF when n=50 and SLO expected accuracy is
84%. Bar: higher is better; line: lower is better.

Ours unlockbest-effort SJF FCFS
algorithms

0

10

20

30

of

 c
om

pl
et

e
jo

bs
: b

ar 25
21 20

16
12

0

10

20

30

40
SL

O
 v

io
la

tio
n

ra
te

 (%
):

lin
e

Fig. 8: FLScheduler’s ablation study on two key tech-
niques: gradually unlock budget and best-effort scheduling.
Unlock: AaR (w/o unlock); best-effort: AaR (w/o best-effort).

D. Ablation Results

We also break down FLScheduler’s components to per-
form an ablation study. The results highlight the effectiveness
of its two key incorporated components. (1) AaR w/o unlock.
We disable the design of gradually unlocking privacy budget
as jobs arrive. As such, more budget will be allocated to jobs
that arrive first, but not be allocated by a fair share budget.
(2) AaR w/o best-effort. We remove the best-effort scheduling,
which employs next-round demand budget to schedule only
one round for one job at a time.

The results in Figure 8 show their compared performance to
FLScheduler (“Ours”), SJF and FCFS algorithms. For the
number of complete jobs, AaR w/o best-effort and AaR w/o
unlock still outperform SJF and FCFS, but are 20% and 16%
less than ours with all techniques enabled. For the violation
rate, AaR w/o unlock achieves similar performance as ours,
while AaR w/o best-effort slightly outperforms ours.

VI. RELATED WORK

Recent studies have shown that FL’s approach of sending
only model parameters can also leak the privacy of the
raw data [28], [38]–[41]. To decrease the risk of leaking
participants’ sensitive information, multiparty computing [4],
homomorphic encryption [42], and differential privacy [6],

[18] are used to protect the unsafe gradients sharing. Among
them, DP [6] is one of the most widely adopted techniques for
its lightweight overhead and flexibility. FL with a central DP
mechanism [12], [43] assumes a trusted server to randomize
the aggregated model, which provides higher model accuracy
but weaker privacy guarantee. Other FL works adopt a local
DP mechanism to randomize the on-device updated gradients
locally, which provide a stronger local privacy guarantee but
lower model accuracy [8], [13], [29]. Recently, a shuffle
scheme was proposed to enable significantly better privacy-
utility performance [30]. Several classic previous works intro-
duce the anonymization of shuffle scheme to improve the low
utility of FL with local DP mechanism [14], [29], [31].

However, the above works considered FL as a one-shot
process. In this paper, we take a more practical assumption
that multiple FL jobs are submitted by developers to train
periodically over increasing user data streams. Decades of
existing works focus on scheduling computation resources,
such as CPU and memory, but barely no work studies the
scheduling of DP privacy budget. Previous FL works [44]–
[46] mainly focus on energy-aware or limited computation or
storage, with assuming to decouple the privacy protection and
efficiency improvement. These work are not suitable for our
differentially private FL platform. There are two similar works
considering non-replenishable resources scheduling [36], [37].
But, neither of them can achieve the required all-or-nothing
scheduling of the privacy resource. Furthermore, they assume
static arrived jobs, which is not suitable for the dynamic
setting in our platform. A novel algorithm proposed recently,
dominant private block fairness (DPF) [27], is the closest work
to ours. The main idea is to schedule privacy budget for ML
workloads with the introduced private block abstraction [19].
However, it made an impractical assumption that a prior and
fixed selection of blocks can achieve optimal model utility.
This only provides a coarse-grained privacy budget scheduling,
which may lead to a serious waste of privacy resource.

VII. CONCLUSION

FLScheduler is the first unified differentially private FL
platform that treats and manages data privacy as a resource. It
incorporates two key techniques: a time-blocks composition
theorem that enables privacy accounting at the granularity
of time-blocks, instead of the whole data stream. a fine-
grained privacy budget scheduling algorithm that maximizes
the number of completed jobs while reducing SLO violation
rate under the limited privacy budget constraint. Experiments
show that FLScheduler can deliver up to 2.1× as many
complete jobs while reducing the SLO violation rate by 55.2%.

VIII. ACKNOWLEDGES

This work was supported by National Key R&D Pro-
gram of China (No.2021ZD0113001), NSFC (62102045,
U21B2016, 61922017, 62032003, 61921003, 61902036 and
62272261), Beijing Nova Program (No.Z211100002121118),
and Young Elite Scientists Sponsorship Program by CAST
(No.2021QNRC001).

REFERENCES

[1] Mengwei Xu, Feng Qian, Qiaozhu Mei, Kang Huang, and Xuanzhe
Liu. Deeptype: On-device deep learning for input personalization service
with minimal privacy concern. In Proceedings of Interactive, Mobile,
Wearable and Ubiquitous Technologies, pages 197:1–197:26, 2018.

[2] Filip Granqvist, Matt Seigel, Rogier C. van Dalen, Áine Cahill, Stephen
Shum, and Matthias Paulik. Improving on-device speaker verification
using federated learning with privacy. In Proceedings of International
Speech Communication Association, pages 4328–4332, 2020.

[3] Wensi Yang, Yuhang Zhang, Li Li, and Cheng-Zhong Xu. Ffd: A
federated learning based method for credit card fraud detection. In
Proceedings of International conference on big data, pages 18–32, 2019.

[4] Manas A. Pathak, Shantanu Rane, and Bhiksha Raj. Multiparty differen-
tial privacy via aggregation of locally trained classifiers. In Proceedings
of Conference on Neural Information Processing Systems, 2010.

[5] Le Trieu Phong, Yoshinori Aono, Takuya Hayashi, Lihua Wang, and
Shiho Moriai. Privacy-preserving deep learning via additively homomor-
phic encryption. Trans. Inf. Forensics Secur., 13(5):1333–1345, 2018.

[6] Cynthia Dwork. Differential privacy. In Encyclopedia of Cryptography
and Security, 2nd Ed. 2011.

[7] Cynthia Dwork, Guy N. Rothblum, and Salil P. Vadhan. Boosting and
differential privacy. In Proceedings of Foundations of Computer Science,
pages 51–60, 2010.

[8] Ruixuan Liu, Yang Cao, and Masatoshi Yoshikawa. FLAME: differen-
tially private federated learning in the shuffle model. In Proceedings of
Conference on Artificial Intelligence, pages 8688–8696, 2021.

[9] Chaoyang He, Murali Annavaram, and Salman Avestimehr. Fednas:
Federated deep learning via neural architecture search. arXiv preprint
arXiv:2004.08546, 2020.

[10] Han Qin, Guimin Chen, Yuanhe Tian, and Yan Song. Improving feder-
ated learning for aspect-based sentiment analysis via topic memories. In
Proceedings of Conference on Empirical Methods in Natural Language
Processing, pages 3942–3954, 2021.

[11] Betty van Aken, Benjamin Winter, Alexander Löser, and Felix A.
Gers. How does BERT answer questions?: A layer-wise analysis of
transformer representations. In Proceedings of International Conference
on Information and Knowledge Management, pages 1823–1832, 2019.

[12] H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang.
Learning differentially private recurrent language models. In Proceed-
ings of International Conference on Learning Representations, 2018.

[13] Lichao Sun and Xun Chen. LDP-FL: practical private aggregation in
federated learning with local differential privacy. In Proceedings of
International Joint Conference on Artificial Intelligence, 2021.

[14] Antonious Girgis and Suhas Diggavi. Renyi differential privacy of the
subsampled shuffle model in distributed learning. In Proceedings of
Conference on Neural Information Processing Systems, 2021.

[15] California consumer privacy act. https://oag.ca.gov/privacy/ccpa, 2018.
[16] General data protection regulation. https://gdpr-info.eu, 2019.
[17] Handing ownership of data back to the users. https://analyticsindiamag.

com/web-3-0-handing-ownership-of-data-back-to-the-users, 2021.
[18] Martı́n Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan McMahan,

Ilya Mironov, Kunal Talwar, and Li Zhang. Deep learning with
differential privacy. In Proceedings of Conference on Computer and
Communications Security, 2016.

[19] Mathias Lécuyer, Riley Spahn, Kiran Vodrahalli, Roxana Geambasu,
and Daniel Hsu. Privacy accounting and quality control in the sage
differentially private ML platform. In Proceedings of Symposium on
Operating Systems Principles, 2019.

[20] Mengwei Xu, Jiawei Liu, Yuanqiang Liu, Felix Xiaozhu Lin, Yunxin
Liu, and Xuanzhe Liu. A first look at deep learning apps on smartphones.
In The Web Conference, 2019.

[21] Chenning Li, Xiao Zeng, Mi Zhang, and Zhichao Cao. Pyramidfl: A
fine-grained client selection framework for efficient federated learning.
In Proceedings of International Conference on Mobile Computing and
Networking, 2022.

[22] Fan Lai, Xiangfeng Zhu, Harsha V Madhyastha, and Mosharaf Chowd-
hury. Oort: Efficient federated learning via guided participant selection.
In Proceedings of Operating Systems Design and Implementation, pages
19–35, 2021.

[23] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith.
Federated learning: Challenges, methods, and future directions. IEEE
Signal Processing Magazine, pages 50–60, 2020.

[24] Robert Grandl, Mosharaf Chowdhury, Aditya Akella, and Ganesh Anan-
thanarayanan. Altruistic scheduling in multi-resource clusters. In
Proceedings of Operating Systems Design and Implementation, 2016.

[25] David Shue, Michael J. Freedman, and Anees Shaikh. Performance
isolation and fairness for multi-tenant cloud storage. In Proceedings of
Operating Systems Design and Implementation, 2012.

[26] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott
Shenker, and Ion Stoica. Dominant resource fairness: Fair allocation of
multiple resource types. In Proceedings of Symposium on Networked
Systems Design and Implementation, 2011.

[27] Tao Luo, Mingen Pan, Pierre Tholoniat, Asaf Cidon, Roxana Geambasu,
and Mathias Lécuyer. Privacy budget scheduling. In Proceedings of
Operating Systems Design and Implementation, 2021.

[28] Ligeng Zhu and Song Han. Deep leakage from gradients. In Proceedings
of Conference on Neural Information Processing Systems, 2019.

[29] Antonious M. Girgis, Deepesh Data, Suhas N. Diggavi, Peter Kairouz,
and Ananda Theertha Suresh. Shuffled model of differential privacy
in federated learning. In Proceedings of International Conference on
Artificial Intelligence and Statistics, 2021.

[30] Borja Balle, James Bell, Adrià Gascón, and Kobbi Nissim. Private
summation in the multi-message shuffle model. In Proceedings of
Conference on Computer and Communications Security, 2020.

[31] Vitaly Feldman, Audra McMillan, and Kunal Talwar. Hiding among the
clones: A simple and nearly optimal analysis of privacy amplification
by shuffling. In Proceedings of Symposium on Foundations of Computer
Science, 2022.

[32] Mnist database of handwritten digits. http://yann.lecun.com/exdb/mnist/.
[33] Cifar-100 dataset. https://www.cs.toronto.edu/∼kriz/cifar.html.
[34] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.

Gradient-based learning applied to document recognition. In Proceed-
ings of the IEEE, pages 2278–2324, 1998.

[35] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Conference on Computer
Vision and Pattern Recognition, pages 770–778, 2016.

[36] Ian A. Kash, Ariel D. Procaccia, and Nisarg Shah. No agent left
behind: Dynamic fair division of multiple resources. Journal of Artificial
Intelligence Research, 51:579–603, 2014.

[37] David C. Parkes, Ariel D. Procaccia, and Nisarg Shah. Beyond
dominant resource fairness: Extensions, limitations, and indivisibilities.
Transactions on Economics and Computation, 3:1–22, 2015.

[38] Briland Hitaj, Giuseppe Ateniese, and Fernando Pérez-Cruz. Deep
models under the GAN: information leakage from collaborative deep
learning. In Proceedings of Conference on Computer and Communica-
tions Security, 2017.

[39] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly
Shmatikov. Exploiting unintended feature leakage in collaborative
learning. In Proceedings of Symposium on Security and Privacy, 2019.

[40] Chengxu Yang, Qipeng Wang, Mengwei Xu, Zhenpeng Chen, Kaigui
Bian, Yunxin Liu, and Xuanzhe Liu. Characterizing impacts of hetero-
geneity in federated learning upon large-scale smartphone data. In The
Web Conference, 2021.

[41] Dongqi Cai, Yaozong Wu, Shangguang Wang, Felix Xiaozhu Lin, and
Mengwei Xu. Autofednlp: An efficient fednlp framework. arXiv preprint
arXiv:2205.10162, 2022.

[42] Chengliang Zhang, Suyi Li, Junzhe Xia, Feng Yan, and Yang Liu.
Batchcrypt: Efficient homomorphic encryption for cross-silo federated
learning. In Proceedings of Annual Technical Conference, 2020.

[43] Lu Miao, Wei Yang, Rong Hu, Lu Li, and Liusheng Huang. Against
backdoor attacks in federated learning with differential privacy. In
International Conference on Acoustics, Speech and Signal Processing,
pages 2999–3003, 2022.

[44] Wei Yang Bryan Lim, Jer Shyuan Ng, Zehui Xiong, Chunyan Miao,
and Dong In Kim. Dynamic edge association and resource allocation
in self-organizing hierarchical federated learning networks. Journal on
Selected Areas in Communications, 39:3640–3653, 2021.

[45] Wei Yang Bryan Lim, Jer Shyuan Ng, Zehui Xiong, Jiangming Jin, Yang
Zhang, Dusit Niyato, Cyril Leung, and Chunyan Miao. Decentralized
edge intelligence: A dynamic resource allocation framework for hier-
archical federated learning. Transactions on Parallel and Distributed
Systems, 33:536–550, 2022.

[46] Mengwei Xu, Mengze Zhu, Yunxin Liu, Felix Xiaozhu Lin, and Xu-
anzhe Liu. Deepcache: Principled cache for mobile deep vision. In
Proceedings of International Conference on Mobile Computing and
Networking, pages 129–144, 2018.

