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Abstract—Edge clouds have become a de-facto paradigm to
deliver low and stable networks to delay-critical applications
such as web services and AR/VR. A unique form of edge
clouds is those crowdsourced from third parties, e.g., idle PCs
or workstations. Such crowdsourced edge platforms can better
sink computations closer to users, reduce the purchase cost, and
eliminates the carbon generated during manufacturing. Yet, they
also face the challenge of out-of-control hardware, e.g., a server
dropping in/out anytime. In this paper, we perform the first-of-
its-kind measurement of Quality of Service (QoS) for a large-
scale crowdsourced edge platform, which covers over 10,000
edge servers, 100,000 users and 10,000,000 user requests. The
measurement takes a holistic QoS view: (1) First, we look at
how much hardware resources are provided by edge servers,
how much time they are available for service deployment, and
what are the major abnormal behaviors. (2) Second, we analyze
the factors affecting service stability and quantify the resource
utilization pattern of containerized services hosted on those
edge servers. (3) Third, we investigate the spatial and temporal
features of user requests handled by the platform. Many useful
and somehow surprising findings are obtained through the above
measurements. We also derive insightful implications that could
help edge platforms and edge applications to better deliver their
services to users.

Index Terms—edge computing, performance analysis, network
measurement

I. INTRODUCTION

Contents delivery, AR/VR, and so on are increasingly
adopting edge computing paradigm [1], [2], [3], as a crit-

Mengwei Xu was supported by the National Key R&D Program of
China (Grant 2021ZD0113001). Victor C.M. Leung was supported by the
Guangdong Pearl River Talent Recruitment Program (Grant 2019ZT08X603),
the Guangdong Pearl River Talent Plan (Grant 2019JC01X235), Shenzhen
Science and Technology Innovation Commission (Grant R2020A045), and the
Canadian Natural Sciences and Engineering Research Council (Grant RGPIN-
2019-06348). Xiaofei Wang was supported by the National Science Founda-
tion of China (Grant 62072332), the China NSFC (Youth) (Grant 62002260),
the China Postdoctoral Science Foundation (Grant 2020M670654), and the
Tianjin Xinchuang Haihe Lab (Grant 22HHXCJC00002). Corresponding
author: Xiaofei Wang (email: xiaofeiwang@tju.edu.cn).

Distribution of
requests (§5.1)

Analysis of stability (§4.1)

Overall resource 
utilization (§4.2)

Utilization patterns of 
different services (§4.3)

§4
 C

o
n

ta
in

e
riz

e
d

  
s

e
rv

ic
e

Analysis of 
available time(§3.1)

Edge resources analysis 
and modeling (§3.2)

Analysis of abnormal 
behaviors (§3.3)

§3
 E

d
g

e
 s

e
rv

e
rs

Analysis of spatial 
features (§5.2)

Analysis of temporal 
features (§5.3)

§5
 U

s
e
r re

q
u

e
s
ts

Edge servers

Containerized services

Users

Requests Results

Deployment Resource

Figure 1. The organization of this work.

ical extension to centralized datacenters. By providing in-
proximity hardware resources to end users, edge clouds not
only effectively alleviate the network bandwidth pressure on
the backbone Internet, but also reduce the network delay and
thus improve the service quality [4], [5]. According to Gartner,
around 75% of enterprise-generated data will be processed at
the edge by 2025 [6].

There are many forms of edge deployment. Major cloud
resource providers are building their edge infrastructure at a
state or city level such as Azure Edge Zone [7] and AWS Local
Zones [8]. Some aim to sink the edge servers into buildings
or base stations [9], [10]. In neither way, those edge sites’
hardware and software are both maintained by the edge service
providers under full control, which benefits from high Quality
of Service (QoS).

Crowdsourced edge cloud platform is a unique form of
edge deployment: the edge servers are recruited from any third
parties (namely Edge Hardware Provider or EHP) through a
business incentive model. EHP can hand over their unused979-8-3503-9973-8/23/$31.00 ©2023 IEEE



or idle machines to ESP (Edge computing Service Provider)
at anytime and anywhere. The latter takes in and tests the
machine, sets it up as an edge site, and exposes its hardware
capacity to edge app developers through a unified interface.
EHP makes profits from ESP according to how much and how
long it provides hardware resources to ESP. Meanwhile, EHP
can drop out their machines anytime as well, i.e., an “earn-as-
you-go” model.

Therefore, such crowdsourced edge cloud platform1 has the
following advantages over traditional ones. (i) Decentralized-
by-nature. Being geographically distributed and closer to
users is vital to the success of edge computing. Edge servers
recruited through crowdsourcing are naturally decentralized
and operating in close to users. (ii) Cost-efficient. With
crowdsourced hardware, ESP has zero expenditure in pur-
chasing the hardware (i.e., no cold-start fee). Instead, ESP
only pays for the exact hardware quota it gets. It makes the
large-scale deployment of edge sites much more financially
scalable. EHP, on the other hand, gets a flexible way to make
profits from their idle machines. (iii) Carbon-friendly. The
manufacturing of electronic devices is an energy-intensive pro-
cess that usually dominates their lifetime carbon footprint [11].
By leveraging the unused hardware already manufactured,
the crowdsourced edge cloud platform does not need new
hardware from the manufacturer and therefore can reduce the
carbon footprint significantly.

Seemingly attractive, but such platforms face tougher chal-
lenges in QoS. This attributes to the inherent uniqueness of
the crowdsourced edge platform: all its infrastructure is built
upon hardware out of the control of the platform. Those servers
could connect/disconnect at any time or get into failure more
frequently than a datacenter-level machine. Furthermore, the
hardware capacity could vary severely across time. According
to our best knowledge, there has been no study on how such
platforms have been operating in the wild.

To demystify the status quo of the crowdsourced edge
platform, we perform the first-of-its-kind measurement study
on a large-scale in-the-wild Crowdsourced Edge computing
Service Platform, namely C-ESP2, that have been built and
operated for nearly four years. C-ESP has deployed over
10,000 edge servers in total that are located across over 1,000
regions. To facilitate the service deployment, C-ESP requires
services to be deployed in containerized manner. In total,
C-ESP hosts over 100,000 containers.

As shown in Fig 1, our measurement takes a holistic QoS
view from top to bottom: server (hardware), container (ser-
vice), and user (request). Specifically, we collected the detailed
usage traces of C-ESP, including the server available time
sessions, container resource usage, user requests distribution,
etc. Through measurement and analysis, we seek to provide
a holistic view of the metrics that impact QoS through the
following key questions:

1Abbreviated as edge platform in the following
2PPIO Edge Cloud, Paiou Cloud Computing (Shanghai) Co., Ltd.,

https://www.ppio.cn

• What are the quality and quantity characteristics of the
hardware resources provided by C-ESP’s edge servers?

• What are the stability and utilization characteristics of the
containerized services hosted on C-ESP?

• What are the spatial and temporal distribution characteris-
tics of user requests handled by C-ESP?
Our in-depth measurements on those questions lead us to

insightful observations and implications as follows.
Edge servers often contribute modest hardware re-

sources in an ephemeral manner. Servers connect and
disconnect frequently. Per day, about 8% of total registered
edge servers have connect/disconnect records. Among all the
online sessions, more than half of them last less than one hour.
It challenges the C-ESP in utilizing those ephemeral server
time with tight resource constraints, as the service deployment
often takes non-trivial time.

The available edge resource quantity at a geographical
location relates to population/GDP. The higher population
or GDP, the more edge servers and corresponding resources
are expected. Based on these observations, we design a simple
modeling generator to estimate the edge resources distribution
at an arbitrary region, which could help edge researchers
and developers to evaluate their systems/algorithms under a
realistic and diversified geographical setting.

The network is the primary cause of Service-Level
Agreement (SLA) violation, while the device leads to the
most fines. For each SLA violation, C-ESP traces down the
reason and records the resulting fines to be paid to Application
Service Providers (ASPs). Among the 34,091 SLA violations
collected, the network contributes almost 66%. We find the
device causes the most fines, as it is often more harmful to the
service quality. To mitigate such costs, we should prioritize the
handling of device failures in the operation and maintenance.

The resource usage of containerized services is highly
heterogeneous and changes significantly over time. This
observation highlights the need to bin-pack services with
different usage patterns into the same server. Fortunately, we
observe a few fixed patterns that can well match different
services, e.g., high-demand resources, peak periods, and rapid
change. Leveraging those patterns as tags of each service, we
can easily cluster the services into different types and better
consolidate them in servers.

The amount of requests generated and the available edge
resources do not match geographically. For instance, we
observe some areas3 with a large number of requests generated
but few resources available. Consequently, simply scheduling
the requests to nearby edge services could lead to unbalanced
resource usage. To this end, a globally resource-aware requests
scheduler is demanded.

The number of user requests generated across time
nearly follows Poisson distribution. Based on the data
collected, we build a statistic model that can simulate real-
world user requests generated. This model could help edge

3“Area” in this paper refers to the largest administrative region of the
country, such as a state or province.



researchers to evaluate their algorithms or systems in a more
realistic simulation manner.

In summary, this work makes the following contributions.
• We collected large-scale QoS data from a representative

crowdsourced edge platform. According to our knowledge,
this is the first study that investigates the status quo of such
unique form of edge platforms.

• We perform a holistic, in-depth QoS analysis of the plat-
form, which gains insightful results and implications for
edge platforms, practitioners, and researchers.

• We implement a set of modeling generators to help
readers understand and promote more solutions about
the problems mentioned in this paper. They can be ob-
tained from the following link: https://github.com/76481786/
Flexible-Measurement-based-Modeling-Generators.

II. C-ESP

In the cloud computing platform, the role of cloud ser-
vice providers has evolved in the business model, such as
Google Cloud Platform (GCP) [12], Amazon Web Services
(AWS) [13], and so on. They construct centralized large-
scale cloud computing infrastructures which provide services
across a large geographic area. However, C-ESP, which
adopts edge computing, is different from them. To further
reduce the geographic distance between users and services,
it adopts a decentralized architecture to deploy the computing
infrastructure to the network edge.

Based on the form of crowdsourcing, C-ESP integrates
third-party scattered resources at the network edge and builds
its own edge servers to provide high-quality computing power
as a guarantee. Moreover, C-ESP builds an edge computing
network that can cover almost all areas of China. C-ESP
has deployed over 10,000 edge servers in over 1,000 regions
to provide resources for ASPs. According to our knowledge,
C-ESP is one of the largest enterprises applying crowdsourced
edge computing in business scenarios.

In addition, C-ESP is profitable by providing edge com-
puting power to ASPs. It currently hosts services from over
a dozen ASPs with tens of millions of users. In addition, to
enhance rapid deployment, resource isolation and service com-
patibility, all of these services have adopted containerization
technology. Typically, ASPs provide service containers as well
as resource requirements, and C-ESP enables the deployment
and operation of service containers under SLA guarantees.

III. EXPLORING EDGE SERVERS

C-ESP has a large number of edge servers with complex
sources, including (i) its own computing servers built and
deployed, (ii) large idle computing servers leased from other
organizations, and (iii) smaller servers rented from individual
users. In terms of QoS for edge servers, we first focus on the
available time of crowdsourced servers. After that, we collect
data on multiple dimensions and quantify edge server resource
comprehensively. Finally, we discuss the abnormal behavior of
edge servers.
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Figure 2. The analysis of (a) daily connect/disconnect distribution (top), (b)
online times distribution (left) and (c) average resource distribution (right).

A. Analysis of Available Time

C-ESP uses a crowdsourcing model to leverage idle servers
from third parties. However, these servers that are not fully
controlled bring more uncertainty to the platform. There-
fore, we paid special attention to the available time of the
edge servers under the crowdsourcing model. With the help
of C-ESP, we collect server connection and disconnection
records for up to 418 days, with a total of 185,698 records.
The data collected included server ID, timestamp, connec-
tion/disconnection, and server resource.

As shown in Fig. 2 (a), the number of server connections
and disconnections per day is about equal for C-ESP, thus
ensuring a stable number of servers in the platform. On
average, 8.53% of the total number of servers have connection
records per day, while 8.30% of the total number of servers
have disconnection records. However, frequent changes in
server status can lead to frequent adjustments in service
deployment, which causes more costs compared to tradi-
tional platforms. To maintain the stability of QoS, C-ESP
uses a bonus-based reward and punishment mechanism for
maintenance. Since the resource requirement of the service
fluctuates regularly (as shown in Sec. IV-B), C-ESP sets high
bonus/penalty for connection/disconnection servers during
high resource requirement periods such as afternoon peak and
evening peak to reduce server status changes, and adjusts the
service deployment caused by server connection/disconnection
during idle periods.

In addition, we analyze the online time distribution of
the servers in the collected data, i.e. Fig. 2 (b). It can be
found that more than half of the online time records are
less than one hour, while the overall average online time
is 337,782 seconds (about four days). Since there is a time
cost for service deployment, a large number of short-term
connections can lead to inefficient service deployment, i.e.,
services that are deployed with time spent are not available
due to server disconnection. In response, C-ESP is planning
to design a mechanism to predict whether connected servers
will be disconnected soon and whether disconnected servers
will be reconnected soon. Further, the prediction results can
be used to enhance service deployment and migration policies
to improve QoS.
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Figure 4. The correlation of various types of resources in each area with
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Finally, we explore the relationship between resources and
online time, i.e., Fig. 2 (c). The resource amount of the server
is calculated by summing the four metrics of CPU, disk,
memory, and bandwidth after normalization using min-max.
It can be found that servers with higher resources tend to
be online for longer periods. The reason is that low-resource
servers usually are from small organizations or individuals
whose management of servers often lacks long-term planning.

B. Edge Resources Analysis and Modeling

The high heterogeneity of edge servers in hardware re-
sources and geographical distribution leads to difficulties in
practical applications or modeling studies. However, as C-ESP
is one of the few enterprises that commercialize edge comput-
ing, we are curious about the impact of the heterogeneity in
the business scenarios and whether there are potential patterns
behind it. For the above question, we collect the data from
13,036 edge servers, including CPU, bandwidth, memory, disk,
latitude, and longitude. Based on the above data, we found a

Table I
LINEAR FITTING EQUATIONS FOR POPULATION/GDP WITH EACH

RESOURCE.

x y Linear fitting equation

Po
pu

la
tio

n CPU y = 1.324×10−4x−1.595×103, r = 0.73
Disk y = 3.576× 107x− 6.052× 1014, r = 0.76

Memory y = 2.104× 105x− 2.401× 1012, r = 0.74
Bandwidth y = 9.145× 103x− 1.035× 1011, r = 0.72

G
D

P

CPU y = 1.206× 101x− 1.341× 103, r = 0.84
Disk y = 3.316×1012x−5.657×1014, r = 0.89

Memory y = 1.906×1010x−1.947×1012, r = 0.84
Bandwidth y = 8.086× 108x− 7.387× 1010, r = 0.80

set of quantifiable potential patterns and summarized them into
a complete architecture, namely ESMG (Edge server Model
Generation) shown in Fig. 3.

In addition, due to commercial constraints, it is difficult for
companies to open up complete data. Even if they open up
the complete data, it is not flexible enough to support relevant
research and practice due to the rigidity of the data in terms of
the number of users and the size of the region. However, due
to the completeness of ESMG, it can not only quantitatively
reveal the potential patterns of edge servers, but also provide
a reference for future edge computing practical applications
or modeling research.

First, users of ESMG only need to input the total amount and
the geographic distribution of population/GDP in the target re-
gion, which can be easily accessed from the local governments
or other statistical agencies. After that, ESMG can flexibly
model the edge server attributes and geographic information
of the target region based on the various quantitative models.
Next, we focus on Fig. 3 to present the quantifiable patterns
found and how these patterns take effect in ESMG.

Step 1. The goal of this step is to take the total GDP or
population of a region as input to output the total amount of
each type of resource for the whole region. First, we quantify
the relationship between resources and population/GDP. As
shown in Fig. 4, except for the circle-marked area with low
resources and the square-marked area with high resources,
the resources of other areas have a linear relationship with
population/GDP. Consequently, linear fitting is performed after
removing the aforementioned two outliers. Finally, we derive
the linear fitting equations as shown in Table I, and the unit
of each parameter includes GDP (billion dollars), population
(108 person), CPU (core), bandwidth (Byte/s), disk (Byte),
and memory (Byte). In addition, the r in Table I refers to the
Pearson correlation coefficient, which is used to quantify the
goodness of fit.

Step 2. The goal of step 2 in ESMG is to use the total
amount of each type of resource in the region as input to
output the number of edge servers in this region. First, we
calculate the mean based on the data of 13,036 edge servers to
provide an average edge server performance: CPU of 11.510
Core, bandwidth of 782.759 MB/s, memory of 17.519 GB,
and disk of 2456.536 GB. After that, we can obtain four
estimates of the number of edge servers by dividing the total
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Figure 5. The resource distribution of edge servers.
amount of each type of resource in the region by the above
average performance. Finally, we calculate the mean of the
four estimates as the output of step 2.

Step 3. The goal of step 3 in ESMG is to take the total
number of each resource and the number of edge servers in
the region as input to output the distribution of each resource in
this region. Since the heterogeneity of edge servers cannot be
modelled if resources are distributed equally, the heterogeneity
distribution of edge servers in each resource needs to be
quantified in Step 3. As shown in Fig. 5, it quantifies the
resource heterogeneity of real edge servers and can therefore
be used to determine the distribution of each resource.

Step 4. The goal of step 4 in ESMG is to take the
distribution of each resource in the region as input to output
the resource configuration for each edge server. Although
the above quantifies the distribution of each resource, the
different resource associations are still unclear. For example,
an edge server with high CPU resources is likely to have
abundant resources in memory. Therefore, we used Spearman
correlation coefficients to quantify the correlation between the
various resources of the edge server, as shown in Table II. It
can be found that the correlation between CPU, bandwidth,
and memory is higher compared to the correlation between
disk and other resources, so the resource correlation constraint
shown in Table II needs to be approximated as closely as
possible when determining the resource configuration.

Step 5. The goal of step 5 in ESMG is to take the geographic
distribution of GDP/population and the edge server resource
allocation in the region as input to output the geographic
distribution of edge servers in this region. Based on Table I, it
can be found that the distribution of edge servers is associated
with the distribution of GDP/population, but the distribution of
both is not exactly the same. Therefore, in addition to using the
distribution of GDP/population to map the distribution of edge
servers, step 5 also requires some random adjustments to refine
the heterogeneity. In this regard, these random adjustments
need to be close to the constraints of r in Table I.

Based on the above, it can be found that using
GDP/population as the entry point can well reveal edge server
heterogeneity in business scenarios. Moreover, since almost all
dimensions of edge servers are quantified, other research and
practice in related fields can be flexible to generate realistic
and arbitrary region-sized edge server configuration.

For better use and understanding by other researchers, we
provide the required supporting data and the implementation

Table II
SPEARMAN CORRELATION COEFFICIENT BETWEEN

DIFFERENT RESOURCES OF EDGE SERVERS.

CPU Disk Memory Bandwidth
CPU 1 0.15 0.42 0.42
Disk 0.15 1 0.29 0.36

Memory 0.42 0.29 1 0.44
Bandwidth 0.42 0.36 0.44 1

code of ESMG in the open source project (introduced in
Sec. I). Thereby, it is hoped to help other researchers in
advancing related research and performance validation.

C. Analysis of Abnormal Behavior

Since edge servers are deployed in a distributed manner,
it makes the operation and maintenance more difficult and
has a negative impact on QoS. Therefore, we pay heightened
attention to the abnormal behaviors of edge servers. For
the aforementioned purpose, we collected 428,160 operation
and maintenance data from C-ESP for 139 days. Each data
includes server ID, the number of abnormal behaviors that
occur on an edge server in a day, and the kind (categorized as
shown in Table. III).

Since detection is performed every five minutes in C-ESP,
each abnormal behavior can be considered as lasting five
minutes. As shown in Table. III, we found that the average
value of Machine line drop times is very high. This is due to
C-ESP uses link aggregation to make a server have multiple
network lines. Therefore, if the part line is unavailable, it will
be counted as Machine line drop times, while the entire server
is unavailable will be counted as Offline times. Furthermore,
7.85% of Machine line drop times recorded as 288, which is
the whole day. Therefore, even though 76.41% of the data
is 0, the average value reaches 33.92. In addition, High I/O
load times is worth noting. We find that although there is no
shortage of disk resources for C-ESP (as shown in Sec. IV-B),
the average value of High I/O load times is high. It indicates
that in addition to disk storage space, disk I/O needs more
consideration when optimizing.

After that, we use the correlation coefficient to quantify the
relationship between different abnormal behaviors and expect
to explore the causes of them. As shown in Fig. 6, most
abnormal behaviors are independent of each other, indicating
that it is difficult to predict the occurrence of abnormal
behaviors by correlation. However, we found two pairs of
abnormal behaviors with strong correlation: (i) Abnormal IP
change times is correlated with Machine line drop times, which
indicates that it is necessary to pay attention to whether the
IP is normal after disconnection and reconnection. (ii) Offline
times is correlated with Unavailable time, which indicates that
frequent offline is the key cause of unavailability.

IV. EXPLORING CONTAINERIZED SERVICES

In terms of containerized services, C-ESP hosts services
from partner ASPs. To improve the hardware compatibility
and rapid deployment of services, C-ESP extensively uses
containerization technology, and the container images of ser-
vices are usually made by ASPs. Based on the above, we



Figure 6. Spearman correlation coefficient of edge servers among deferent
abnormal behaviors.

Table III
THE DISTRIBUTION OF ABNORMAL BEHAVIOR.

Abnormal behavior Average Percentage of zero
High CPU load times 0.532 95.57 %
High I/O load times 6.464 80.20 %
High latency times 4.084 77.18 %

Offline times 0.150 93.48 %
Machine line drop times 33.92 76.41 %

Abnormal IP change times 1.727 91.52 %
Unavailable time (seconds) 1464 93.52 %

collected data about containerized services in containers and
servers. Relying on these data, this section provides a detailed
analysis of service stability and service resource utilization.

A. Analysis of Stability

Compared with the centralized operation and maintenance
of cloud computing, the distributed deployment of edge com-
puting poses challenges to service reliability. However, the
core business of C-ESP is to provide high-quality infras-
tructure resources to ASPs, so the reliability of service is
essential. In this regard, we collect data for about two months
with the help of C-ESP. Since C-ESP provides a series of
SLA guarantees for ASPs and different SLA violations can
result in C-ESP handing over different fines to ASPs, our
measurements in reliability focus on two main metrics: (i) The
number of failures caused by each type of factor, i.e., is used to
explore the factors that are most likely to cause failures; (ii)
The number of fines resulting from failures caused by each
type of factor, i.e., is used to explore the factors that are most
harmful to stability.

Since SLAs are confidential business information, we can-
not show the full details. Therefore, we fuzzify the data by
four categories: (i) Network includes factors such as network
connection, communication; (ii) Artificial includes factors
such as adjustment and testing by engineers; (iii) Device
includes factors such as server disconnection by the owner
and hardware failure; (iv) Service include factors such as
configuration and operation of the container.

Figure 7. Analysis of (a) the number of violations of service SLA guarantees
(top) and (b) the corresponding amount of fines incurred (bottom).

Figure 8. Resource utilization of all edge servers in one day.

As shown in Fig. 7, the causes of SLA violations are divided
into four categories. Among them, the network is the factor
that causes the most SLA violations, accounting for 66.00%
of the overall. The reasons for this phenomenon include: (i)
C-ESP’s edge servers sink to some remote areas with unstable
networks, which are prone to SLA violations; (ii) C-ESP uses
link aggregation on some edge servers to aggregate bandwidth
resources, so the number of network links is larger than the
number of servers and the larger number also leads to more
SLA violations.

The device is the factor that causes the most fines
of SLA violations. While the network is responsible for
the most SLA violations, it only accounted for 30.33% of
fines. In contrast, the device accounted for 29.57% of the
total SLA violations, but accounted for 57.99% of the total
fines. Through in-depth investigation, the most frequent SLA
violation in the network factor is partial line disconnection.
This failure causes only part of the bandwidth resources of
edge servers to be unavailable. In contrast, most device failures
lead to the unavailability of all resources of the whole server,
so SLA violations due to device failures result in more fines.
Therefore, it is essential to focus on failures of devices, which
can pose the greatest threat to SLA guarantees.

Thus, it is necessary to take methods to deal with device
failures in advance. On the one hand, it is advised to optimize
server operation and maintenance to prevent SLA violations.
On the other hand, it is recommended to establish a recovery
mechanism in the edge cluster to reduce the impact of failures.

B. Overall Resource Utilization

Since most of the containerized services deployed in C-ESP
are used to respond to requests from users, the behavior of
users tends to change with a periodic pattern over time. This
change can directly affect the resource requirements of the



0

60

30

0

80

40

0

80

40

0

50

25

0

80

40

0

25

10

15

0

80

40

0

75

25

50

0

60

30

0

100

50

0

8

4

0

60

30

0 6 12 18 24 0 6 12 18 24 0 6 12 18 24 0 6 12 18 24 0 6 12 18 24 0 6 12 18 24

0

80

40

0

60

30

0

3

2

1

0

8

4

0

70

35

0

70

35

Time (hour)CPU MemoryDisk Bandwidth

R
e

s
o

u
rc

e
 u

ti
liz

a
ti
o

n
 (

%
)

Figure 9. The resource utilization changes of multiple types of service containers in one day.

service, thus potentially resulting in time-dependent patterns
in the resource requirements of the containerized services. In
order to reflect the real performance of containerized services,
we collected monitoring data of over 10,000 edge servers and
the service containers on them with the help of C-ESP.

The data contains the monitoring logs of over 10,000 edge
servers and the service containers on them for a single day.
Edge servers collect information every 5 minutes, i.e., each
edge server and container generate 288 logs in one day.
Besides, the data includes four resources: memory, bandwidth,
disk and CPU. After that, we get the real-time utilization
changes of various resources, i.e., Fig. 8 and Fig. 9. To enhance
the persuasiveness of the data, we overlay the data of all edge
servers and containers, so the solid line in the figure indicates
the mean, while the shading indicates the variance.

First, Fig. 8 illustrates the resource utilization of container-
ized services on the edge servers. It can be observed that
the resource utilization of memory and disk remains relatively
stable within a day, so these two types of resources require
little reservation to cope with potential peaks in applications.
On the contrary, CPU and bandwidth requirements change
significantly throughout a single day, and bandwidth utilization
varies the most. In addition, we can find a strong correlation
between CPU and bandwidth utilization changes. Simultane-
ously, there are two apparent peaks of CPU and bandwidth
utilization in a day, namely 11:00-14:00 (afternoon peak) and
19:00-23:00 (evening peak), with the evening peak being the
highest (CPU/bandwidth utilization is 1.74/2.43 times of the
daily average), and the CPU and bandwidth utilization being
also significantly higher than at night.

The above shows that although CPU and bandwidth are
volatile over time, there are still potential patterns. In practical
scenarios, extra attention should be paid to CPU and band-
width resource utilization during the afternoon and evening
peak hours, which are the most likely times for accidents due
to insufficient resources. In addition, since CPU and bandwidth
utilization fluctuates significantly, they are more difficult to
improve than disk and memory utilization: (i) If a large
number of resources are reserved to cope with the peak, it can
guarantee the quality of service but will lead to resource waste.
(ii) If idle resources are utilized and released before the peak,
the overall resource utilization can be improved. However, the
occurrence probability of resource insufficiency will increase

due to the ambiguity and uncertainty of the peak arrival time.
For these reasons, CPU and bandwidth resources face a
more severe trade-off between efficiency and quality.

C. Utilization Patterns of Different Services

Fig. 9 reveals the resource utilization changes of containers
from 18 different ASPs. Since C-ESP uses the multi-tenant
model, we divide the containers into 18 groups based on
different ASPs and show the resource utilization of each group.
It can be observed that the distribution patterns of different
kinds of resources differ significantly. It creates difficulties for
the efficient deployment of service containers on the server,
i.e., it can cause the server to run out of one type of resource,
but have other types of resources left over. In these cases,
because one resource is used up, new containers cannot be
deployed due to the exhaustion of one resource, resulting in
the waste of other resources.

As shown in Fig. 8 and 9, the resource isolation capa-
bility of the container divides the idle resources into two
parts, so the optimisation of resource utilisation needs to be
considered from two perspectives. On the one hand, the idle
resources on the edge servers are direct resources that can
be reallocated, and resource utilisation can be improved by
optimising the scheduling of container deployment. On the
other hand, the idle resources in the edge containers are
indirect resources that cannot be reallocated. Due to the
resource isolation capability of the container, these resources
need to be transformed through the container scaling policy
before they can be reallocated. However, directly using these
resources by increasing the load through the request offloading
policy is also a feasible method.

Therefore, containerization not only provides resource iso-
lation, but also presents a new problem of server-container
resource requirement matching, namely how to arrange
containers on edge servers to make full use of resources. In
addition, the distribution of different containers is uneven for a
single resource type. This heterogeneity raises a new problem
of container-container resource requirement matching, i.e.,
how to deploy containerized services with complementary re-
quirements on an edge server to improve resource utilization?

In summary, while the similar problem exists in the central-
ized cloud computing paradigm [14], [15], [16], the problem of
server-container resource requirement matching becomes more



Table IV
QUANTIFY EACH CLASSIFICATION DIMENSION.

Dimension Quantitative approach
High-demand

resources
The proportion of time in a day as the
highest utilized resource type.

Peak period The ratio of the average resource utilization
for each hour to the daily average.

Rapid change
The absolute average slope of the line
formed by each sample point and the pre-
vious sample point.

Time-
dependent

Pearson correlation coefficient [17] be-
tween resource utilization and time.

Predictability Variance of resource utilization for different
containers of the same service.

Resource
correlation

Multiple correlation coefficient [18] be-
tween each resource and other resources.

important and challenging in the edge computing paradigm
due to (i) the distributed deployment of edge servers, (ii)
the resource limitations of a single edge server, (iii) the
heterogeneity of edge servers, (iv) the resource isolation
brought about by the containerization (if containerization is
used). Therefore, this problem has become a critical problem
hindering the efficient utilization of edge resources.

To address these issues, we need to determine whether two
services complement each other and quantify resource fluctua-
tions. In this regard, we take Fig. 9 as an example to propose a
classification method, which can be used to summarise service
resource characteristics from six dimensions:
• High-demand resources. It represents the type of resource

in high demand, such as disk (1, 4, etc.)4, memory (10, 12,
etc.), CPU (2, 13, etc.), bandwidth (6, 9, etc.);

• Peak period. It represents the peak period of the service,
such as the afternoon peak (12), evening peak (1, 14, etc.),
and both (6, 15, etc.);

• Rapid change. It represents the rate of change in resource
requirements, such as some change fast (8, 15, etc.) and
some change slow (1, 9, etc.);

• Time-dependent. It indicates whether the resource require-
ment varies with time, such as some related to time (6, 14,
etc.) and some not (4, 7, etc.);

• Predictability. It indicates whether different containers of
the same service have consistent resource utilization, i.e.,
the shaded range in the Fig. 9, such as some are consistent
(1, 6, etc.), some are not (3, 5, etc.);

• Resource correlation. It indicates whether different re-
source changes are correlated, e.g. some services have
similar CPU and bandwidth changes (6, 14, etc.) and some
are not (2, 13, etc.).
For further quantification, we provide a set of quantitative

methods for the above six dimensions as an example, namely
Table IV. Therefore, the six dimensions can be used as six
labels to tag each kind of service. Based on these labels,
researchers can comprehensively quantify the resource demand
patterns of various service containers, which is helpful for
modeling and algorithm design.

4The numbers here and below correspond to the indexes in Fig. 9.

100

104

103

102

101

20000 500 15001000
The index of edge servers

T
h
e
 n

u
m

b
e
r 

o
f 
re

q
u
e

s
ts

 
fr

o
m

 e
a
c
h
 e

d
g
e
 s

e
rv

e
r

The index of users

T
h
e
 n

u
m

b
e
r 

o
f 
re

q
u
e

s
ts

 
fr

o
m

  
e
a
c
h
 u

s
e
r

100

103

102

101

1.00 0.2 0.4 0.6 0.8
1e5

Relatively 

straight trend

Slower rise means 

more servers are 

concentrated here

Figure 10. Frequency analysis of (a) edge servers (left) and (b) users (right).

In addition, to provide a container resource fluctuation
close to the real scenario, we provide a model generator for
containerized services in the open source project (introduced
in Sec. I). Specifically, by entering a list of desired container
types as shown in Fig. 9, it can generate resource utilization
fluctuations for each type of resource. In addition, the gen-
erated data has some randomness, but it is satisfied with the
distribution of the real data.

V. EXPLORING USER REQUESTS

In addition to ASPs, C-ESP also needs to pay attention to
the users. These users use the services of ASP by accessing
the edge server deployed in C-ESP and generating a large
number of requests to the edge server. We first analyze the
characteristics of servers and users, then analyze the geograph-
ical distribution of requests and resources, and finally carry
out quantitative modeling for the characteristics of requests,
hoping to provide a basis for other research teams’ research.

A. Distribution of Requests

Currently, C-ESP hosts more than a dozen different types
of ASPs, and we base our analysis on the service log of
an ASP as an example, which consists of one hour of data
per day (at different periods) for six days, i.e., a total of
six hours. The data contains 10,159,851 logs from 96,209
users, and these requests are sent to 2,359 edge servers for
processing. Specifically, each data contains: (i) the fuzzy
geographic location of the request sender (user); (ii) the fuzzy
geographic location of the request receiver (edge server); (iii)
the generation time of requests; (iv) unique identification of
the request sender and the request receiver. It should be noted
that the geographic locations in the data are fuzzy locations
based on the IP address, so as to ensure the privacy of user
information.

First, we count the number of requests sent/received by
each user/edge server during the data collection period to
explore the distribution pattern of requests on the sender and
receiver sides. After that, we sort each user/edge server by
the number of requests sent/received from smallest to largest,
as shown in Fig. 10. Notably, we use log transformation for
the y-axis in Fig. 10, and the request distribution of users
shows an exponential trend, while the request distribution of
edge servers is more balanced. This is because the request
distribution for users is natural and unaffected by human
intervention, whereas the request distribution for edge servers
is interfered with by server configuration and load-balancing
policies. Therefore, Fig. 10 reveals a significant phenomenon.
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Table V
POISSON DISTRIBUTION PARAMETERS.

Index λ N C Index λ N C

1 474.875 35688 0.0133 4 437.115 33699 0.0130
2 499.845 34449 0.0145 5 462.153 34770 0.0123
3 474.127 35074 0.0135 6 471.708 34314 0.0137

Namely, the number of requests per user in the collected
data follows the exponential distribution.

B. Analysis of Spatial Features

Based on Fig. 11, we can find that the number of resources
in each area is inconsistent with the number of requests
generated, i.e. some areas have a high amount of resources
but generate few requests, and some areas the opposite. In this
case, if each area only processed its own generated requests, it
would significantly reduce efficiency. In addition, some areas
only generate requests without deploying the corresponding
type of service. Therefore, it is necessary to develop request
scheduling algorithms to schedule requests from different
areas. As shown in Fig. 11, the addition of requests from
different areas makes the number of requests and the number
of resources relatively consistent for each area, which verifies
the effectiveness of C-ESP’s request scheduling algorithm.

In summary, different from the centralized mode in the
cloud computing platform, resources in the edge platform
are distributed, which brings a new challenge: the matching
problem of resource distribution and request distribution.

C. Analysis of Temporal Features

Due to the difficulty of obtaining a large number of real-
world end-users and requests for laboratory-level systems,
simulation modeling of requests is required to evaluate system
performance. Therefore, it is meaningful to provide experience
in user request modeling based on quantitative analysis of real
large-scale data. First, we divided the collected data into six
parts based on the date and processed them separately. As
Poisson process is a stochastic process widely used to model
the time of arrival into the system [19], we use it to fit the
request, i.e. P (X = k) = λk

k! e
−λ, k = 0, 1, · · · .

As shown above, the Poisson distribution can be computed
once λ is determined. To analyze λ, we use N to represent the
number of users. Further, we assume that λ is related to N as
a constant multiple, i.e., λ = C ×N , which will be verified.
After that, We can calculate the average of each group data
(as shown in Table V) and use it as λ for fitting, i.e. Fig. 12.
Further, we can count the number of users N in each of the six
collected data and bring N with λ into λ = C×N to calculate
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C, i.e., as shown in Table V. We find the C obtained from
the six collected data independently are close to each other,
which verifies our assumption that λ = C × N . Finally, we
take the mean value of C obtained from the six collected data
as the final result, i.e., λ = 0.0134×N .

In system design and theoretical research, it is often difficult
to attract a large number of real users to participate, so it is
necessary to simulate and model the requests to evaluate the
system performance. In response, we provide a user request
generator in open source project (introduced in Sec. I) to
mimic users generated requests. Specifically, by inputting the
number of users to be served, it can generate the request
situation of each user. Moreover, the generated user request
data satisfies the distribution pattern in Fig. 10 and Fig. 12.

VI. RELATED WORK

Edge computing has become a key topic in academia and
industry. (i) Many researchers base their research on edge
computing architectures or edge-cloud collaborative architec-
tures; (ii) Many enterprises are starting to drive edge comput-
ing adoption and building business-oriented edge platforms.
However, there is still a lack of large-scale measurement stud-
ies on edge computing in real business application scenarios
from multiple dimensions of services, servers and requests.

Edge server. There are many measurement efforts for
server performance characterization that deeply analyze the
network bandwidth [20], traffic [21], latency [22], [23], re-
source utilization [24], and robustness [25], [26] of servers,
but most of them stay in the cloud computing platform and
do not consider the distributed deployment and performance
heterogeneity of edge computing servers. In addition, a recent
study has measured the network latency, throughput, and QoE
(Quality of Experience) of edge servers [27], but it lacks
comprehensive measurement in the large-scale crowdsourced
platform. Therefore, there is still lacking measurement for
large-scale edge servers in the crowdsourced edge platform.



Containerized service. As the network requirements for
numerous services increase, such as IoT, streaming media,
and cloud gaming, these services are transitioning from cloud
computing to edge computing [28], [29], [30], [31], [32]. To
supply edge computing to other ASPs, some enterprises build
edge platforms from PaaS (Platform as a Service) perspective
combined with containerized service capabilities, such as
KubeEdge [33], OpenYurt [34] and Baetyl [35]. However, to
the best of our knowledge, there is still a lack of measurement
of containerized services in the edge platform.

User request. The measurement of user requests relies
heavily on commercial enterprises with real large-scale users.
In cloud computing, there are many efforts to characterize the
requests generated by business users, such as Azure cloud [36],
Google cloud [37], and Alicloud [38]. However, these studies
all focus on the user request of centralized cloud clusters while
lacking features such as user-server geographic relationships
and load balancing in the edge platform.

VII. CONCLUSIONS

We carry out a large-scale measurement of QoS for a com-
mercial crowdsourced edge platform based on three dimen-
sions: edge servers, containerized services and user requests.
Specifically, we analyze geographical distribution, resource
distribution, reliability, and many other aspects. Further, we
design an open source project to provide a near-realistic
simulation environment. Based on the above research, we aim
to provide realistic experience for related research and promote
solutions to the problems mentioned in this paper.
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