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Abstract—The emergence of next-generation latency-critical
applications places strict requirements on network latency and
stability. Edge cloud, an instantiated paradigm for edge comput-
ing, is gaining more and more attention due to its benefits of
low latency. In this work, we make an in-depth investigation
into the network QoS, especially end-to-end latency, at both
spatial and temporal dimensions on a nationwide edge computing
platform. Through the measurements, we collect a multi-variable
large-scale real-world dataset on latency. We then quantify how
the spatial-temporal factors affect the end-to-end latency, and
verified the predictability of end-to-end latency. The results reveal
the limitation of centralized clouds and illustrate how could edge
clouds provide low and stable latency. Our results also point
out that existing edge clouds merely increase the density of
servers and ignore spatial-temporal factors, so they still suffer
from high latency and fluctuations. Based on the observations,
we propose a robust prototype edge cloud model based on lessons
we learn from the measurement and evaluate its performance in
the production environment. The further evaluation result shows
that edge clouds achieve 84.1% latency reduction with 0.5ms
latency fluctuation and 73.3% QoS improvement compared with
the centralized clouds.

Index Terms—Real-world Dataset Collection, Spatial-Temporal
Modeling, Edge Clouds

I. INTRODUCTION

Latency is a critical factor that affects user experience
in applications. The emergence of next-generation latency-
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Fig. 1: Architecture of Crowd-Sourcing Edge Clouds.

constrained (mission-critical) applications places strict require-
ments on latency and the stability of network services [1]. For
example, autonomous driving requires low and stable latency
to sense the road, and high latency will threaten driving safety
[2]. VR/AR applications also require low and stable latency
to render, and high latency will lead to vertigo [3].

To mitigate the high and unstable network latency of
centralized clouds, edge computing has become a de-facto
paradigm and has drawn extensive attention in both academia
and industry. Intuitively, edge clouds can effectively guarantee
the operation of latency-sensitive applications as edge clouds
are deployed in high density. Major cloud providers such as
Azure [4], AWS [5], and Alibaba [6] are actively extending
their central clouds with small-to-medium-sized edge clouds.

Figure 1 illustrates the architecture of a unique form of
edge platform: crowd-souring edge clouds. In the crowd-
souring edge clouds, edge cloud provider deploys massive
geographically distributed yet lightweight data centers (DCs),
as well as rent idle resources in a crowd-sourcing manner.
These resources are integrated into an edge cloud platform
using software-defined networks, and edge cloud provider
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uses this platform to provide service like Infrastructures as
a Service(IaaS) and Platforms as a Service(PaaS). All partic-
ipants can benefit from this edge cloud pattern: users can get
better quality of service, and the application developers can
easily deploy their applications with the edge cloud providers’
platform. The owner of idle resources can get paid by renting
their idle resources, and the edge cloud provider can reduce
the cost of construction.

However, the current deployment of edge clouds merely
increases the density of servers, so most of the current edge
clouds look like an extension of centralized clouds [7]. Due
to a lack of consideration of spatial-temporal factors on
latency, current edge clouds still suffer from high latency and
fluctuations. In fact, there lacks of in-depth understanding of
how edge clouds have been deployed in the real world and
their implications of latency. Specifically, we seek to answer
the following research questions about edge clouds: (1) How
far from the users should we deploy edge clouds to minimize
latency? (2) How about the network topology of edge clouds?
Is it still meaningful to continue optimizing network topology
for latency reduction in edge clouds? (3) How to mitigate the
imbalance of latency and reduce its impact on Server Level
Agreement (SLA)? (4) How does edge cloud latency change
over time, and can we accurately predict latency variations of
edge clouds? (5) How to offload users’ requests in edge clouds
when facing network congestion in rush hours?

To this end, we collect the dataset from a densely-distributed
edge platform and perform a large-scale measurement study
on edge-to-edge and in-the-wild network latency. The dataset
contains 900 million PING records from 5,174 edge clouds
– the largest edge deployment to our best knowledge. Un-
like traditional edge cloud platforms, the one we studied is
constructed through a crowd-sourcing manner as in figure 1:
any individuals could install the software provided by the
platform maintainer to turn their idle machines (e.g., PCs and
workstations) into edge cloud servers.

The crowd-sourcing edge platform we studied mainly de-
pends on renting idle resources by installing the software mod-
ified from K8s, so the construction cost is almost negligible.
And the crowd-sourcing edge cloud platform only needs to
pay for the actual resource used for task execution. One PC
can install the software within 10 minutes no matter when
and where, so the crowd-sourcing edge cloud has a broader
deployment of servers and flexible resource provisioning in
the spatial-temporal dimension.

So latency is the most significant factor that impacts the
quality of service. Our measurements are focused on latency
(end-to-end round-trip latency). We design a script-driven
proactive latency probing tool and an information-gathering
app to obtain a sufficiently wide range of edge cloud servers’
metadata. Besides, unlike most previous investigations, which
only analyzed the latency characteristics and did not actually
evaluate their solutions in the real world, we also validate our
suggestions with a prototype edge cloud based on lessons we
learned from the measurements.

Key Observations. (1) The network latency to the edges

almost linearly scales with the geographical distance, i.e.,
around 1.9ms per 100km. Placing edge clouds within 30km
of the end users is often enough to saturate such benefits;
further reducing the distance below 30km brings negligible
improvements as limited by the core network architecture [8].
Instead, the number of intermediate hops does not impose as
significant an impact as the distance.

(2) Routing across different Internet Service Providers
(ISPs) adds a network latency as high as 20ms. It indicates
that two edge clouds accessed through different ISPs, even ge-
ographically close, could have high inter-site network latency.
Fortunately, we observe that IP prefix matching can effectively
mitigate such network overhead.

(3) The edge clouds need dense deployment to mitigate the
latency imbalance. The latency of the household network is
just 2ms higher than the special line in the edge cloud.

(4) The latency has the same trend every day. The latency
becomes 2 to 2.5 times higher during peak periods than during
idle periods. So, the time-series algorithm is easy to predict the
trend of latency. Our experiments based on DeeAR show that
taking hourly granularity can increase the predicting accuracy
at most 26.3%.

(5) Since edge clouds are distributed systems, collaboration
usually happens between edge clouds. However, if an edge
has abnormally high latency to one another edge, it will
likely have high latency to 80% of all other edges. This
phenomenon indicates that offloading without consideration of
fine-grained features (like hourly granularity) may not reduce
latency during rush hours.

Implications. (1) For crowd-sourcing edge cloud platforms,
our results suggest that the edge cloud platform needs to pro-
vide edge resources within 30km to the end users and avoids
cross-ISP routing as much as possible to deliver better network
performance. Moreover, crowd-sourcing effectively deploys
densely distributed edge clouds with almost no performance
loss.

(2) For edge computing researchers, our measurements
highlight the need for a spatial-temporal scheduling mecha-
nism for a fine-grained (e.g., hourly granularity). We want the
mechanism can precisely utilize the 20% relatively free net-
work communication links. One possible design is to predict
the latency trend using time-series models like DeepAR and
make decisions using Deep Reinforce Learning.

(3) For the edge application developer, our results suggest
that edge clouds are good for latency-critical applications.
Communication time only consists of 30% of the most strict
MTP latency threshold requirement. However, enjoying this
superiority of latency also requires that future edge cloud-
oriented applications face the problems posed by distributed
infrastructure, such as reliability and consistency. More appli-
cation development frameworks should be proposed to shield
applications from the inconvenience of distributed infrastruc-
ture.

Contributions. We summarize our key contributions as
follows:



(1) Dataset Collection. We cooperated with a commercial
crowd-sourcing edge cloud provider to perform this measure-
ment, finally collecting a total of 0.9 billion rows of end-to-
end latency data with precise GPS location information and
timestamp. 1

(2) Factor Analysis and Modeling. The accurate multi-
variate impact factor analysis and modeling demonstrate the
problem of where and when we need edge clouds. We clarify
why edge clouds can reduce latency. We also found some
factors that may decrease the latency of edge clouds and
proposed possible solutions.

(3) Prototype Edge Cloud. We design a prototype edge
cloud based on the lessons we learn from factor modeling.
The measurements show that the prototype edge cloud can
achieve a stable 5ms latency on average, which can achieve at
most 84.1% latency reduction with 0.5ms latency fluctuation
and 73.3% QoS improvement.

II. DATA COLLECT AND MEASUREMENT

A. Crowd-sourcing Platform

Our research focused on a unique crowd-sourcing edge
platform, an emerging paradigm for edge computing. Such
unique crowd-sourcing characteristic allows its resources to
sink to very close to end users – perhaps it is the first time
the edge servers become “edge enough” as envisioned by edge
researchers. Its deployment scale is significant, with a 10x-
denser deployment than state-of-the-art edge platforms [9].
This large scale allowed us to observe the unique challenges
and opportunities, such that IP prefix matching can mitigate
communicating across-ISPs overhead. Even for conclusions
that are well known, we for the first time push to its limit: e.g.,
while the community knows reducing distance can cut down
the latency, it’s not true when the distance is already below
30km due to the core network architecture. The platform has
5,174 edge servers, with each edge server running edge CDN,
video transcoding, and streaming media distribution services.

The commercial edge cloud platform plans the number of
crowd-sourcing recruitments according to the population in
this area. If the number of participants is less than expected,
the platform will adopt some incentives. Our measurements
show that the number of devices and the population have a
strong Pearson correlation coefficient of 0.667. All our data
collection and the prototype edge cloud are based on this
platform in the production environment. All 5174 real-world
edge servers from this platform were involved in the entire
data collection process and experiments. These services were
deployed with a Kubernetes-like system. Hence, the topology
and collaborations are like typical Kubernetes clusters.

B. Data Collection Framework

We design a framework to probe network latency, as shown
in Figure 5. The entire framework is a script-driven proactive
measurement tool consisting of three parts. 1) Coordinator:

1https://github.com/henrycoding/IWQoS23EdgeMeasurements

All measurements are coordinated by the coordinator, includ-
ing the sampling of edge cloud servers and the assignment of
measurement tasks. The coordinator also collects the measured
logs at the end of each round. 2) Edge cloud servers: We
utilize edge cloud servers from the commercial edge cloud
platform from PPIO as candidate edge measurement nodes.
3) NTP Server: To ensure the accuracy and consistency of
the measurement timestamps, we synchronize the time of the
coordinator and all participating edge cloud servers with the
NTP server.

The probing process is divided into the following steps:
Step ①: Task Dispatching. The coordinator generates

sampling tasks (a list of edge clouds to be probed) and
dispatches sampling tasks to all edge cloud servers. The task
generation repeats in a certain time interval. To ensure that
the massive edge servers complete the data upload, we set the
time interval to 5 minutes.

Step ②: Time Synchronizing. Before executing the task,
every edge cloud synchronizes its system time with the NTP
server. Previous studies, such as Pingmesh [10], often ignore
time synchronization. Synchronizing the time ensures the
accuracy of the timestamps for every measurement record.
Accurate timestamps allow us to understand better how latency
changes over time.

Step ③: Task Execution. For every edge cloud server in the
measurement task, the probing edge cloud server first sends 32
PING packets to them. After the 32 PING packets are sent, the
edge cloud server calculates the average latency of these 32
packets(the unit of latency is millisecond(ms) ) for every edge
cloud server to be probed. Then the probing edge cloud server
uses traceroute to obtain the number of hops between the edge
cloud server and other edge cloud servers in the measurement
task.

Step ④: Result Uploading. After executing the measure-
ment task, the edge cloud server uploads the measured latency,
hops, machine ids and timestamp to the coordinator.

Besides, we built a proactive information collection app for
the edge cloud platform’s device providers, allowing device
managers to proactively upload additional information such
as GPS, ISP, network type, and the online/offline status of
edge cloud servers. We collected the latency probing data from
11/27/2021 to 12/17/2021 (21 days total). The full size of the
dataset is 181 GB, containing 0.94 billion records. These data
cover all the mainstream Internet Service Providers (ISPs).

In this paper, we collect PING-based latency. PING works
on OSI-Layer 3. We are using PING to measure the latency
of the infrastructure network more accurately. Most previous
latency measurement studies are also based on PING. In fact,
the higher the layer of the OSI, the more latency is affected by
factors and errors. For example, OSI-Layer4 latency depends
on congestion control. Although PING is not representative
of latency at OSI layers 4 to 7, there existing algorithms for
optimizing such latency and they are the same as centralized
clouds. E.g., BBR, TCP-Fast-Open, and HTTP3.0. Moreover,
we have discussed the applicability.



Fig. 2: Scatter plot of distance and
average latency between edge clouds.

Fig. 3: Scatter plot of distance and mini-
mum latency between edge clouds.
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Fig. 5: Latency Measurement Framework.

III. SPATIAL ANALYSIS AND MODELING

In this section, we quantify the impacts of physical distance
and network topology distance on latency to answer sub-
questions (1) and (2). For (3), we illustrate the impact of
geographic imbalance and propose to mitigate the imbalance
by crowd-sourcing.

A. The Impact of Physical Distance

To explore the optimal deployment distance for edge clouds,
we first need to model the relationship between latency and
distance. We analyze the average latency (Lavg), the minimum
latency(Lmin), the latency between two edge cloud servers
propagating at the speed of light (Llight = 0.00667xdist),
and the theoretical reference latency [11]–[13] (Ltheo. =
0.01xdist), as shown in figure 2 and figure 3. From figure
2 and figure 3 we can conclude the followings:

End-to-end latency increases 0.0190ms per kilometer on
average, and network congestion has negligible influence
on this coefficient. L represents the end-to-end latency, and
xdist represents the distance between the two edge cloud
servers. The R2 coefficient of L̂min and L̂avg (0.968/0.970)
shows that the formula can well fit the relationship between
latency and distance. The coefficients between the fitting
equation of average and minimum latency (0.01901/0.0184)
are similar. The network fluctuations only increase the per
unit kilometer latency by about 3.26%. So, network condition
has little influence on end-to-end latency per kilometer.

L̂min = 0.0184xdist + 10.1, R2 = 0.968,

L̂avg = 0.0190xdist + 23.3, R2 = 0.970,
(1)

This result also indicates the convergence of latency re-
cently. Specifically, the end-to-end latency between two fixed
servers is hard to reduce further. [14] measures ping-based
latency for the worldwide Bitcoin network in 2019. Their fitted
equation is L = 0.01912xdist + 70.5457, where the latency
per kilometer (0.01912/0.0190) differs from our measurement
by 0.5%. [15] report a speed of 0.014ms/km in 2017. The
results do not differ significantly from ours, indicating latency
convergence.

Moving services close to users is the most effective way to
reduce latency, but excessive proximity to users will lead to
extra latency. Figure 4 demonstrates the latency distribution
within the serving range of edge cloud (130km). The latency is
lower and more stable within 30km. Unexpectedly, the latency
within 10km is conversely larger than the latency within 20-
30km. [16]–[18] mention that the typical fiber length is 5 km
to 20 km, plus the access distance of users, so 30km is a
reasonable conclusion. Further reducing the distance below
30km brings negligible improvements as limited by the core
network architecture [8].

To conclude, distance is still the most significant factor in
latency. Deploying edge clouds close to users is an effective
way to reduce latency. So, in edge cloud deployments, it is
unnecessary to pursue proximity as long as users can get the
edge cloud server within 30km.

B. The Impact of Hops

Since we have already proposed a robust model between
latency and physical distance, we next identify the impact of
network topology distance. To do so, we counted the number
of records under each hops to analyze the distribution.

Compared with previous studies, hops have decreased
recently. But the cost of communicating across ISPs is still
very high. Figure 6 clarify the distribution of the number
of hops (The hops is short for the number of traceroute
hops in the following statement). The average hops in our
measurement is 9.497. Compared to the study in 1998 [19],
the hops are reduced by about 30% on average over the
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Fig. 6: Overall Hops Distribution. Communication cost across
ISPs is still very high.

years. Compared with [20] in 2011, the hops is reduced by
about 31.4% on average. However, as illustrated in figure
7, communicating across ISPs will increase about 4 hops
overhead.

Latency optimization based on hops may not get signif-
icant effects for latency-sensitive applications. We measure
the correlation between hops and latency for the data within
4-14 hops (containing 94.8% of the data). The results of the
analysis are shown in figure 7 (overall latency varying with
hops). We fit the equations for the relationship of average la-
tency and hops as equation L̂ = 3.98xhop+0.500, R2 = 0.89.
Although the average latency has a weak linear relationship
with hops, the latency in every hop deviates greatly from
the average due to the network size difference. This leads to
the limited effectiveness of hops-based optimization for edge
clouds as shown in 7. So, the target of latency reduction and
hops reduction is not consistent nowadays, but it doesn’t mean
that hops is not important. We then explore the hops and ISP.

The latency doesn’t 
reduce as hops decrease

Fig. 7: Overall Hops v.s. Latency.

Cross-ISP communications can double edge clouds’
latency, and hence it is essential for users to access the
edge clouds within the same ISP. From the figure 8, we can
see that within 130km, about 90% of the hops between two
nodes of the same ISP are within 5. However, 90% of the hops
between two nodes of different ISPs are between 8-10. [21]
proposes that ”the delay incurred per hop may be negligible
when considering small network”, but this will never happen
in edge clouds. Compared to the same ISP, accessing from
different ISPs can double the number of hops, resulting in a

relative increase in latency of 120.8% (19.46/42.97, at 95%
quantile).

However, IP address prefix matching is an easy way to
distinguish ISPs. Here we evaluate the performance of IP
prefix matching. In Figure 8, 8, 16, 24 represent the number of
prefix-matching bits in the source and destination IP addresses.
It can be seen that within 130km we can simply tell if they
have the same ISP by matching the first 8 bits of the IP
addresses. While more IP prefix matching will reduce latency,
it is also a requirement for edge cloud service providers to
purchase more IP addresses and deploy more edge clouds.

Fig. 8: CDF of Hops and Latency within 130km.

To conclude, the network topology is getting increasingly
optimized, but the edge clouds still suffer from high com-
munication costs across ISPs. Keeping users requesting edge
clouds with 8-bit IP prefix matching can effectively avoid
communication across ISPs.

C. The Geographical Imbalance of Latency

We have studied how latency varies with physical distance
and network topology distance, and in this section, we explore
how these factors affect edge cloud deployment. Due to ISPs
taking different paths for end-to-end traffic between two nodes,
such as equal-cost multipath routing (ECMP), the latency from
A to B is not always equal to the latency from B to A. So
we separately analyze incoming latency and outgoing latency
(equation 2), in which L represents end-to-end latency. We
have drawn a contour map of latency based on their relative
geographical locations, as shown in figure 9.

LP
incoming =

1

n

∑
Ldst Province=P ,

LP
outcoming =

1

n

∑
Lsrc Province=P ,

(2)

It can be seen from figure 9 that the latency is distributed in
a gradient from the center to the surrounding area. So distance
is still the dominant factor in this distribution since edge cloud
servers in the center have a shorter average distance to edge
cloud servers all over the nation. The edge cloud servers in
core cities have relatively small latency but are also limited
by geographical location. Core cities farther away from the
center also have higher latency, so core cities are alternative
choices to deploy edge clouds for latency reduction.

The limitation of distance causes the geographical
imbalance, but there are still some special cases with
great network latency. The incoming and outgoing latency
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Fig. 9: Latency Geographical Distribution. (The red stars are
core cities [22] of the backbone network.)

is asymmetrical by comparing the two figures in figure 9.
Actually, incoming latency is 7.18% smaller than outgoing
latency on average. This asymmetry results in some edge cloud
servers having lower network latency when they are turned into
edge clouds. However, to effectively mitigate the imbalance,
we should set up abundant edge cloud servers. But deploying
density edge clouds needs abundant money and effort; renting
idle resources in a crowd-sourcing manner is a good choice to
increase the density of edge clouds, but many concerns will
arise over the latency of crowd-sourcing edge clouds. We next
explore the impact of crowd-sourcing.

The edge clouds platform we studied has two types of
networks. One is the household line and the other is the special
line. We regard the household line as a crowd-sourcing line
and compare it with a special line within 130km and the same
ISP. Figure 10 illustrates the difference.

CS->CS SP->CS SP->CS SP->SP

Fig. 10: The latency between lines with different network
types. CS means crowd-sourcing edge clouds, and SP means
edge clouds with a special line.

From figure 10 we can see that the latency between two
edge clouds with both special line networks is the lowest.
The latency between crowd-sourcing and the special line
follows, and the special line has a significant latency accessing
the crowd-sourcing line. The latency between the crowd-
sourcing lines only has a 2ms increase compared with the
latency between the special lines. Moreover, we can also learn
that there is the smallest hops between crowd-sourcing lines,
effectively reducing latency uncertainty.

To conclude, we can see that latency is highly imbalanced
geographically, and the most important reason for this im-
balance is the distance limitation. The asymmetry of each

province’s incoming and outcoming latency also illustrates the
asymmetry of resource demand, and satisfying this asymmetry
is one of our objectives in building edge clouds. In con-
structing edge clouds, renting edge cloud servers in a crowd-
sourcing manner is a good way to increase the density easily
and with little performance loss. Limited by the imbalance,
centralized clouds cannot further decrease the latency for the
surrounding areas. Bringing clouds close to users like edge
clouds is the optimal choice for future network architecture.

IV. TEMPORAL ANALYSIS AND MODELING

This section presents the relationship between latency and
time. We analyze the latency when network congestion appears
and the fluctuations of latency under multiple factors. Specifi-
cally, we start focusing on the periodic trend of latency, which
tells us when the network congestion happens and the impact
of congestion on latency. Then we explore the fluctuations at
different granularity. We end up this section with a correlation
analysis that clarifies the consistency of the latency fluctuation
among different regions.

Fig. 11: Diurnal Variation of Latency and Fluctuation within
130km.

A. Diurnal Variation of Latency

We studied the diurnal variation of latency, as shown in
figure 11.

Latency varies periodically and becomes 2 to 2.5 times
higher during peak periods than during idle periods. We
can see that the average latency varies periodically within the
day. And the average latency has two peaks, at 12 p.m. and 8
p.m. The peak around 8 p.m. is larger and lasts longer than the
one around 12 p.m. We also can see that the average latency
level is relatively low during work time (Monday, Tuesday,
Wednesday, Thursday, and Friday during the day) and higher
during rest time (Friday night, Saturday, and Sunday).

To conclude, network latency has a high temporal homo-
geneity. The centralized clouds suffer from two latency peaks
every day. Since edge clouds are designed to mitigate or



avoid the diurnal variation of latency, we further perform a
measurement on the fluctuations to explore how to provide
low and stable latency combing with spatial factors.

B. Fluctuations Analysis

Fluctuations of latency are another factor influencing QoS.
In this part, we measure the latency fluctuations by measuring
the coefficient of variation of latency.

TABLE I: Network Fluctuations within One Day.

Location Fluctuation (ms)
Same Region (< 2000km) 12.126

Same Province (< 1000km) 13.331
Same ISP 7.618

Same City (< 130km)
Overall 7.282

Different ISPs 12.779
Same ISP 5.539

The fluctuation of the latency increases along with the
increase of end-to-end latency. Fluctuation at the peak
is approximately 1.5 - 1.7 times the latency during idle
periods. As we can see from figure 11, the dispersion of
latency also reaches the peak when the latency is at its
maximum. The coefficient of variation at 8 p.m. is about 0.36
to 0.38, showing a high dispersion of the latency. So, as the
latency increases, the fluctuation of latency becomes larger,
and the uncertainty also increases. We next explored latency
fluctuations for different geographical locations.

Table I illustrates latency fluctuations (maximum latency
minus the minimum latency) within a single day. From Table
I, we can see those edge cloud servers in the same city with
the same ISP have the lowest latency fluctuation (5.539ms,
about 41.5% of the access latency within the same province),
followed by edge cloud servers within the same city (7.282ms,
about 54.6% of the access latency within the same province),
and between the same ISP edge cloud servers across the
network (7.618ms, about 57.1% of the access within the same
province. 57.1%). We also note that the latency fluctuations
between different ISPs within the same city are huge, even
larger than those within the same region, and second only to
those within the same province. Therefore, latency fluctuation
between ISPs is an indispensable consideration in the study
of proximity latency fluctuation.

C. The Temporal Homogeneity of Latency

The above analysis shows that latency is highly periodic,
and in this section, we continue to analyze the homogeneity
of temporal latency variation brought by this periodicity and
the impact it has on edge cloud deployment and scheduling.

The variability and fluctuations in latency are strongly
correlated with human activities, and it is predictable by
time series algorithms. In fact, some studies suggest that the
primary traffic within the current network is generated with
streaming content [23], [24]. This changing trend is consistent
with our daily habits. The increase in human online behavior
leads to an increase in packets, making the queue inside
the router congested and finally increasing latency. However,
human activities are highly homogeneous, making network

congestion more severe. So network congestion is hard to
avoid. But this homogeneity allows us to predict the network
congestion in advance.

TABLE II: Prediction Performance of DeepAR, in which Week
represents the day of the week, Day represents the day of the
month and Hour represents the hour of the day.

MAPE Week Week + Day Week + Day + Hour
Latency 0.19 0.16 0.14

Fluctuation 0.254 0.236 0.229

We perform a time series prediction based on a widely
used state-of-the-art method named DeepAR [25]. DeepAR is
an autoregressive recurrent neural network that can consider
multi-variable features. We input features into the DeepAR
model to test these impacts on prediction. From the table II,
we can see that the latency fluctuations are more difficult to
predict than the average latency. However, as the granularity of
the input features becomes finer, the accuracy of the prediction
is improved. Therefore, a fine-grained scheduling policy for
edge clouds can better sense the current system state and make
the best decisions.

The above analysis is based on end-to-end latency. However,
collaboration often exists in edge clouds because they are
distributed systems. So, we also analyzed the latency from
one area to all other areas when network congestion happens. 6
provinces are involved in this measurement. These 6 provinces
contain 15(capital), 14, 8 (The two provinces with the lowest
latency to other provinces, 17, 11 (The two provinces with the
highest latency to other provinces), and 5 (a province close to
the capital).

We perform min-max normalization for the latency to avoid
the impact of distance. After normalization, we used the
DTW [26] algorithm to calculate the correlation of the latency
trend from the same source province to all other destination
provinces and plotted its CDF distribution. DTW indicates the
correlations of two-time series sequences. The lower the DTW
value between two-time series, the more similar they are.

8
0

%
 q

u
an

ti
le

Province-14 0.125

Province-15 0.276

Province-8 0.147

Province-17 0.166

Province-5 0.144

Province-11 0.129

Fig. 12: CDF of DTW Distance from Some Provinces to All
Other Provinces in the Nation.

From the figure 12, we can see that the trend of latency
follows the power-law (or Pareto distribution) [27]: when we
observe a province with higher latency to another province



at rush hour, the probability that it has a higher latency to
all other provinces is over 80%, indicating a strong homo-
geneity in the temporal distribution of latency. This limits
the collaboration between edge clouds. For edge clouds,
scheduling during congestion should be noted, edge cloud
service providers need to specify fine-grained scheduling
strategies. Otherwise, not only does it fail to reduce access
latency, but it also increases network congestion.

V. FEASIBILITY OF EDGE CLOUD

A. Suggestions For Edge Cloud

Based on the above lessons we learned, we have the
following suggestions for edge clouds:

• Distance Restriction: Users can access available edge
cloud resources within a short distance from them. Here
we recommend around 10 to 30 km as the ideal distance
for edge cloud deployment. Crowd-sourcing is a good
method to increase the density of deployment.

• ISP Restriction: The user’s requests should be routed to
the edge clouds with the same ISP. No communication
across ISPs is allowed. The hops between users and
edge clouds are less than 10. Scheduling based on IP
address prefix matching is easy and effective to avoid
communicating across ISPs. Only 8-bit prefix matching
can get a good performance.

• Scheduling Restriction: Fine-grained scheduling strategy.
We need to achieve hour-level granularity in time, and
carefully select the servers to collaborate in space.

B. Performance of Prototype Edge Cloud

In this section, we validate the above suggestions by build-
ing a real prototype edge cloud; this prototype edge cloud fully
implements the above suggestion. We present the deployment
scheme of the edge cloud (Plan d) and 3 centralized cloud
plans (Plan a-c). Then we analyze the performance of the edge
cloud from the perspective of latency reduction, fluctuation
reduction, and QoS improvement.

Plan a: Centralized Cloud. We choose the city with the
lowest latency to other cities to place a cloud server.

Plan b: Lightly Distributed Cloud. As shown in figure 9,
we can see that the core cities of the backbone network have
better network resources, so in this deployment plan, we place
the edge cloud servers in the seven core cities of the backbone
network. 7 edge cloud servers are set up in this plan.

Plan c: Distributed Cloud. As shown in Table I, we can
see that the same province, same region, and same city but
different ISPs have similar latency fluctuations. Therefore, for
simplicity, we place the edge servers here in the capital city of
each province. 22 edge cloud servers are set up in this plan.

Plan d: Edge Cloud. As shown in Table I, we can see that
it has similar, smaller latency fluctuations within the same city.
Figure 4 also shows the superiority of latency within 130km
or even within 30km. We set up 5174 edge cloud servers in
this plan.

In the measurement stage, we establish an edge cloud with
an existing network structure and filter the other edge clouds

to meet the suggestion in Sec 5.1 to play the role of users. We
make users always choose the server with the lowest latency.
Then we measure and analyze the latency between the users
and edge clouds. Figure 13 shows the average latency for every
hour.

Plan a: Centralized Cloud. We choose the city with the lowest latency to other cities to place a cloud server.

Plan c: Distributed Cloud. As shown in Table 1, we can see that the same province, same region, and same city, but 
different ISPs have similar latency fluctuations. Therefore, for simplicity, we place the edge servers here in the capital 
city of each province. 22 edge cloud servers are set up in this plan.

Plan d: Edge Cloud. As shown in Table 1, we can see that it has similar, smaller latency fluctuations within the same 
city. Figure 4 also shows the superiority of latency within 130km or even within 30km. We set up 5174 edge cloud 
servers in this plan.

Plan c Plan d

Plan a Plan b

(a) 4 prototypes of edge and
cloud deployment

(b) Latency performance

Fig. 13: Latency Measurement of Service Deployment on
Centralized Cloud, Distributed Cloud and Edge Cloud. Edge
Clouds Can Achieve Low and Stable Latency.

a) Latency Reduction. We calculated the latency averages
over 24 hours based on figure 13, and the average latency of
Plan a-d are 30.7/20.96/15.82/4.88, respectively, where Edge
Cloud (Plan d) shows unparalleled advantages among the four
deployment plans. The average latency level is 84.1% lower
than that of the Centralized Cloud (Plan a). In addition to
the high-density deployment of Edge Cloud (Plan d), we
found that deploying service in the capital city of Distributed
Cloud (Plan c) also achieved relatively low latency and latency
fluctuation, with a 48.4%(15.82/30.7) reduction compared to
Centralized Cloud (Plan a). Lightly Distributed Cloud (Plan
b) has an average latency reduction of 31.7% (20.96/30.7)
compared to the Centralized Cloud (Plan a). However, Lightly
Distributed Cloud (Plan b) is still a more practical solution to
implement than Distributed Cloud (Plan c), because Lightly
Distributed Cloud (Plan b) only requires deployment within 8
core cities, but Distributed Cloud (Plan c) requires deployment
in 28 provincial capitals, increasing the number of deploy-
ments by a factor of 2.5, but only achieving a limited 32%
latency reduction. Therefore, a Lightly Distributed Cloud (Plan
b) is more cost-effective than Distributed Cloud (Plan c) in
terms of acceptable latency.

b) Fluctuation Reduction. We can see that the diurnal
variation of Edge Cloud (Plan d) is very small, so it is
not affected by network fluctuation and can provide network
service continuously and steadily. The rest of Plans a,b, and c
have the same level of latency fluctuation. Thus, a fine-grained
edge cloud can significantly reduce the latency fluctuations
(up to 87% of the diurnal variation reduction in latency) and
continuously provide a stable service with low latency and
very small latency fluctuations.

c) QoS Improvement. We counted the CDF of the above
four plans as a measure of the QoS. The CDF statistics are
shown in figure 14. In Centralized Cloud (Plan a), about 80%
of the request latency falls in 11-33ms, and 95% of the requests
can be kept within 45ms. Lightly Distributed Cloud (Plan b)



has an overall left shift compared to Centralized Cloud (Plan
a), with 95% of requests around 36ms. Edge Cloud (Plan
d) has a particularly small overall distribution, with 95% of
latency within 12ms, so using Edge Cloud (Plan d) can obtain
up to 73.3% QoS improvement.

Quantile Latency

80% 11-33ms

95% 45ms

Quantile Latency

80% 0-28ms

95% 42ms

Quantile Latency

80% 0-20ms

95% 36ms

Quantile Latency

80% 0-6ms

95% 12ms

Fig. 14: Service Deployment CDF of Latency on Centralized
Cloud, Distributed Cloud, and Edge Cloud.

Although our measurements are PING-based latency, we
still want to find how edge clouds impact real-world applica-
tions. [28], [29] use three application-level latency thresholds
(MTP, HPL, HRT) as latency indicators. MTP is the most
strict requirement with interaction latency requirement ≈
20ms. However, combined with technologies such as 5G (5G
promising latencies down to 1 ms [28]), the optimal edge
cloud architecture can reserve 70% time on average for other
procedures (such as computing and rendering) when facing the
most strict MTP latency threshold requirement. Such low and
stable latency can support the deployment of most latency-
sensitive applications.

VI. RELATED WORK

Latency Measurement Methods and Frameworks. [30]–
[32] model latency performance based on network parameters.
[33] explains and defines latency in various senses, suggests
some possible latency influencing factors. Some studies es-
tablish latency measurement frameworks to measure latency
in different network scenarios. [34] proposes a cloud-based
applications speed platform to measure the performance of
various networks from virtual machines in cloud regions. [10],
[35] propose large-scale systems for the data center network
latency measurement framework. Beyond measurements of
central clouds and data center networks, few efforts have
proposed measurement architectures for large-scale distributed
clouds. In our work, we consider latency measurements highly
distributed and propose a framework for distributed sampling,
including sampling latency, number of hops, and strictly
recording the acquisition time and information such as GPS
and device location.

Measurement and Analysis of Latency. A lot of studies have
identified general patterns of latency in the network and the
factors that influence it, which leads us to wonder how latency
behaves in edge cloud scenarios. [27] proposes a power-
law distribution in network measurements, which provides an
essential theoretical basis for our measurement. [36] reveals
that some flow requests to controllers in SDN still experience
long-tail response latency. [37] proposes a way to achieve last-
mile localization using hops count, which shows a correlation
between hops count, geographic location, and latency, but no
quantitative analysis for the relationship.

Some studies try to prove or question the effect of edge
clouds through measurements. [9] measures for edge comput-
ing, but its measurements for latency are made at a coarse-
grained level and do not provide an analysis of specific factors
influencing latency. [28] evaluates the current cloud infras-
tructure’s suitability to meet emerging applications’ latency
requirements. The authors discuss the necessity of building
edge cloud platforms in today’s fast-growing cloud computing
and put up a question, ”It is not clear what benefits an
extensive investment in edge deployment would bring”. In
this paper, we demonstrate that dense deployed edge clouds
can effectively address the shortcomings of central clouds
in serving next-generation mission-critical applications with
a real edge computing platform.
Edge Cloud Platforms Optimization. Measurements of
specific network platforms help to suggest optimizations to
existing network architecture. [38] proposes incorporating
performance information into Facebook’s routing decisions
to investigate if it can improve its network performance.
The study focuses more on optimizing the edge cloud from
a routing perspective. It concludes that the current routing
strategy is already highly optimized. Hence, optimizing the
edge cloud deployment from a routing perspective is not wise.

[39] provides a large-scale latency study using the RIPE
Atlas platform and devises several edge deployment strategies
to improve cloud access latency. Still, the study doesn’t
consider many crucial factors like ISPs and temporal factors.
Compared with the [39], our study firstly explores the spatial-
temporal factors influencing the end-to-end latency, and our
four deployment plans are based on the measurement, which
is fairer.

VII. CONCLUSION

In this paper, we have collected a large-scale real-world
latency dataset from a commercial crowd-sourcing edge cloud
platform. We have analyzed and modeled the factors that influ-
ence the spatial-temporal latency distribution and pointed out
some potential factors that damage the latency of edge clouds.
Based on the lessons we learned from the measurements,
we propose a prototype edge cloud and evaluate its latency,
volatility, and QoS improvements. Our measurements demon-
strate the reliability of the edge clouds and provide foresight
for the development and deployment of future latency-sensitive
applications.
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