

Boosting Mobile CNN Inference through Semantic Memory

Yun Li^{1,4}, Chen Zhang^{2,*}, Shihao Han^{3,4}, Li Lyna Zhang⁴, Baoqun Yin^{1,*},

Yunxin Liu⁵, Mengwei Xu⁶

¹University of Science and Technology of China, ²Alibaba Group, ³Rose-Hulman Institute of Technology, ⁴Microsoft Research Asia, ⁵Tsinghua University, ⁶Beijing University of Posts and Telecommunications

(* indicates the corresponding author)

CNNs have catalyzed many emerging mobile vision tasks

Face Recognition

Classification

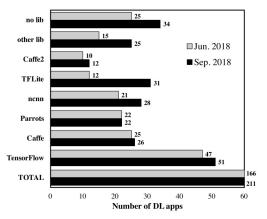
Action Recognition

- DNNs have achieved great success in many continuous mobile vision applications.
- The mobile/wearable devices need to perform CNN inference in real time on these video images.

Fast inference on mobile devices is urgent

- The CNN executions are costly.
 - high time complexity and energy-consuming
- Offloading to the cloud?
 - tight delay constraint and data privacy concerns
- A notable trend is on-device CNN inference

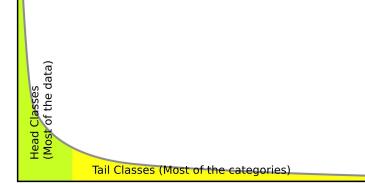
Cloud? Privacy concerns



increased by 27% with 3 month

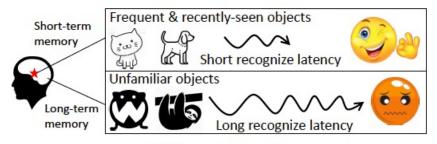
Two critical observations

- The temporal locality in mobile video streams
 - Recently seen objects are more likely to appear again in the next few frames
- Long-tail distribution
 - The frequency of object occurrence in the mobile video streams typically follows a long-tail distribution



How does the human brain solve it?

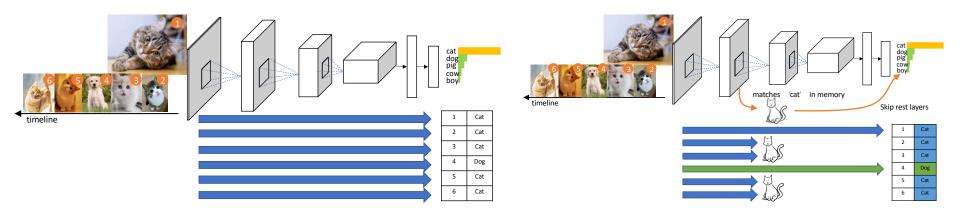
- Human brain leverages temporal redundancy with priming effect
- Priming effect : a psychology phenomenon whereby exposure to one stimulus improves a response to a subsequent stimulus, without conscious guidance or intention.
- Priming effect is related to the long- and short-term memory of human brains



(a) The priming effect

Motivation

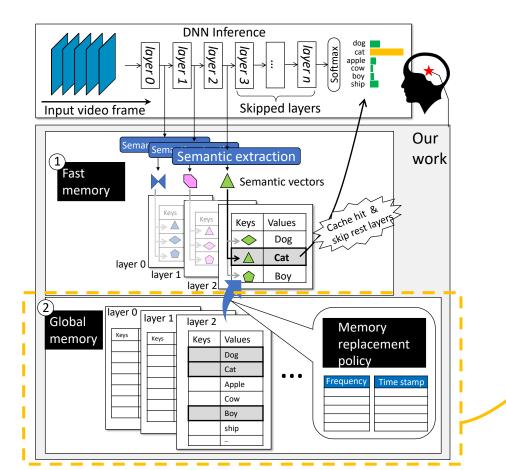
• Infuse the priming effect with CNN inference



Traditional CNN model: carry out fully inference every time

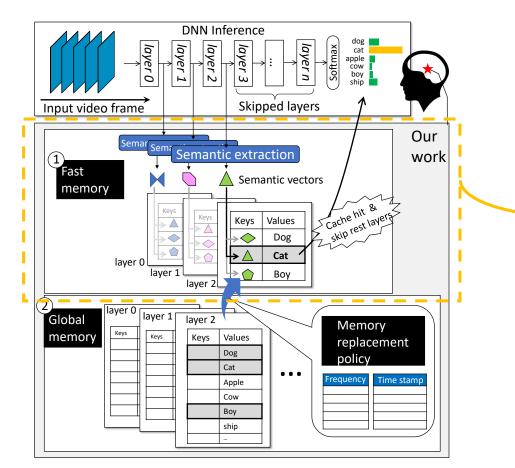
Rarely seen objects: fully inference Recently seen objects: early exit

Our proposal: semantic memory (SMTM)



- store the semantic centers of all classes
- Memory Replacement Policy: cache the frequency and time stamp of recently seen classes
- select few classes with the greatest probability of recurring

Our proposal: semantic memory (SMTM)



- extracts the intermediate feature of layer by layer
- match the extracted feature with the features of selected classes
- if matched, skip the rest layers and output the final results directly

Challenges

- Efficient memory encoding against CNN models' over-parameterization
 - extremely large volume of intermediate data
 - directly look up feature maps is cumbersome
 - take about 10ms even with GPU acceleration
- Obtaining speedup by high-level vision semantics
 - previous methods: low-level vision information
 - human brain: makes recognition by high-level features
 - traditional execution flow can not reuse semantics
- Battling dynamics on scenario variation
 - the scene change drastically
 - the scene complexity is not known in advance
 - real scenario data ≠ training data, more complicated

SMTM tech#1: Semantic Memory Encoding

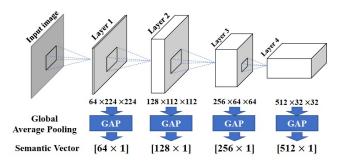


Figure 3: Semantic vectors extraction.

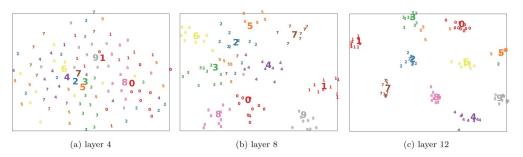


Figure 4: Visualized separability of semantic vectors for different VGG16 layers, showing that going deeper the semantic vectors can be more accurately separated.

- adopt global average pooling (GAP) to perform dimensionality reduction
 - much more light-weight
 - an effective indicator: clear separability in hidden layers
- adopt the cosine distance to evaluate the distance of different objects

•
$$s_j^l = \xi(SV^l, SC_j^l) \in [-1, 1], j \in [1, n]$$

•
$$sep^l = \frac{s_H^l - s_{SH}^l}{s_{SH}^l}$$

SMTM tech#2: Early Exit

- The separability in shallow layers is not as strong or stable as the deeper layers
- The cross-layer cumulative similarity
 - $SA_j^l = \sum_{l_0}^l s_j^{l_0} \times weight_{l_0}, j \in [1, n]$
 - $weight_{l_0} = 2^{l_0-1}$, $1 + 2^1 + 2^2 + \dots + 2^{n-1} = 2^n 1$
- the accumulated confidence (AC)
 - SA_{H}^{l} : the highest similarity accumulation result
 - SA_{SH}^{l} : the second-highest result
 - $AC^{l} = \frac{SA_{H}^{l} SA_{SH}^{l}}{SA_{SH}^{l}}$
 - If $AC^l > global threshold, exit!$

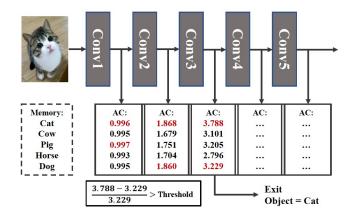


Figure 5: Memory look up by accumulated confidence (AC) metric. Memory: objects in memory.

SMTM tech#3: Adaptive Priming Memory

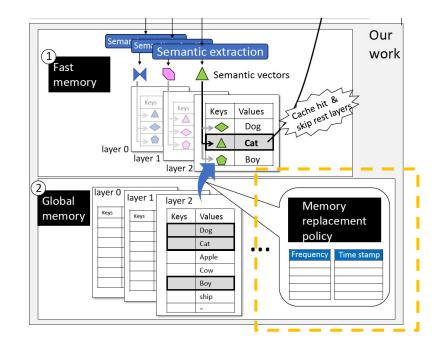
1) cache replacement policy 2) adaptive cache size 3) adaptive semantic centers

• Frequency table:

- keeps a record of the number of times that each object class presented in history
- Time-stamp table
 - keeps a record of the recency of each object class
 - the forgetting mechanism

 $\psi_i = \psi_i \times (0.25)^{\left[\frac{TS_i}{W}\right]}$

- The replacement policy
 - takes the Top-k highest score $Score_i = Score_i \times (0.25)^{\left[\frac{TS_i}{W}\right]}$
 - cache the Top-k objects in the fast memory



SMTM tech#3: Adaptive Priming Memory

1) cache replacement policy 2) adaptive cache size 3) adaptive semantic centers

- ✓ Adaptive cache size
 - probability estimation method

•
$$P(\theta \in \Psi) = \sum_{i=1}^{k} \frac{score_i}{\sum_{i=1}^{n} score_i}$$

- Confidence Level (CL) 95%
- adjust the $k, P(\theta \in \Psi) > CL$
- The experiments show a 21.6% hit ratio improvement

- ✓ Adaptive semantic centers
 - warms up using the training data
 - update in weighted average

manner

•
$$\widehat{SC}_{l_0}^{j} = \frac{SC_{l_0}^{j} \cdot m_{l_0}^{j} + SV_{l_0}^{j}}{m_{l_0}^{j} + 1}$$

The experiments show a 16.9% accuracy improvement

- Computing framework:
 - ncnn
- Test Platform:
 - Google Pixel 4XL (Qualcomm Snapdragon 855 Processor)
- Datasets:
 - Action Recognition (UCF-101), Classification (long-tail Cifar-100)
- Five popular CNN models:
 - AlexNet, GoogleNet, ResNet50, MobileNet V2, VGG16
- Five evaluation metrics:
 - latency improvement
 - accuracy loss
 - energy saving
 - memory overhead
 - early exit ratio

SMTM Evaluation

latency improvement

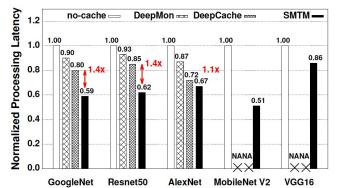


Figure 6: Average processing latency with CPU (w/o SIMD) on action recognition (AlexNet, GoogleNet, ResNet50, MobileNet V2) and classification (VGG16). 'NA': 'not applicable'. SMTM speedup the processing time by $1.1 \times -1.4 \times$ comparing to DeepCache [52], and $1.3 \times -1.5 \times$ comparing to DeepMon [24]. DeepCache's and DeepMon's implementation is not compatible with the two models MobileNet V2 and VGG16, so we are not able to reproduce some results. 'NA': 'not applicable'.

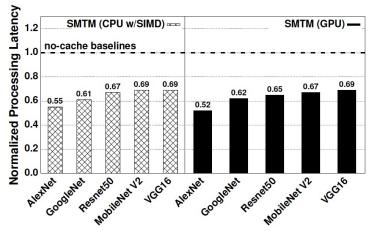


Figure 7: Average processing latency of SMTM with mobile CPU (w/SIMD) and mobile GPU on action recognition (AlexNet, GoogleNet, ResNet50, MobileNet V2) and classification (VGG16).

Mobile CPU and GPU: 30%-50% latency reduction

Compare with SOTA: 1.1X – 1.5X

Accuracy Drop, Memory Overhead

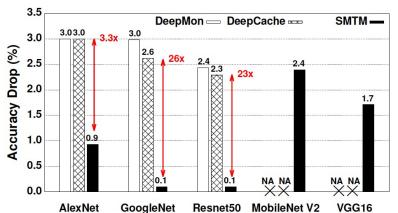


Figure 8: Top-1 accuracy drop of SMTM on action recognition (AlexNet, GoogleNet, ResNet50, MobileNet V2) and classification (VGG16). 'NA': 'not applicable'.

Accuracy drop: 1% on average

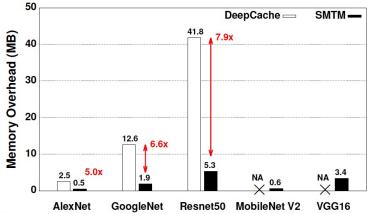


Figure 9: The memory overhead of SMTM on action recognition (AlexNet, GoogleNet, ResNet50, MobileNet V2) and classification (VGG16). 'NA': 'not applicable'.

Memory overhead:

20% of SOTA, less than 5% of original models

• Energy Saving, Early Exit Ratio, the Effect of the Threshold

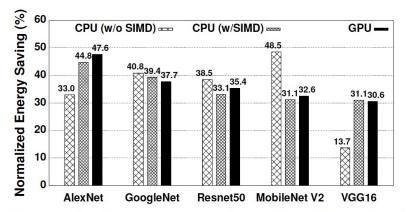
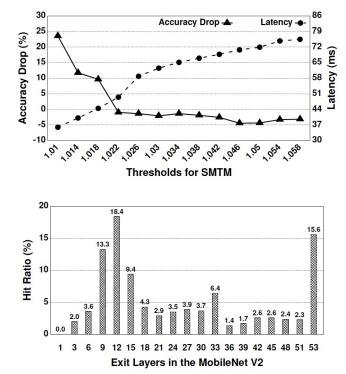


Figure 10: The energy saving ratio with different devices on action recognition (AlexNet, GoogleNet, ResNet50, MobileNet V2) and classification (VGG16).

Energy saving: 36% on average



• The performance of adaptive semantic memory

	Hit ratio	Latency reduction
SMTM (Constant)	65.39%	25.21%
SMTM (Adaptive)	87.00%	38.46%

Table 1: The impact of adaptive cache size. Tested on ResNet50 model.

21.61% hit ratio improvement 13.25% acceleration

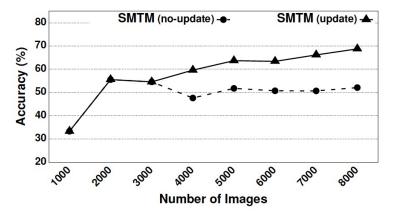


Figure 13: The impact of adaptive semantics center on the prediction accuracy on ResNet50.

16.9% accuracy improvement

Summary

- SMTM: a novel memory mechanism to accelerate CNN-powered mobile vision by infusing the priming effect with CNN inference.
 - speeds up CNN inference for the frequently and recently-seen objects
 - an accurate yet low-cost memory encoder
 - an early exit method
 - an adaptive priming memory policy
- prototype on commodity engine, evaluate on 5 CNN architectures, 2 datasets, on both mobile CPU/GPU
 - Mobile CPU and GPU: 30%-50% latency reduction
 - Only 5% memory overhead

Thank you for watching!