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CNNs have catalyzed many emerging mobile vision tasks

Face Recognition Classification Action Recognition

* DNNs have achieved great success in many continuous mobile vision
applications.

* The mobile/wearable devices need to perform CNN inference in real time on
these video images.



Fast inference on mobile devices is urgent

* The CNN executions are costly.
* high time complexity and energy-consuming

Offloading to the cloud?
* tight delay constraint and data privacy concerns

A notable trend is on-device CNN inference

OJun. 2018
Caffe2 W Sep. 2018

Security and Privacy O —
Concerns Dog the Cloud ° 0w w0 w0 o e

Number of DL apps

Cloud? Privacy concerns increased by 27% with 3 month



Two critical observations

* The temporal locality in mobile video
streams

* Recently seen objects are more likely to
appear again in the next few frames

* Long-tail distribution

* The frequency of object occurrence in the
mobile video streams typically follows a long-
tail distribution
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How does the human brain solve it?

* Human brain leverages temporal redundancy with priming effect

* Priming effect : a psychology phenomenon whereby exposure to one stimulus
improves a response to a subsequent stimulus, without conscious guidance or

intention.
* Priming effect is related to the long- and short-term memory of human brains
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Motivation

* Infuse the priming effect with CNN inference
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Traditional CNN model: carry out fully Rarely seen objects: fully inference
inference every time Recently seen objects: early exit



Our proposal: semantic memory (SMTM)

DNN Inference
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Our proposal: semantic memory (SMTM)

DNN Inference
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Challenges

e Efficient memory encoding against CNN models' over-parameterization
* extremely large volume of intermediate data
* directly look up feature maps is cumbersome
 take about 10ms even with GPU acceleration

* Obtaining speedup by high-level vision semantics
* previous methods: low-level vision information
* human brain: makes recognition by high-level features
* traditional execution flow can not reuse semantics

 Battling dynamics on scenario variation
* the scene change drastically
* the scene complexity is not known in advance
* real scenario data # training data, more complicated



SMTM tech#1: Semantic Memory Encoding
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Figure 4: Visualized separability of semantic vectors for different VGG16 layers, showing that going deeper the

Flgure 3: Semantic vectors extraction. semantic vectors can be more accurately separated.

* adopt global average pooling (GAP) to perform dimensionality reduction
* much more light-weight
* an effective indicator: clear separability in hidden layers

* adopt the cosine distance to evaluate the distance of different objects
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SMTM tech#2: Early Exit

* The separability in shallow layers is not as strong or stable as the deeper layers

* The cross-layer cumulative similarity
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* the accumulated confidence (AC)

« SAL : the highest similarity accumulation result

* SAL, :the second-highest result
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Figure 5: Memory look up by accumulated confidence
(AC) metric. Memory: objects in memory.



SMTM tech#3: Adaptive Priming Memory

1) cache replacement policy 2) adaptive cache size

* Frequency table:

* keeps a record of the number of times that each
object class presented in history

* Time-stamp table

* keeps a record of the recency of each object class
* the forgetting mechanism

Y = 1/Ji><(0-25)l%J

* The replacement policy
* takes the Top-k highest score

[
Score; = Score; x(0.25)!'w

* cache the Top-k objects in the fast memory

3) adaptive semantic centers
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SMTM tech#3: Adaptive Priming Memory

1) cache replacement policy 2) adaptive cache size 3) adaptive semantic centers

v’ Adaptive cache size v’ Adaptive semantic centers

e probability estimation method .
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SMTM Implementation

Computing framework:
®* ncnn

Test Platform:
* Google Pixel 4XL (Qualcomm Snapdragon 855 Processor)

Datasets:
* Action Recognition (UCF-101), Classification (long-tail Cifar-100)

Five popular CNN models:
* AlexNet, GoogleNet, ResNet50, MobileNet V2, VGG16

Five evaluation metrics:
* latency improvement
* accuracy loss
* energy saving
* memory overhead
* early exit ratio



SMTM Evaluation

* latency improvement

1.2 no-cache— DeepMon = DeepCache == SMTM =

1.00 1.00 1.00 1.00 1.00
0.90 e
0.80

1.0

0.8 1.4%

0.6

04|

02|

Normalized Processing Latency

0.0

GoogleNet Resnet50 AlexNet MobileNetV2 VGG16

Figure 6: Average processing latency with CPU (w/o
SIMD) on action recognition (AlexNet, GoogleNet,
ResNet50, MobileNet V2) and classification (VGG16).
‘NA’: ‘not applicable’. SMTM speedup the processing
time by 1.1x-1.4x comparing to DeepCache [52], and
1.3x-1.5x comparing to DeepMon [24]. DeepCache’s
and DeepMon’s implementation is not compatible with
the two models MobileNet V2 and VGG16, so we are
not able to reproduce some results. ‘NA’: ‘not applica-

ble’.
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Figure 7: Average processing latency of SMTM with mo-
bile CPU (w/SIMD) and mobile GPU on action recog-
nition (AlexNet, GoogleNet, ResNet50, MobileNet V2)
and classification (VGG16).

Mobile CPU and GPU: 30%-50% latency reduction
Compare with SOTA:  1.1X—1.5X



SMTM Implementation

e Accuracy Drop, Memory Overhead
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Figure 8: Top-1 accuracy drop of SMTM on action recog-
nition (AlexNet, GoogleNet, ResNet50, MobileNet V2)
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and classification (VGG16). ‘NA’: ‘not applicable’.

Accuracy drop: 1% on average
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Figure 9: The memory overhead of SMTM on action
recognition (AlexNet, GoogleNet, ResNet50, MobileNet
V2) and classification (VGG16). ‘NA’: ‘not applicable’.

Memory overhead:

20% of SOTA, less than 5% of original models



SMTM Implementation

* Energy Saving, Early Exit Ratio, the Effect of the Threshold

Normalized Energy Saving (%)

Figure 10:
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The energy saving ratio with different

devices on action recognition (AlexNet, GoogleNet,

ResNet50, MobileNet V2) and classification (VGG16).

Energy saving: 36% on average
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SMTM Implementation

e The performance of adaptive semantic memory

7 ] — SMTM (no-update) -o- SMTM (update) -4
Hit ratio Latency reduction 9 L /_/‘
SMTM (Constant)  65.39% 25.21% B /‘\‘/A
SMTM (Adaptive)  87.00% 38.46% < 50 / Gt L LR
3 40
< 1«
Table 1: The impact of adaptive cache size. Tested on 30
ResNet50 model. 20

o N N o o o o o
S$ S 5 S S S S S
N P o ® S S R S

: - Number of |
21.61% hit ratio improvement umber of Images

Figure 13: The impact of adaptive semantics center on

13.25% acceleration
? the prediction accuracy on ResNet50.

16.9% accuracy improvement



Summary

* SMTM: a novel memory mechanism to accelerate CNN-powered
mobile vision by infusing the priming effect with CNN inference.

» prototype on commodity engine, evaluate on 5 CNN architectures, 2
datasets, on both mobile CPU/GPU
* Mobile CPU and GPU: 30%-50% latency reduction
* Only 5% memory overhead



Thank you for watching!



