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• DNNs have achieved great success in many continuous mobile vision 
applications.
• The mobile/wearable devices need to perform CNN inference in real time on 

these video images.

Face  Recognition Action  RecognitionClassification

CNNs have catalyzed many emerging mobile vision tasks



Fast inference on mobile devices is urgent

• The CNN executions are costly.  
• high time complexity and energy-consuming 

• Offloading to the cloud? 
• tight delay constraint and data privacy concerns

• A notable trend is on-device CNN inference

Cloud? Privacy concerns increased by 27% with 3 month



Two critical observations

• The temporal locality in mobile video 
streams
• Recently seen objects are more likely to 

appear again in the next few frames

• Long-tail distribution
• The frequency of object occurrence in the 

mobile video streams typically follows a long-
tail distribution



How does the human brain solve it?
• Human brain leverages temporal redundancy with priming effect
• Priming effect :  a psychology phenomenon whereby exposure to one stimulus 

improves a response to a subsequent stimulus, without conscious guidance or 
intention.

• Priming effect is related to the long- and short-term memory of human brains



Motivation
• Infuse the priming effect with CNN inference
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Our proposal: semantic memory (SMTM)

layer 0

So
ft

m
ax cat

dog

apple
cow
boy
ship

layer 0

layer 1

layer 2

layer 3

layer n

DNN Inference

Skipped layers

…

Semantic extractionSemantic extractionSemantic extraction

Keys Values

Cat

Dog

Boy

layer 1

Keys Values
Cat

Dog

Boy

layer 2

Keys Values

Cat

Dog

Boy

Fast
memory

1
Semantic vectors

Global 
memory

2 layer 0

…

Our 
work

Keys Values

Dog

Cat

Apple

Cow

Boy

ship

…

layer 1

Keys Values

Dog

Cat

Apple

Cow

Boy

ship

…

layer 2
Keys Values

Dog

Cat

Apple

Cow

Boy

ship
…

Frequency

Memory
replacement 
policy

Time stamp

Input video frame

• store the semantic centers of all 
classes

• Memory Replacement Policy: 
cache the frequency and time 
stamp of recently seen classes

• select few classes with the 
greatest probability of recurring
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• extracts the intermediate 
feature of layer by layer

• match the extracted feature with 
the features of selected classes

• if matched, skip the rest layers 
and output the final results 
directly

Our proposal: semantic memory (SMTM)



Challenges
• Efficient memory encoding against CNN models' over-parameterization

• extremely large volume of intermediate data
• directly look up feature maps is cumbersome
• take about 10ms even with GPU acceleration

• Obtaining speedup by high-level vision semantics
• previous methods: low-level vision information 
• human brain: makes recognition by high-level features
• traditional execution flow can not reuse semantics

• Battling dynamics on scenario variation
• the scene change drastically 
• the scene complexity is not known in advance
• real scenario data ≠ training data, more complicated



SMTM tech#1: Semantic Memory Encoding

• adopt global average pooling (GAP) to perform dimensionality reduction
• much more light-weight
• an effective indicator: clear separability in hidden layers

• adopt the cosine distance to evaluate the distance of different objects
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SMTM tech#2: Early Exit
• The separability in shallow layers is not as strong or stable as the deeper layers 

• The cross-layer cumulative similarity
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SMTM tech#3: Adaptive Priming Memory

• Frequency table: 
• keeps a record of the number of times that each 

object class presented in history

• Time-stamp table 
• keeps a record of the recency of each object class
• the forgetting mechanism
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• The replacement policy 
• takes the Top-k highest score
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• cache the Top-k objects in the fast memory

1) cache replacement policy    2) adaptive cache size     3) adaptive semantic centers 



SMTM tech#3: Adaptive Priming Memory
1) cache replacement policy    2) adaptive cache size     3) adaptive semantic centers 

ü Adaptive cache size

• probability estimation method
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• Confidence Level (CL)  95%

• adjust the k, 𝑃 𝜃 ∈ Ψ > CL

• The experiments show a 21.6% 

hit ratio improvement

ü Adaptive semantic  centers

• warms up using the training data

• update in	weighted	average	

manner

• /𝑆𝐶"&
! =

)*"&
) +,"&

) -)."&
)

,"&
) -/

• The experiments show a 16.9% 

accuracy improvement



• Computing framework: 
• ncnn

• Test Platform: 
• Google Pixel 4XL (Qualcomm Snapdragon 855 Processor) 

• Datasets: 
• Action Recognition (UCF-101), Classification (long-tail Cifar-100)

• Five popular CNN models:
• AlexNet, GoogleNet, ResNet50, MobileNet V2, VGG16

• Five evaluation metrics:
• latency improvement
• accuracy loss
• energy saving
• memory overhead
• early exit ratio 

SMTM Implementation



• latency improvement

SMTM Evaluation

Mobile CPU and GPU:  30%-50% latency reduction

Compare with SOTA:     1.1X – 1.5X



• Accuracy Drop, Memory Overhead

SMTM Implementation

Accuracy drop:  1%  on average Memory overhead:  

20% of SOTA，less than 5% of original models



• Energy Saving, Early Exit Ratio, the Effect of the Threshold

SMTM Implementation

Energy saving:  36% on average



• The performance of adaptive semantic memory

SMTM Implementation

21.61% hit ratio improvement

13.25% acceleration

16.9% accuracy improvement



Summary
• SMTM: a novel memory mechanism to accelerate CNN-powered 

mobile vision by infusing the priming effect with CNN inference. 
• speeds up CNN inference for the frequently and recently-seen objects
• an accurate yet low-cost memory encoder
• an early exit method
• an adaptive priming memory policy

• prototype on commodity engine, evaluate on 5 CNN architectures, 2 
datasets, on both mobile CPU/GPU
• Mobile CPU and GPU:  30%-50% latency reduction
• Only 5% memory overhead



Thank you for watching!


