
Demo: AQuery Engine for Zero-streaming Cameras
Mengwei Xu∗
Peking University
mwx@pku.edu.cn

Tiantu Xu∗
Purdue ECE

xu944@purdue.edu

Yunxin Liu
Microsoft Research

yunxin.liu@microsoft.com

Xuanzhe Liu
Peking University
xzl@pku.edu.cn

Gang Huang
Peking University
hg@pku.edu.cn

Felix Xiaozhu Lin
Purdue ECE

xzl@purdue.edu

CCS CONCEPTS
• Computer systems organization → Embedded systems; •
Information systems→ Data analytics.

KEYWORDS
Video Analytics; Zero-streaming Cameras

ACM Reference Format:
Mengwei Xu, Tiantu Xu, Yunxin Liu, Xuanzhe Liu, Gang Huang, and Felix
Xiaozhu Lin. 2020. Demo: A Query Engine for Zero-streaming Cameras. In
The 26th Annual International Conference on Mobile Computing and Network-
ing (MobiCom ’20), September 21–25, 2020, London, United Kingdom. ACM,
New York, NY, USA, 3 pages. https://doi.org/10.1145/3372224.3417317

1 INTRODUCTION
Low-cost wireless cameras are growing rapidly. With the help of ad-
vanced machine learning models (e.g., CNNs), those videos exhibit
high business and social values, e.g., for retailing planning [18],
wildlife study [21], and traffic monitoring [19, 25]. However, with
high compute need, traditional video analytics systems [14, 15, 26,
27] require all videos to be uploaded to a backend server, which
stresses the scarce network bandwidth between cameras and servers.

We advocate for cameras to be zero-streaming: a camera cap-
tures and stores videos to their cheap local storage without upload-
ing to an edge/cloud server; only when a retrospective query comes,
the cloud reaches out to the queried camera. Such advocation is
based on two unconventional but practical observations: (1) Most
videos are never queried until expired. Users typically deploy low-
cost cameras for capturing excessive videos [23]. This is because a
query typically comes after “interesting” events happen, and those
events are often unforeseeable and rare, e.g., traffic accidents or
store theft. Without zero streaming, such cold videos waste lots of
network bandwidth that are expensive and precious. Provisioning
wireless network for cameras to stream such cold videos is uneco-
nomic, and the situation is exacerbated by the increasingly large
camera count being deployed. (2) Camera storage can retain videos
long enough. An increasingly cheap SD card [9, 10] can already

∗Equal contributions

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MobiCom ’20, September 21–25, 2020, London, United Kingdom
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7085-1/20/09.
https://doi.org/10.1145/3372224.3417317

Cloud detects
& op training

Query
start

cloud

camera
Time

Op1
frames

Op2
frames

Bootstrap

Op1 ranks Op2 ranks

Query 
abort

Op upgrade

Positive frames

Landmarks

Figure 1: The workflow of a query’s execution in ZC2.

store videos (720P at 30fps) for weeks or months. Such retention
periods already satisfy many surveillance scenarios [1, 2].

How to query zero-streaming cameras? Since the videos are
stored on distributed, remote cameras, existing video analytics
systems can no longer suffice. The main challenge is the excessively
long query latency: while the cloud compute resource can be easily
scaled out (e.g., buying or renting GPUs), the network bandwidth
becomes the bottleneck.

We present ZC2, a runtime system that significantly accelerates
the query execution for zero-streaming cameras. The key novelty
of ZC2 is to quickly deliver rough query results to users and keep
refining the results, a similar concept borrowed from online aggre-
gation [22]. In this way, a user is able to explore the videos through
interactive queries, e.g., aborting an ongoing query based on early
feedbacks and issuing a new one with parameters updated. Such
exploratory query is enabled by several key techniques of ZC2 (§2).

We build a prototype of ZC2, which can run on commodity
camera hardware (exemplified by Raspberry Pi) and GPU servers.
The prototype also contains a web-based GUI, which exhibits rich
information to users to examine the query execution progress and
results online (§3).

2 ZC2 DESIGN
Supported queriesZC2 supports retrospective, ad-hoc video queries
that cover a video time span, typically hours or days, and an object
class as detectable by modern NNs, e.g., any of the 80 classes of
YOLOv3 [24] trained on COCO [17]. Though ZC2 is designed for
rich analytics scenarios including object mean/max/min counting,
this demo focuses on a typical one: retrieving image frames with
certain objects, e.g., “retrieve all images that contain buses from
yesterday”.

The workflow of ZC2 contains two following stages.

https://doi.org/10.1145/3372224.3417317
https://doi.org/10.1145/3372224.3417317


MobiCom ’20, September 21–25, 2020, London, United Kingdom Mengwei Xu, Tiantu Xu, et al.

During video capture, ZC2 builds sparse but accurate land-
marks with best efforts to obtain long-term video knowl-
edge. The camera runs generic, accurate object detector on a small
sample of captured video frames (called landmarks). Because the
camera hardware (e.g., Arm Cortex-A53) has limited computing ca-
pacity, landmarks are sparse, e.g., one in every 30 captured frames;
yet, with high-accuracy object labels, they provide reliable knowl-
edge – spatial distributions of various objects over long-term videos.
Note that ZC2 does not use the knowledge as direct answers to
queries but builds key query optimizations atop it.
During query execution, ZC2 runs small NNs (operators) on
camera to prioritize frames uploaded and keeps “upgrading”
the operators with the help of cloud. As shown in Figure 2,
upon receiving a query, the cloud first retrieves all landmarks in
the queried video range from camera, along with the object la-
bels and bounding boxes returned by YOLOv3. The cloud uses the
landmarks to estimate the object spatial distribution, e.g., “90% of
the buses appear in a 200×200 region on the top-right”, which is
used to optimize the query by running the operators on only this
image area. The landmarks are also used as the initial training
dataset for bootstrapping a set of camera operators. The camera
runs lightweight NNs to prioritize the queried frames for upload.
An operator scores frames; a higher score suggests that a frame is
more likely to contain any object of interest. The cloud processes
the uploaded frames with generic, high-accuracy object detector
and emits results, e.g., positive image frames, to users. It trains
different operators for higher accuracy. Observing resource condi-
tions (network bandwidth) and positive ratios in uploaded frames,
the cloud upgrades the operator on camera. With the upgraded
operator, the camera continues to process remaining frames. The
above steps repeat until query abort or completion. Throughout the
query, the cloud keeps refining the results presented to the user.

3 ZC2 PROTOTYPE AND DEMO
ZC2 Prototype We build the cloud runtime atop Tensorflow
1.13 [11] and Keras 2.2.4 [12]. The camera runtime uses Arm NN [3]
and generates landmarkswith theNNPACK-accelerated YOLOv3 [6].
The cloud uses YOLOv3 to validate the uploaded frames during
query execution. Both camera and cloud use OpenCV 3.3 [7] for
image processing. We architect on-camera operators as variants
of AlexNet [16]. We vary the number of convolutional layers (2–
5), convolution kernel sizes (8/16/32), the last dense layer’s size
(16/32/64); and the input image size (25×25/50×50/100×100). We
empirically select 40 operators to be trained by ZC2 online. As
described in §2, the cloud exploits object spatial skews by carving
out various image regions for operators to consume. To do so, it em-
ploys the k-enclosing algorithm [20] to identify the smallest region
that covers a given percentage (e.g., 95%) of the object occurrences.
To ensure that on-camera operators will not be bottlenecked by
storage or video decoding speed, we use LMDB to accelerate the
I/O and also borrow the techniques from VStore [26]. ZC2 also
employs background subtraction [4], a standard technique running
on camera during video capture to detect adjacent frames that have
little motion (< 1% of the foreground mask) and omits these frames
in query execution.

List of captured videos

Video preview

Query parameters

Query results
summary

Selected positive
frames

Query execution
monitoring

Query monitoring
broken down into
time windows

Thumbnails of returned positive frames with
bounding boxes and confidence score

Figure 2: A screenshot of our preliminary demo.

ZC2 Demo For clarity, this demo only shows the query execution,
assuming the landmarks have been built already. The demo runs
on Raspberry Pi 3, an embedded hardware similar to low-cost cam-
eras [5, 8], and a commodity x86 server with a modern GPU. Both
devices communicates WiFi with 1MB/s default bandwidth [13].
On the cloud/user side, we build a web-based GUI tool (based on
Django) to display the information related to query execution.
• Query initialization in demo A list of videos will first be dis-
played with preview frames. The videos are captured ahead of time
across different geographical locations, including indoor, traffic,
wildlife, etc. The user picks a video, and associated query parame-
ters: time span (e.g., 24 hours), target object class (e.g., bicycle, bus,
person), and frame skip (e.g., 1 in 10 frames). Once ready, the query
can be issued.
• Query execution in demo As query goes on, a set of Web UI
fragments will show the query execution progress and results with
their UI elements continuously updated. (1) A table that summarizes
the returned positive frames. By clicking a table item, the image
will be displayed with a bounding box of the target object and a
confidence score. (2) A window that displays the query processing
monitoring, including positive frames discovered by the system per
second, the number of frames being processed by camera/cloud per
second, the traffic between camera/cloud, and the memory usage
of camera. (3) A window that breaks down the whole queried time
range into smaller time windows, and shows the aggregation statis-
tics of each window, such as howmany frames have been processed
with the current operator. There are buttons to promote/demote
certain time windows to adjust the on-camera processing and up-
loading order if the user favors/disfavors the results returned from
that particular window. (4) A window that summarizes the operator
is being used for on-camera processing, such as its architecture,
speed, and testing accuracy. (5) Buttons to pause or abort the query.
•Query termination in demoAquery terminates once it’s aborted
or all frames have been uploaded. All positive frames will be stored
on a cloud directory. Besides, the overall query statistics will be sum-
marized such as the query execution time to retrieve 50%/80%/100%
positive frames, operators used, etc.



Demo: AQuery Engine for Zero-streaming Cameras MobiCom ’20, September 21–25, 2020, London, United Kingdom

REFERENCES
[1] Tufts: Video security university policy. https://publicsafety.tufts.edu/policies/

video-security/, 2014.
[2] Video surveillance laws: Video retention requirements by state. https:

//www.verkada.com/blog/surveillance-laws-video-retention-requirements/,
2018.

[3] Arm nn ml software. https://github.com/ARM-software/armnn, 2019.
[4] Background subtraction. https://docs.opencv.org/3.4.0/db/d5c/

tutorialpybgsubtraction.html, 2019.
[5] Hisilicon ip camera specifications. http://www.hisilicon.com/en/Products/

ProductList/Surveillance, 2019.
[6] Nnpack-accelerated darknet. https://github.com/digitalbrain79/darknet-nnpack,

2019.
[7] Opencv 3.3. https://opencv.org/opencv-3-3/, 2019.
[8] Wyze camera specifications. https://www.wyze.com/wyze-cam/specs/, 2019.
[9] Price history of 128gb samsung sd card. https://camelcamelcamel.com/product/

B06XWZWYVP, 2020.
[10] Price history of 256gb samsung sd card. https://camelcamelcamel.com/product/

B072HRDM55, 2020.
[11] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. Tensorflow: A system for large-scale machine learning.
In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), pages 265–283, Savannah, GA, 2016. USENIX Association.

[12] François Chollet. keras. https://github.com/keras-team/keras, 2015.
[13] Bo Han, Feng Qian, Lusheng Ji, and Vijay Gopalakrishnan. Mp-dash: Adap-

tive video streaming over preference-aware multipath. In Proceedings of the
12th International on Conference on Emerging Networking EXperiments and
Technologies, CoNEXT ’16, pages 129–143, New York, NY, USA, 2016. ACM.

[14] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik, Shivaram Venkataraman,
Paramvir Bahl, Matthai Philipose, Phillip B. Gibbons, and Onur Mutlu. Focus:
Querying large video datasets with low latency and low cost. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18), Carls-
bad, CA, 2018. USENIX Association.

[15] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia.
Noscope: Optimizing neural network queries over video at scale. Proc. VLDB
Endow., 10(11):1586–1597, August 2017.

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bot-
tou, and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 25, pages 1097–1105. Curran Associates, Inc., 2012.

[17] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO: common
objects in context. In David J. Fleet, Tomás Pajdla, Bernt Schiele, and Tinne
Tuytelaars, editors, Computer Vision - ECCV 2014 - 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V, volume 8693 of
Lecture Notes in Computer Science, pages 740–755. Springer, 2014.

[18] Alan J Lipton, Peter L Venetianer, Niels Haering, Paul C Brewer, Weihong Yin,
Zhong Zhang, Li Yu, Yongtong Hu, Gary WMyers, Andrew J Chosak, et al. Video
analytics for retail business process monitoring, 2015. US Patent 9,158,975.

[19] Xu Liu, Zilei Wang, Jiashi Feng, and Hongsheng Xi. Highway vehicle counting
in compressed domain. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3016–3024, 2016.

[20] Priya Ranjan Sinha Mahapatra, Arindam Karmakar, Sandip Das, and Partha P
Goswami. k-enclosing axis-parallel square. In International Conference on
Computational Science and Its Applications, pages 84–93. Springer, 2011.

[21] Mohammad Sadegh Norouzzadeh, Anh Nguyen, Margaret Kosmala, Alexan-
dra Swanson, Meredith S Palmer, Craig Packer, and Jeff Clune. Automatically
identifying, counting, and describing wild animals in camera-trap images with
deep learning. Proceedings of the National Academy of Sciences, 115(25):E5716–
E5725, 2018.

[22] Niketan Pansare, Vinayak R Borkar, Chris Jermaine, and Tyson Condie. Online
aggregation for large mapreduce jobs. Proc. VLDB Endow, 4(11):1135–1145, 2011.

[23] Ziv Paz. Innovation in surveillance: What’s changing at the edge, core and cloud?
https://blog.westerndigital.com/innovation-surveillance-edge-core-cloud/, year
= 2018.

[24] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv
preprint arXiv:1804.02767, 2018.

[25] Mengwei Xu, Xiwen Zhang, Yunxin Liu, Gang Huang, Xuanzhe Liu, and
Felix Xiaozhu Lin. Approximate query service on autonomous iot cam-
eras. In Proceedings of the 18th International Conference on Mobile Systems,
Applications, and Services, pages 191–205, 2020.

[26] Tiantu Xu, Luis Materon Botelho, and Felix Xiaozhu Lin. Vstore: A data store for
analytics on large videos. In Proceedings of the Fourteenth EuroSys Conference
2019, EuroSys ’19, pages 16:1–16:17, New York, NY, USA, 2019. ACM.

[27] Tan Zhang, Aakanksha Chowdhery, Paramvir (Victor) Bahl, Kyle Jamieson, and
Suman Banerjee. The design and implementation of a wireless video surveillance
system. In Proceedings of the 21st Annual International Conference on Mobile
Computing and Networking, MobiCom ’15, pages 426–438, New York, NY, USA,
2015. ACM.

https://publicsafety.tufts.edu/policies/video-security/
https://publicsafety.tufts.edu/policies/video-security/
https://www.verkada.com/blog/surveillance-laws-video-retention-requirements/
https://www.verkada.com/blog/surveillance-laws-video-retention-requirements/
https://github.com/ARM-software/armnn
https://docs.opencv.org/3.4.0/db/d5c/tutorial_py_bg_subtraction.html
https://docs.opencv.org/3.4.0/db/d5c/tutorial_py_bg_subtraction.html
http://www.hisilicon.com/en/Products/ProductList/Surveillance
http://www.hisilicon.com/en/Products/ProductList/Surveillance
https://github.com/digitalbrain79/darknet-nnpack
https://opencv.org/opencv-3-3/
https://www.wyze.com/wyze-cam/specs/
https://camelcamelcamel.com/product/B06XWZWYVP
https://camelcamelcamel.com/product/B06XWZWYVP
https://camelcamelcamel.com/product/B072HRDM55
https://camelcamelcamel.com/product/B072HRDM55
https://github.com/keras-team/keras
https://blog.westerndigital.com/innovation-surveillance-edge-core-cloud/

	1 Introduction
	2 ZC2 Design
	3 ZC2 Prototype and Demo
	References

