
Mandheling: Mixed-Precision On-Device DNN Training
with DSP Offloading

Daliang Xu1∗, Mengwei Xu2∗#, Qipeng Wang1, Shangguang Wang2, Yun Ma1, Kang Huang3, Gang
Huang1, Xin Jin1#, Xuanzhe Liu1#

1Key Lab of High Confidence Software Technologies (Peking University), Beijing, China
2State Key Laboratory of Networking and Switching Technology (BUPT), Beijing, China

3Linggui Tech Company, Beijing, China.
{xudaliang,mayun,hg,xinjinpku,xzl}@pku.edu.cn,wangqipeng@stu.pku.edu.cn

{mwx,sgwang}@bupt.edu.cn
kang.huang@nlptech.com

ABSTRACT
This paper proposes Mandheling, the first system that enables
highly resource-efficient on-device training by orchestrating mixed-
precision training with on-chip Digital Signal Processor (DSP)
offloading. Mandheling fully explores the advantages of DSP in
integer-based numerical calculations using four novel techniques:
(1) a CPU-DSP co-scheduling scheme to situationally mitigate the
overhead from DSP-unfriendly operators; (2) a self-adaptive rescal-
ing algorithm to reduce the overhead of dynamic rescaling in back-
ward propagation; (3) a batch-splitting algorithm to improve DSP
cache efficiency; (4) a DSP compute subgraph-reusing mechanism
to eliminate the preparation overhead on DSP. We have fully im-
plemented Mandheling and demonstrated its effectiveness through
extensive experiments. The results show that, compared to the
state-of-the-art DNN engines from TFLite and MNN, Mandheling
reduces per-batch training time by 5.5× and energy consumption by
8.9× on average. In end-to-end training tasks, Mandheling reduces
convergence time by up to 10.7× and energy consumption by 13.1×,
with only 1.9%–2.7% accuracy loss compared to the FP32 precision
setting.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; • Computing methodologies→ Artificial intelligence.

KEYWORDS
Mobile device, deep learning, DSP offloading
ACM Reference Format:
Daliang Xu1∗, Mengwei Xu2∗#, Qipeng Wang1, Shangguang Wang2, Yun
Ma1, KangHuang3, GangHuang1, Xin Jin1#, Xuanzhe Liu1#. 2022. Mandheling:
Mixed-Precision On-Device DNN Training with DSP Offloading. In The 28th
Annual International Conference on Mobile Computing and Networking (ACM

*Equal contributions; #Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9181-8/22/10. . . $15.00
https://doi.org/10.1145/3495243.3560545

MobiCom ’22), October 17–21, 2022, Sydney, NSW, Australia. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3495243.3560545

1 INTRODUCTION
With ever-increasing data privacy concerns [5], empowering a
mobile device to train a deep neural network (DNN) locally (i.e., on-
device training) has recently attracted attention from both academia
and industry [1, 2, 82]. Without giving away the training data out
of controlled domain, on-device training enables (i) geo-distributed
devices to collaboratively establish a high-accuracy model [18, 35]
or (ii) a single device to personalize and adapt its model to its
environment [82].

However, a key obstacle to practical on-device training is its
huge resource cost. According to our preliminary measurements
with two popular DL libraries (TFLite [55] and MNN [42]), training
ResNet-50 with one batch (batch size 32) takes 4.6 GB of memory
and 36.4 seconds on a Xiaomi 10 smartphone equipped with a
Snapdragon 865 CPU. The consumed energy equals watching a
1080P-definition video for 111.2 seconds. In an end-to-end learning
scenario, it typically takes thousands or even more such batches of
training and the accumulated cost becomes prohibitively expensive.
Unfortunately, this issue has not been well explored by the research
community. Existing studies gaining impressive benefits for on-
device inference tasks [21, 38, 56, 76, 84] can hardly be applied
to on-device training due to the huge gap between inference and
training workloads, e.g., the different computation patterns and
accuracy requirements.

To optimize the performance of on-device training, this work is
motivated by two key observations. First, traditional DNN training
is mostly performed in FP32 data format to achieve good model
accuracy. However, the ML community has recently proposed var-
ious mixed-precision training algorithms [23, 39, 53, 54, 65, 77, 81,
86, 91, 94, 95, 97], where the weights and activations generated
during training are represented not only by FP32 but also by lower-
precision formats such as INT8 and INT16. By exploiting the hard-
ware features in accelerating integer operations, these algorithms
are effective in reducing the training-time resource cost while guar-
anteeing convergence accuracy, i.e., only a 1.3% loss on CIFAR-
10 [86]. Second, modern mobile SoCs often consist of heteroge-
neous processors, among which the Digital Signal Processor (DSP)
is ubiquitously available and particularly suits integer operations,
i.e., INT8-based matrix multiplication. For example, Hexagon 698
DSP [9] is adequate to execute 128 INT8 operations in one cycle

https://doi.org/10.1145/3495243.3560545
https://doi.org/10.1145/3495243.3560545

ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia Daliang Xu et al.

and has been demonstrated to be 11.3×/4.0× more energy-efficient
than CPU/GPU in DL inference tasks [90], respectively. Intuitively,
under the mixed-precision training setting, we are interested in
the question of whether we can partially offload the training work-
loads, especially those integer-based operations, from CPU to DSP
to reduce the cost of on-device training.

In this paper, we propose a first-of-its-kind system, namely
Mandheling, which enables highly resource-efficient, mixed-precision
on-device training with on-chip DSP offloading. To facilitate devel-
opers in using different types of training algorithms on Mandheling,
we investigate popular mixed-precision training algorithms and
extract the key principles from them. Based on those principles,
we incorporate a unified abstraction into Mandheling, as we will
discuss in §3.2. With a given training algorithm and the model
to be trained, Mandheling aims to minimize the training cost by
judiciously co-scheduling various training operators to mobile DSP
(mostly) and CPU. When designing Mandheling, however, we need
to address the following major challenges that have not been ex-
plored in the existing literature.
• Dealingwith DSP-unfriendly operators. In a typicalmixed-precision
training algorithm, some operators like Transpose and Normaliza-
tion run slowly on DSP due to their irregular memory accesses [59]
or lack of architecture-level support. A judicious scheme to deter-
mine what operators to offload to DSP while others are placed on
CPU is needed to fully exploit those heterogeneous processors.
• Dynamic rescaling does not fit DSP. During the training, dynamic
rescaling [77, 86, 91, 94] is a critical operation to quantize/dequan-
tize among different data types. We observe that this operation
runs slowly on DSP and can easily compromise the benefits of
using it. Because dynamic scaling is inserted into each layer with
the low-precision data type, simply scheduling it to CPU like other
DSP-unfriendly operators incurs a high context-switching overhead
and so needs to be optimized exclusively.
• Exhausted data cache. Training workloads impose high pressure
on the DSP cache and a vanilla implementation leads to a low cache
hit ratio. The reasons are twofold. First, training tasks often require
a large batch size, which results in frequent memory accesses to
access intermediate data. Second, the DSP cache is often smaller
than the CPU cache, e.g., only half for the L2 cache on the Snap-
dragon 865. Considering that fully utilizing the processor cache is a
killing factor for memory-intensive operations such as convolution
weight gradients [76], an exhausted data cache on DSP is likely to
act as a bottleneck in the training process.
• Costly compute-graph preparation. Unlike inference tasks, on-
device training tasks usually use dynamic graphs to facilitate de-
velopers in developing and debugging [62]. However, preparing
the compute graph on DSP takes a considerable amount of time
to allocate DSP memory, build graph-to-operation references, etc.
Therefore, eliminating the compute-graph preparation under DSP’s
tight memory budget is critical to Mandheling.

Key techniques of Mandheling. To address the aforementioned
challenges, Mandheling presents the following novel techniques
to fully unleash DSP’s computing capacity:
• CPU-DSP co-scheduling (§3.3) is proposed to mitigate the
overhead of DSP-unfriendly operators. The key idea is to reduce the
number of context switchings brought by DSP-unfriendly operators
and overlap CPU and DSP execution as much as possible. This is

achieved through our novel scheduling algorithm, which considers
the latency of the operator executing on different processors and
the overhead of CPU-DSP context switching. Unlike DeepX [49]
and HERTI [31], which maximize parallel processing capability,
Mandheling’s co-scheduling aims to use DSP offloading as much
as possible when reducing the context-switching overhead.
• Self-adaptive rescaling (§3.4) is proposed to significantly re-
duce the overhead of dynamic rescaling by adaptively lowering its
invoking frequency. This is motivated by our micro-experiments
which demonstrate that, after the early stage of training, the actual
changing frequency of the scale factor becomes low and its value
becomes fairly stable.
• Batch splitting (§3.5) is proposed to reduce the cache pressure
on DSP and thereby increase the cache hit ratio. Mandheling runs
the intra-operator partition at the batch dimension because this
solution does not influence the inputs and weights of the original
convolution operation, and thus causes no redundant computations.
Mandheling uses an intuitive yet effective method to identify the
batch size splitting point. It also provides an integer-only scheme
to efficiently concatenate the output from the split batch.
• DSP compute subgraph reuse (§3.6) is proposed to eliminate
the preparation overhead of the DSP compute graph. This is moti-
vated by a key observation that the model structure rarely changes
during the training phase. However, directly reusing subgraphs
[11, 29] can easily exceed the DSP memory budget, since train-
ing requires far more memory than inference. To further tackle
DSP’s memory constraint, we provide a practical subgraph-reusing
algorithm based on the minimum dynamic memory allocation/deal-
location principle.

Implementation and evaluation. We have fully implemented
Mandheling with 15k LoC in C/C++ and 800 LoC in assembly lan-
guage. Mandheling is a standalone framework that supports models
exported from different front-end frameworks (e.g., TensorFlow [15]
and PyTorch [62]) and is compatible with various mixed-precision
training algorithms. We then conducted extensive experiments on
six typical DNNmodels (VGG-11/16/19 [70], ResNet-18/34 [37], and
InceptionV3 [72]) and three commodity mobile devices (Xiaomi 11
Pro, Xiaomi 10, and Redmi Note9 Pro). The results demonstrate that,
compared to native support from TFLite and MNN, Mandheling can
reduce per-batch training time and energy consumption by 5.5/8.9×
on average and up to 8.3×/12.5×, respectively. Furthermore, com-
pared to GPU-enhanced training, Mandheling speeds up per-batch
training time by 7.1× and reduces energy consumption by 5.8× on
average. In end-to-end training on a single device, comparing the
FP32-based training algorithm and MNN, Mandheling accelerates
model convergence by 5.7× on average and reduces total energy
consumption by 7.8× on average. The improvements are even more
profound in a federated learning scenario with 8.0× convergence
speedup and 10.6× energy reduction on average. Meanwhile, the
accuracy of trained models drops marginally with only 1.9%-2.7%
loss compared to the accuracy of the FP32 precision setting, which
is consistent with the theoretical results adopted by the ML com-
munity [23, 39, 53, 54, 65, 77, 81, 95–97]. The ablation study further
distinguishes the effectiveness of every single key technique of
Mandheling.

Contributions are summarized as follows.

Mandheling: Mixed-Precision On-Device DNN Training with DSP Offloading ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

VGG16 ResNet18
Model

0
1
2
3
4
5

La
te

nc
y

(s
) Inference

Train

(a) Comparison of inference and training
times (batch size = 64).

TikTok YouTube Genshin
Impact

ResNet50
Train

Model

0
1
2
3
4
5
6
7

Po
w

er
 (w

at
t)

(b) Power consumption of different Apps
and DNN training on devices.

Figure 1: Preliminary measurements that highlight the huge
resource cost of on-device training.

• We thoroughly explore the opportunities and challenges of DSP
offloading for mixed-precision on-device training.

• We design and implement the first DSP-offloading-based mixed-
precision on-device training framework, which incorporates
four novel techniques: self-adaptive rescaling, batch splitting,
CPU-DSP co-scheduling, and DSP compute subgraph reuse. The
system has been fully open sourced1.

• We evaluate Mandheling with representative DNN models and
commoditymobile devices. The results demonstrate Mandheling’s
superior effectiveness and practical value.

2 BACKGROUND AND MOTIVATIONS
We briefly introduce some background and our motivations.

2.1 On-Device DNN Training
A trend is emerging to deploy DNN training locally on devices,
to help especially with data privacy concerns (like GDPR [5]) in
AI applications. Similar to DNN training on the cloud/server, on-
device training also conducts a mini-batch sampling strategy, where
each batch’s training comprises three stages: the forward pass, the
backward pass, and the weight update. The forward pass loads
inputs and calculates the loss; the backward pass usually employs
a specific optimizer like Stochastic Gradient Descent (SGD) [19]
to obtain the gradients; lastly, the gradients are applied to the
weights for the model update. Compared to on-device inference, the
training task consumes more resources because: (i) the backward
pass contains about 2× FLOPs as the forward pass (the same as
inference); (ii) a training process often involves hundreds or even
thousands of mini-batches.

We conducted two measurement studies highlighting the prohib-
itively high resource cost of on-device training. Figure 1(a) shows
that DNN training takes 7.14× longer than inference with the same
batch size, which is larger than the gap for theoretical FLOPs (about
3×). That is because training ops, especially weight-gradient ops,
are more difficult to optimize because of the feature map’s dynamic
input width and height. Besides, Figure 1(b) shows that on-device
training consumes more energy than typical video players (Tik-
Tok [12], YouTube [14]) and gaming apps (Genshin Impact [6]). For
instance, training one batch (BS=32) of the ResNet-50 model costs
the same energy as watching 36.4 seconds of videos on YouTube.
Considering the minimal granularity for training is usually one
epoch, which, let’s say, contains 1,000 mini-batches, the energy cost
is as high as watching 7.91 hours of videos on YouTube.
1https://github.com/UbiquitousLearning/Mandheling-DSP-Training

INT32->INT8 Algorithm
Round and Shift

Requantize
Loss-aware Compensation

....

a32(l+1)INT8 Matrix
Multiply

INT32->INT8
Algorithm

Weight

CONV and FC Layers

Softmax Loss

Weight
Gradient

INT8 Matrix
Multiply

INT32->INT8
Algorithm

INT8 Matrix
Multiply

INT32->INT8
Algorithm

Forward Pass

Backward Pass

Weight
Update

Weight Update

FLOAT Update
INT8 Update

...

a(l), Sa(l)
w(l), Sw(l)

Activation

a(l+1), Sa(l+1)

e(l+1), Se(l+1)e(l), Se(l)
e32(l)

g32(l)

g(l), Sg(l)

Error
Gradient

Figure 2: Workflow of mixed-precision training.

2.2 Mixed-Precision Training
Mixed-precision training algorithms have been proposed to reduce
the resource cost of DNN training [23, 39, 53, 54, 65, 77, 81, 95–97].
These algorithms mainly exploit the high redundancy of data in
DNNs (including the activation, weights, bias, and gradients) [57],
which means that their representation precision can be reduced,
e.g., from FP32 to FP16/INT8. Fewer bits per number enables DNN
training to run faster through the single-instruction-multiple-data
(SIMD) hardware parallelism, which is commonly available on mo-
bile processors [75]. Here, we use INT8 training as an example to
illustrate how typical mixed-precision training algorithms work.
Figure 2 shows an exemplified workflow.
Forward pass. After quantization, activation 𝑎 (𝑙) and weight𝑤 (𝑙)

are INT8 numbers with scale factors 𝑆 (𝑙)𝑎 and 𝑆 (𝑙)𝑤 . With INT8matrix
multiplication, which is used to replace traditionally FP32-based
multiplication, we can obtain intermediate INT32 activation 𝑎 (𝑙+1)32 .
To transform the intermediate results into INT8 numbers, an INT32-
to-INT8 algorithm is needed, such as Round and Shift [77], Loss-
aware Compensation [95], or Requantize [15]. When forwarding
to the final layer, the activations are input to the softmax and loss
layer.
Backward pass and weight update. The obtained INT8 error gra-
dients 𝑒 (𝑙+1) will multiply with𝑤 (𝑙) and 𝑎 (𝑙) to obtain intermediate
INT32 error gradients 𝑒 (𝑙)32 and weight gradients 𝑔 (𝑙)32 . Through the
INT32 to INT8 algorithm, we can also get the error and weight gra-
dients of the l-th layer 𝑒 (𝑙) and 𝑔 (𝑙) with their scale factor 𝑆 (𝑙)𝑒 and
𝑆
(𝑙)
𝑔 . Finally, the model weights are updated by gradient 𝑔 (𝑙) with
the global learning rate and other hyperparameters. The update
method can be divided into two categories – FLOAT update and
INT8 update – which means the former can support changing scale
factors.

2.3 Mobile DSP Offloading
DSPwas originally designed for processing digital signals like audio
with high energy efficiency. Almost every mobile SoC includes
DSP, and the most common is Qualcomm’s Hexagon [9]. In 2016,
Qualcomm announced the Hexagon 680 DSP – the first DSP with
Hexagon Vector Extensions (HVX) designed to allow significant

ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia Daliang Xu et al.

compute workloads for advanced image processing and computer
vision [4]. Given its popularity, our work utilizes Hexagon DSP to
run the DNN training workloads, but the techniques are compatible
with other DSP hardwares as well.
Hexagon DSP architecture. Nowadays, the Hexagon DSP con-
tains hexagon cores and a SIMD co-processor. The former performs
general-purpose processing while the latter is good at vector com-
putation [7]. Mandheling mainly exploits the SIMD co-processor,
which can process 1024-bit fixed-point data inside one HVX instruc-
tion, or 128 INT8 mathematical functions like add and multiply in
one cycle. Besides, the hexagon core’s clock frequency is 500 MHz,
which is much lower than the CPU ones, so it is much more energy
friendly. However, its hexagon cores are too weak to perform heavy
general processing and its SIMD co-processor does not include float
processing units to perform FP32/FP16 operations. Therefore, we
need to carefully design the training operations on the Hexagon
DSP to gain the expected benefits.
Hexagon DSP programmingmodel. The Hexagon DSP and CPU
cores share the main memory, but do not share the cache. The two
processors have their ownmemory space, indicating that data needs
to be copied between them. Therefore, a typical program contains
two parts: the application logic code running on the CPU and the
data processing code running on DSP. DSP code is dynamically
loaded on invocation of a synchronous Remote Procedure Call
(FastRPC) [7].

3 THE DESIGN
3.1 Overview
Design goal. Mandheling aims to minimize latency and energy
consumption during a given training task through on-device DSP
offloading. Mandheling is designed as a generic framework to sup-
port different kinds of mixed-precision algorithms and allows users
to customize the algorithms through its exposed abstraction and
configurations, as we will discuss in §3.2. Convergence accuracy is
guaranteed by the used mixed-precision training algorithm.
Workflow. Figure 3 illustrates the workflow of Mandheling. The
input of Mandheling includes the mixed-precision training algo-
rithms and the model file which can be either pre-trained or ran-
domly initialized. Once Mandheling is deployed on a device, it
works in two stages. (1) In the preparation stage, Mandheling trans-
lates models from different front-end frameworks (e.g., Tensor-
Flow [15] and PyTorch [62]) to intermediate models in the form of a
FlatBuffer-format model file. (2) In the execution stage, Mandheling
generates CPU and DSP compute subgraphs and performs compute-
subgraph execution on Android devices. Note that both stages run
on devices, and the preparation stage is automatically triggered
before the first-time execution of one shot. Hence, such a design
does not introduce any additional programming efforts for app
developers.
• Preparation stage. When a to-be-trained model is downloaded
to a device, Mandheling translates the model to an intermediate
model via the Intermediate Model Builder according to the mixed-
precision training configuration. The intermediate model contains
the operator type, hyperparameters, inputs and outputs as well
as the memory regions of intermediate model inputs and outputs.
Then, Mandheling runs a profiling iteration to obtain each layer’s

optimal configuration via the Split Batch Profiler to further optimize
the intermediate model and gain higher performance, as we will
show in §3.5. Lastly, a FlatBuffer-format model file will be generated
to be processed directly by the Mandheling runtime.
• Execution stage. Once a training task starts, the Mandheling
runtime first loads datasets and weights from the disk to the re-
quired memory regions, and then generates CPU and DSP com-
pute subgraphs via the CPU-DSP co-scheduling controller (§3.3).
All subgraphs will execute on Android devices’ CPU or DSP via
Mandheling’s Hexagon DSP and CPU Training backend, which in-
clude operator implementation optimized for mixed-precision data
types on CPU and DSP.

Key techniques. While DSP has proven useful in DNN infer-
ence [51], we observe a disparity between using DSP to serve train-
ing and inference tasks. Compared to the CPU, a vanilla DSP train-
ing engine can achieve very limited or even negative performance
gain. To this end, Mandheling incorporates four key techniques to
augment DSP’s computing capacity. The techniques can be divided
into two major classes: intra-operator and inter-operator. At the
intra-op level, since convolution and weight-gradient layers would
result in excessive memory access and exhaust the DSP cache, we
use self-adaptive rescaling (§3.4) and batch splitting (§3.5) to reduce
memory access and increase the cache hit ratio. At the inter-op
level, Mandheling overlaps CPU and DSP execution as much as
possible to mitigate the overhead of DSP-unfriendly operators (§3.3)
and reuses the DSP compute graph to eliminate the preparation
overhead (§3.6).

3.2 Mixed-Precision Training Abstraction
We thoroughly investigate the typical mixed-precision training
algorithms [23, 39, 53, 54, 65, 77, 81, 95–97] and summarize how
they manipulate data in Table 1. We extract the basic concepts from
those algorithms and identify four key elements that jointly define
a mixed-precision training algorithm.
• Translation from FP32 operators to mixed-precision operators. To
support end-to-end training with mixed precision, a normal FP32
operator often needs to be translated into a combination of new
operators that operate on data with different kinds of precision.
Such a translation is elaborately designed by algorithm developers
to ensure good accuracy. Note that Mandheling has implemented
lots of mixed-precision operators internally.
• Backpropagation rules are used to illustrate how to calculate oper-
ators’ weight and error gradients. For instance, the NITI algorithm
uses INT8 deconvolution to calculate the FP32 convolution error
gradients.
• Weight information includes weight type, weight initializing
methods, and weight update algorithms.
• Optimizer information includes the loss function (e.g., cross-
entropy) and the optimizer, like SGD and ADAM.

Table 2 gives an example of how to use the above abstraction
to specify the NITI algorithm. For example, an FP32 convolution
needs to be translated into: (1) an INT8-based convolution; (2)
a Max operation to obtain the scale factor; (3) a Shift operation
to convert the INT32 value to INT8. Such a configuration will

Mandheling: Mixed-Precision On-Device DNN Training with DSP Offloading ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

CPU

Datasets/Images

Android Devices

Intermediate
Model File

Split batch profiler

Deployed
Models Translation Engine Execution Engine

Execution Stage

Intermediate model
builder

Weights

In
te

rm
ed

ia
te

M
od

el

CPU Compute
subgraphs

DSP Compute
subgraphs

CPU-DSP co-scheduling
controller

Subgraph reuse controller

Self-adaptive rescaling
controller

Execution controllers

DSP

Execution platforms

Hexagon DSP and CPU
Training Backend

Built-in Training
algorithms

Preparing Stage

 NITI Algorithm
Config

(Table 2) Operator memory
profiler

Figure 3: The overall workflow of Mandheling.

Mixed-precision algo. W A G WU support
NITI [77] INT8 INT8 INT8 INT8 ✓

Octo [95] INT8 INT8 INT8 INT8 ✓

Adaptive Fixed-Point [91] INT8/INT16 INT8 INT8 FP32 ✓

WAGEUBN [86] INT8 INT8 INT8 FP24 ✓

MLS Format [94] INT8 INT8 INT8 FP32 ✓

Chunk-based [78] FP8 FP8 FP8 FP16 ×
Unified INT8 Training[99] INT8 INT8 INT8 FP32 ×
"W", "A", "G", and "WU" represent weight, activation, gradient and weight update.

Table 1: Data types of mixed-precision training algorithms.

Attribute Contents
key value

Translation FP32 Conv INT8 Conv+ReduceMax+Shift
FP32 MaxPool INT8 MaxPool

Backprop. FP32 Conv Error Grad. INT8 Deconv
FP32 Conv Weight Grad. INT8 ConvBackpropFilter

Weight
Initializer Xavier_normal
Type INT8
Update INT8

Optimizer Loss Cross-Entropy
Optimizer SGD

Table 2: A typical NITI algorithm training config.

Latency compare

Op CPU DSP
Transpose 3 ms 25 ms

WeightRotate 4 ms 20 ms
Slice 4 ms 17 ms

DSP unsupported ops Normalization, Quantization, Round, Sqrt, etc.
Table 3: Operators that do not fit DSP.

be input to Mandheling along with the model to be trained. Cur-
rently, Mandheling has already incorporated many built-in mixed-
precision training algorithms, i.e., 5 out of 7 in Table 1. The other
two are currently not yet supported due to the lack of support for
certain low-precision operators such as FP8-based convolution, and
will be considered in future work.

3.3 CPU-DSP Co-Scheduling
DSP-unfriendly operators. Though DSP is adequate for INT8
vector arithmetic operations, there are still some irregular memory
access operations or float operations that are unsuitable for DSP
to run, referred to as “DSP-unfriendly operators” in this work. As
shown in Table 3, some operators’ latency on DSP is more than
8× slower than on CPU, and some FP32-only operators, such as
Normalization and Quantization, lack architecture-level support
on DSP [77, 86]. Therefore, they need to be executed on the CPU.

To partition the model across DSP and CPU, an intuitive ap-
proach is to merge the adjacent DSP-unfriendly operators into
subgraphs and place them on the CPU. However, since CPU-DSP
context switching incurs a high overhead, mainly due to the dupli-
cate data between their memory space (i.e., around 25ms on the
Xiaomi 10), this approach could lead to non-optimal performance.
Conceptually, some DSP-friendly operators should be placed on the
CPU as well to reduce the CPU-DSP context-switching frequency.
Therefore, we need a context-switching-aware scheduling strategy
that wisely maps the operators to CPU and DSP.

Operator-to-hardware scheduling. To solve the scheduling prob-
lem, Mandheling first uses topological sort to get an execution order
for all operators and profiles to obtain each operator’s latency on
CPU and DSP. Then, it uses a dynamic programming algorithm to
find the approximately optimal scheduling solution while obeying
the execution order.

𝑇 [𝑖 + 1,𝐶𝑃𝑈] =𝑚𝑖𝑛
{

𝑇 [𝑖,𝐶𝑃𝑈] + 𝐿𝐶𝑃𝑈
𝑖+1

𝑇 [𝑖, 𝐷𝑆𝑃] + 𝐿𝐶𝑃𝑈
𝑖+1 + 𝐿𝑠𝑤𝑖𝑡𝑐ℎ

(1)

𝑇 [𝑖 + 1, 𝐷𝑆𝑃] =𝑚𝑖𝑛
{
𝑇 [𝑖,𝐶𝑃𝑈] + 𝐿𝐷𝑆𝑃

𝑖+1 + 𝐿𝑠𝑤𝑖𝑡𝑐ℎ

𝑇 [𝑖, 𝐷𝑆𝑃] + 𝐿𝐷𝑆𝑃
𝑖+1

(2)

𝑇 [𝑖 + 1,𝐶𝑃𝑈] is the lowest latency of finishing 𝑂𝑝1𝑂𝑝𝑖+1 if
𝑂𝑝𝑖+1 is running on CPU. 𝐿𝐶𝑃𝑈

𝑖+1 means𝑂𝑝𝑖+1 running on CPU and
𝐿𝑠𝑤𝑖𝑡𝑐ℎ represents the latency of context switching. The init state
is set to 𝑇 [1,𝐶𝑃𝑈] = 𝐿𝐶𝑃𝑈1 and 𝑇 [1, 𝐷𝑆𝑃] = 𝐿𝐷𝑆𝑃

1 . When both
𝑂𝑝𝑖+1 and𝑂𝑝𝑖 are running on CPU, there is no context switching.
Otherwise, a context-switching overhead is added. 𝑇 [𝑖 + 1,𝐶𝑃𝑈]
is the minimum value of the above two. Similarly, the latency of
finishing 𝑂𝑝𝑖+1 running on DSP also has two circumstances, as
shown in Eq 2. The objective 𝑇𝑚𝑜𝑑𝑒𝑙 can be formulated as

𝑇𝑚𝑜𝑑𝑒𝑙 =𝑚𝑖𝑛{𝑇 [𝑁,𝐶𝑃𝑈],𝑇 [𝑁, 𝐷𝑆𝑃]}. (3)

N is the number of operators. Based on the recursion formula and
the objective, we can find the optimal scheduling plan.

Noticeably, our co-scheduling algorithm is designed to reduce
the context-switching overhead of DSP-unfriendly operators rather
than to provide maximal CPU-DSP parallelism. In fact, since DSP
is generally 3–5× more energy efficient than CPU, allocating more
computations to CPUs and parallelizing them with DSP can only
potentially bring a modest improvement in speed but with huge
energy consumption.

ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia Daliang Xu et al.

3.4 Self-Adaptive Rescaling

1 int scale = 0;
2 /∗ Calculate INT32 temporal results ∗/
3 for(int i = 0; i < length ; i++) {
4 Tensor x = input[i];
5 Tensor w = weight[i];
6 // CONV or matrix multiply
7 Tensor temp_result = x ∗ w;
8 // count leading zero
9 Tensor clz = clz (temp_result) ;
10 int tscale = 32 − max(clz) − 7;
11 scale = scale > tscale ? scale : tscale ;
12 temp_output[i] = temp_result ;
13 }
14 /∗ Cast the INT32 to INT8 values ∗/
15 for(int i = 0; i < length ; i++) {
16 Tensor temp = temp_output[i];
17 // Downscale
18 Tensor int8_result = temp / scale ;
19 result [i] = int8_result ;
20 }

Listing 1: Key C code snippet of
dynamic rescaling

1 scale = 0
2
3 loop0:
4 v0 = vmem ptr_i
5 v1 = vmem ptr_w
6
7 v2 = vrmpy v0, v1
8
9 v3 = vclz v2
10 tscale = vmax v3
11 scale = mux scale >

tscale , scale ,
tscale

12 vmem ptr_t, v2
13 end loop0
14 loop1:
15 v0 = vmem ptr_t
16
17 v3 = vmpye v0, scale
18 vmem ptr_v, v3
19 end loop1

Listing 2: Asm code
version

Static scaling vs. dynamic rescaling. Once a quantized model is
deployed for inference, the scale factor (i.e., 𝑆 (𝑙)𝑎 and 𝑆 (𝑙)𝑤 in Figure 2)
per layer is a static value. Therefore, the data flow is simple as it
just needs to multiply the matrix after loading the input and weight
and store the scaled result. During training, however, the scale
factor also needs to be dynamically adapted, just like the trainable
weights. An unreasonable scale factor can noticeably lower model
accuracy and the optimal scale factor cannot be known prior to
training completion.
Mismatch of dynamic rescaling and DSP. Such dynamic scaling
runs slow on DSP due to its excessive memory access. For each
batch of training, we have to store the temporal outputs and reload
them after obtaining the scale factor to downscale the temporal
outputs to final INT8 results, as shown in Listings 1 and 2. Note
that each layer with trainable weights collocates with a scale factor.
Therefore, there can be at most hundreds of dynamic scale factors
in a typical DNN model. As we have measured, dynamic rescaling
will add at least 2× latency compared with static rescaling.
Insights & Opportunities. Fortunately, we observed two useful
patterns of how scale factors change during training. Figure 4 illus-
trates (a) the concrete value of a scale factor of one layer and (b) its
changing frequency in training the VGG11 model on the CIFAR-10
dataset. We find that after the initialization period: (1) the scale
factor jumps between two alternative values – i.e., 10 and 11 – and
using either of them does not affect model accuracy; and (2) the
actual changing frequency of the scale factor is low, e.g., per 10–60
batches. Those two phenomena are common in training because
when the model approaches convergence, the gradients decrease
and the scale factor is less likely to be changed.

Based on the above observations, we propose a self-adaptive
rescaling technique to mitigate the overhead of rescaling. Its key
idea is to periodically enable rescaling, instead of per batch. The
rescaling frequency is adaptively configured based on the observed
history of how frequently the scale factors change after training,
e.g., last 𝐾 batches with rescaling enabled. We heuristically map
the observed frequency of changed scale factor 𝑓 to the periodic

0 2000 4000 6000 8000 10000
Batch number

 8

 10

Sc
al

e
Fa

ct
or

(a) Layer’s scale factor

0 2000 4000 6000 8000 10000
Batch Number

 0

 20

 40

 60

Sc
al

e
Fa

ct
or

C
ha

ng
in

g
In

te
rv

al

(b) Layer’s scale factor changing interval

Figure 4: The scale factor and its changing interval of the
first CONV layer in training the VGG11 model (batch size =
64) on the CIFAR-10 dataset.

Input Size latencies of different batch sizes (ms)
2 4 8 16 32 64

8×8 0.63 0.63 0.85 1.03 1.27 1.84
16×16 0.84 0.89 4.23 3.98 4.64 12.24
32×32 1.69 2.50 59.11 62.35 68.13 152.89

Table 4: The latency of a convolution layer on DSP with dif-
ferent batch/input sizes (input channel = 64, output channel
= 64).

frequency in calculating the new scale factor 𝑓 /2. Our experiments
in §4 show that such a heuristic policy works well for different
kinds of models (VGG, ResNet, Inception, etc.) and datasets (CI-
FAR10, FEMNIST), reducing the training time by 10.8%–65.4% with
negligible accuracy degradation (up to 0.3%).

3.5 Batch Splitting
Exhausted data cache. A well-known factor for fast on-device
inference is full utilization of the processor cache [76]. For inference
tasks, using a large batch is very likely to improve CPU utilization
and, therefore, the processing throughput [28, 71]. However, for
DSP-based training tasks, we observe a huge performance decline
for large operator and batch sizes, especially for weight-gradient
calculation. Table 4 illustrates this phenomenon with a convolution
operator on the Xiaomi 10 (Snapdragon 865 SoC). When the input
data size is 32×32, the latency of batch size = 32 is 27.3× more than
that of batch size = 4, which means 8× theoretical workload incurs
a 27.3× delay 2.

The performance drop comes from the exhausted DSP cache.
There are two reasons for the disparate behavior in training and
inference tasks. First, training tasks often require a large batch size,
which leads to numerous amounts of memory access for interme-
diate data. Second, the DSP cache is often smaller than the CPU
cache, e.g., only half for the L2 cache on the Snapdragon 865 (1 MB
vs. 2 MB).
2When batch size > 4, the actual batch size will be padded to a multiple of 32 as required
by the Hexagon NN, so the latency of batch size = 8 or 16 will be similar to that of
batch size = 32.

Mandheling: Mixed-Precision On-Device DNN Training with DSP Offloading ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

To reach a high cache hit ratio, we need to partition the intra-
operator workloads. We choose to split the operation at the batch
dimension, i.e., the first dimension of input data, as it is simpler
to implement and causes no redundant computations. We refer to
an operator behaving “abnormally” if its latency-to-workload (in
FLOPs) ratio is noticeably higher than the same configuration but
with a smaller batch size. Through offline profiling, as in Table 4,
Mandheling can identify all abnormal operators in a model and
split them into normal ones.

To ensure efficient locality, Mandheling splits an abnormal batch
into multiple micro-batches and executes them individually. The
final weight gradients are the accumulation of their output. The
accumulation formula for FP32 operations is𝑊 𝑔 =

∑𝑛
𝑖=1𝑊

𝑔

𝑏𝑎𝑡𝑐ℎ𝑖
.

When it comes to INT8, the formula will be changed into𝑊 𝑔 ∗𝑆𝑔 =∑𝑛
𝑖=1𝑊

𝑔

𝑏𝑎𝑡𝑐ℎ𝑖
∗ 𝑆𝑔

𝑏𝑎𝑡𝑐ℎ𝑖
. This formula can finally be transformed to

𝑊 𝑔 =

𝑛∑︁
𝑖=1

𝑊
𝑔

𝑏𝑎𝑡𝑐ℎ𝑖
∗ 𝑆𝑔

𝑏𝑎𝑡𝑐ℎ𝑖
/𝑆𝑔 (4)

According to Eq 4, if 𝑆𝑔
𝑏𝑎𝑡𝑐ℎ∗

/𝑆𝑔 = 1, we can avoid the FP32
add operation. Referring to the non-split gradient algorithm, we
can know that 𝑆𝑔 = 𝑚𝑎𝑥{𝑆𝑔

𝑏𝑎𝑡𝑐ℎ𝑖
, 𝑖 ∈ 𝑠𝑝𝑙𝑖𝑡_𝑛𝑢𝑚}. Therefore, all

the temporary micro-batch results should rescale from 𝑆
𝑔

𝑏𝑎𝑡𝑐ℎ𝑖
to

𝑆𝑔 . Our experiments show that when splitting the batch, in most
cases, 𝑆𝑔

𝑏𝑎𝑡𝑐ℎ𝑖
is the same as 𝑆𝑔 , so rescaling will not compromise

the benefits of batch splitting.

3.6 Compute Subgraph Reuse
Costly compute-graph preparation. Our experiments also show
that preparing the compute graph takes a considerable amount
of time, e.g., 304ms on TFLite and 212ms on MNN for the VGG16
[70] model, respectively. Preparation includes the following steps.
First, the training engine needs to build the DSP compute subgraph,
which consists of operators with inputs, outputs, and parameters.
To ensure that the subgraph can execute correctly, the engine also
maintains a reference relationship graph between operators. Be-
fore invoking the DSP training, the memory space needs to be
allocated on DSP as well. The current on-device training engines
always prepare a new compute subgraph for each batch of training.
The dynamic graphs are rather easy for developers to debug and
develop, but they unfortunately incur high overheads on resource-
constrained devices, which are not suitable for on-device training.

Since the models are rarely modified during on-device training,
we propose to reuse DSP compute subgraphs to eliminate their
preparation overheads. However, directly reusing subgraphs can
easily exceed the DSP memory budget since substantial memory
regions cannot be released. To this end, Mandheling seeks to min-
imize the memory allocation/deallocation operations under the
memory constraint – a common memory management problem in
the operating system [17, 63, 74, 92]. An opportunity is that, unlike
OS, Mandheling’s memory allocation/deallocation for subgraph
reuse always follows a DNN execution order, so the most recently
used (MRU) memory region has the longest reuse distance. There-
fore, the key idea is to release the MRU memory regions which best
fit memory needs.
• In the preparation stage, Mandheling profiles all memory regions
used by compute subgraphs, as shown in Figure 3. Since the number

Devices CPU GPU DSP

Xiaomi 11 Pro
Snapdragon 888

2.84GHz Cortex-X1 Adreno 660 GPU
700MHz

Hexagon 780 DSP
500MHz3× 2.4GHz Cortex A78

4× 1.8GHz Cortex A55

Xiaomi 10
Snapdragon 865

2.84GHz A77 Adreno 650 GPU
587MHz

Hexagon 698 DSP
500MHz3× 2.4GHz Cortex A77

4× 1.8GHz Cortex A55

Redmi Note9 Pro
Snapdragon 750G

2× 2.2GHz Cortex A77
6× 1.8GHz Cortex A55

Adreno 619 GPU
950MHz

Hexagon 694 DSP
500MHz

Table 5: Devices used in the experiments.

Model Input Data FLOPs # of CONVs
VGG-11 [70] CIFAR-10 914 M 8
VGG-16 [70] CIFAR-10 1.35 G 13
VGG-19 [70] ImageNet 26.92 G 16
ResNet-34 [37] CIFAR-10 7.26 G 36
ResNet-18 [37] ImageNet 11.66 G 20
InceptionV3 [72] CIFAR-10 2.43 G 16
Table 6: DNN models used in the experiments.

of compute subgraphs is rather small (<100), we can exhaustively
explore all circumstances to find all possible solutions satisfying
different memory size requirements.
• When the system is about to exceed thememory budget, Mandheling
releases the MRU memory regions identified and marked in the
preparation stage and allocates space for subgraphs that are yet to
come.

4 IMPLEMENTATION AND EVALUATION
We have fully implemented Mandheling with 15k LoC in C/C++
and 800 LoC of assembly language in total. The prototype is a stan-
dalone framework supporting models exported from MNN [42],
TFLite [55], and Pytorch Mobile [62]. Mandheling leverages the
Hexagon NN [3] as the DSP backend, which is the only open-source
library supporting inference on DSP, developed by Qualcomm.
While Mandheling has supported many different mixed-precision
training algorithms, as shown in Table 2, we use NITI [77] as the
default in our experiments because it extensively uses INT8 op-
erations that are quite suitable for DSP. Since the Hexagon DSP
architecture is constantly changing, we mainly optimize our im-
plementation for the V66 architecture using assembly code. The
prototype reuses FP32-based operators running on the CPU from
MNN.

4.1 Experimental Methodology
Hardware setup.We test the performance of Mandheling on three
smartphones with different Qualcomm SoCs: the Xiaomi 11 Pro
(Snapdragon 888), the Xiaomi 10 (Snapdragon 865), and the Redmi
Note9 Pro (Snapdragon 750G). The Xiaomi 11 Pro device is equipped
with the latest Hexagon 780 DSP, which is said to have huge per-
formance improvements over previous ones. The hardware details
are shown in Table 5. All devices run Android OS 10. By default,
we always run the baselines on 4 BIG CPU cores and Mandheling’s
CPU workloads on 2 BIG cores. The CPU frequency is controlled by
the OS’s dynamic voltage and frequency scaling (DVFS) controller.
Models. We test with a range of typical CNN models with vari-
ous input sizes: VGG11/16/19 [70], ResNet18/34 [37], and Incep-
tionV3 [72], as listed in Table 6. The input data for those models

ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia Daliang Xu et al.

VGG11
 0

0.5

 1

1.5

 2

La
te

nc
y

on
 X

ia
oM

I 1
1

Pr
o

(s
)

0.96 0.89 0.76

2.24

0.23

VGG16
 0

 1

 2

 3

La
te

nc
y

on
 X

ia
oM

I 1
1

Pr
o

(s
)

1.39

2.13

1.15

3.49

0.30

VGG19
 0

 10

 20

 30

 40

 50

La
te

nc
y

on
 X

ia
oM

I 1
1

Pr
o

(s
)

19.77

47.72

27.37

X
7.03

ResNet34
 0

 5

 10

 15

La
te

nc
y

on
 X

ia
oM

I 1
1

Pr
o

(s
)

5.44

10.38

6.85

16.27

2.32

ResNet18
 0

 10

 20

 30

La
te

nc
y

on
 X

ia
oM

I 1
1

Pr
o

(s
)

13.32

22.19
19.93

35.88

4.95

Inception-V3
 0

 1

 2

 3

 4

 5

La
te

nc
y

on
 X

ia
oM

I 1
1

Pr
o

(s
)

3.18
3.90

2.48

5.04

0.60

TFLite-FP32 MNN-FP32 MNN-INT8 MNN-FP32-GPU Ours

VGG11
 0

0.5

 1

1.5

 2

2.5

La
te

nc
y

on
 X

ia
oM

I 1
0

(s
)

1.1 0.9
0.7

2.5

0.5

VGG16
 0

 1

 2

 3

 4

La
te

nc
y

on
 X

ia
oM

I 1
0

(s
)

2.3
2.0

1.1

4.3

0.4

VGG19
 0

 10

 20

 30

La
te

nc
y

on
 X

ia
oM

I 1
0

(s
)

18.3

34.9

24.4

X

9.0

ResNet34
 0

 5

 10

 15

 20

La
te

nc
y

on
 X

ia
oM

I 1
0

(s
)

6.0

11.4

7.3

19.9

3.2

ResNet18
 0

 10

 20

 30

 40

La
te

nc
y

on
 X

ia
oM

I 1
0

(s
)

15.9
20.3 18.7

42.6

8.0

Inception-V3
 0

 2

 4

 6

La
te

nc
y

on
 X

ia
oM

I 1
0

(s
)

6.6

3.7

2.2

7.0

0.8

VGG11
 0

 1

 2

 3

La
te

nc
y

on
 R

ed
m

i (
s)

2.11
1.76 1.62

3.57

0.67

VGG16
 0

 2

 4

 6

La
te

nc
y

on
 R

ed
m

i (
s)

2.57

3.93
3.23

6.29

0.81

VGG19
 0

 20

 40

 60

La
te

nc
y

on
 R

ed
m

i (
s)

37.35

63.15

50.73

X

22.55

ResNet34
 0

 10

 20

 30

La
te

nc
y

on
 R

ed
m

i (
s)

12.21

18.88
14.53

29.99

7.11

ResNet18
 0

 20

 40

 60

La
te

nc
y

on
 R

ed
m

i (
s)

21.02

32.28
38.21

58.16

14.62

Inception-V3
 0

 2

 4

 6

 8

 10

La
te

nc
y

on
 R

ed
m

i (
s)

5.24
5.95

4.44

10.56

2.14

Figure 5: Per-batch training time on different models (batch size = 64) on different devices.
are either CIFAR-10 [47] (input size 32x32) or ImageNet [48] (input
size 224x224).
Baselines.We mainly compare Mandheling with two frameworks.
One is MNN [42], which is one of the earliest frameworks that has
supported on-device training since late 2019. Note that Mandheling
also reuses some operator implementation from MNN. The other
one is TFLite [55], which is the most popular DL framework on
smartphones and recently added training support in November
2021. Both MNN and TFLite only support training in FP32 format.
To make a fairer comparison, we also extend MNN to train with the
INT8 format using the same training algorithm as Mandheling on
CPU. More specifically, we compare Mandheling with four base-
lines: (1) TFLite-FP32: the traditional FP32-based training method
provided by TFLite; (2) MNN-FP32: the traditional FP32-based train-
ing method provided by MNN; (3) MNN-INT8: the INT8-based train-
ing method implemented by us based on MNN (NEON [67] is ex-
tensively used to optimize the performance of this baseline); and (4)
MNN-FP32-GPU: FP32-based training on mobile GPU through the
OpenCL backend.

We do not compare Mandheling with NPU approaches. That is
because, to our best knowledge, existing mobile NPUs are designed
for inference rather than training. Though MNN [42] and TNN [13]
support inference on NPUs, there has been no NPU training support
and open-source operator-level NPU implementation for on-device
learning until now.
Metrics and configurations.We mainly measure training time
and energy consumption during training. Energy consumption is
calculated through Android’s vFS (/sys /class/power_supply)
by profiling every 100ms. In addition, we also evaluate thermal and
CPU frequency through /sys/ class/thermal/thermal_zone
and /sys/devices/system/ cpu/cpufreq to show our power
efficiency over the long duration of intensive computation. All
experiments are repeated three times and we report the average
numbers.

4.2 Per-Batch Performance
Overall performance.We first comprehensively investigate the
per-batch training performance of Mandheling with batch size 64.
The latency and energy consumption results are illustrated in Fig-
ures 5 and 6, respectively. Our key observation is that Mandheling
consistently and remarkably outperforms other baselines on both
metrics.
• Training latency of Mandheling vs. FP32 baselines. Compared
with MNN-FP32 and TFLite-FP32, Mandheling achieves a 2.08-7.1×
and 1.44-8.25× speedup in per-batch training time, respectively.
Comparing different devices, we observe that Mandheling’s im-
provements are relatively less profound on the Redmi Note9 Pro
than on the other two devices. This is because the Redmi Note9
Pro is equipped with an outdated SoC where the performance gap
between CPU and DSP is much smaller than the other two high-end
SoCs.
• Energy consumption of Mandheling vs. FP32 baselines. As Fig-
ure 6 shows, Mandheling’s improvements in energy consump-
tion are even more profound than in training speed. Specifically,
Mandheling reduces energy consumption by 3.21-11.2× and 2.01-
12.5× compared with MNN-FP32 and TFLite-FP32, respectively.
Such a huge benefit comes from both the training speedup and the
higher power efficiency of DSP.
• Mandheling vs. MNN-FP32-GPU. Mandheling can reduce latency
3.98-11.63× and energy consumption 3.46-10.95× compared with
MNN-FP32-GPU. The reason for such a huge improvement is that
(1) as far as we know, MNN is the only framework supporting on-
device GPU training and is not fully optimized yet (GPU utilization
during training is only around 30-50%); and (2) DSP is more power-
efficient than GPU. Besides, training the VGG19 model on ImageNet
with MNN-FP32-GPU encounters out-of-memory failure.
• Mandheling vs. MNN-INT8. According to Figures 5 and Figure 6,
Mandheling can reduce latency by up to 4.13× and energy con-
sumption by 6.5× compared to MNN-INT8, respectively. Since both

Mandheling: Mixed-Precision On-Device DNN Training with DSP Offloading ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

VGG11
 0

 2

 4

 6

En
er

gy
 o

n
X

ia
oM

I 1
1

Pr
o

(J
)

5.9
5.3

4.3

6.5

0.8

VGG16
 0

 2.5

 5

 7.5

 10

12.5

En
er

gy
 o

n
X

ia
oM

I 1
1

Pr
o

(J
)

8.5

12.6

6.5

10.1

1.1

VGG19
 0

 50
 100
 150
 200
 250
 300

En
er

gy
 o

n
X

ia
oM

I 1
1

Pr
o

(J
)

121.7

281.9

155.5

X
25.8

ResNet34
 0

 20

 40

 60

En
er

gy
 o

n
X

ia
oM

I 1
1

Pr
o

(J
)

33.5

61.3

38.9
47.1

8.5

ResNet18
 0

 25

 50

 75

 100

 125

En
er

gy
 o

n
X

ia
oM

I 1
1

Pr
o

(J
)

82.0

131.1
113.2

103.9

18.2

Inception-V3
 0

 5

 10

 15

 20

 25

En
er

gy
 o

n
X

ia
oM

I 1
1

Pr
o

(J
)

19.6
23.0

14.1 14.6

2.2

TFLite-FP32 MNN-FP32 MNN-INT8 MNN-FP32-GPU Ours

VGG11
 0

 2

 4

 6

En
er

gy
 o

n
X

ia
oM

I 1
0

(J
)

4.4

6.4

4.6

5.8

1.3

VGG16
 0

 2.5

 5

 7.5

 10

12.5

En
er

gy
 o

n
X

ia
oM

I 1
0

(J
)

9.6

13.6

6.9

10.0

1.1

VGG19
 0

 50

 100

 150

 200

 250

En
er

gy
 o

n
X

ia
oM

I 1
0

(J
)

75.4

235.9

153.4

X
24.8

ResNet34
 0

 20

 40

 60

 80

En
er

gy
 o

n
X

ia
oM

I 1
0

(J
)

24.5

76.7

45.6 45.8

8.9

ResNet18
 0

 25

 50

 75

 100

 125

 150

En
er

gy
 o

n
X

ia
oM

I 1
0

(J
)

65.4

136.8
117.7

97.8

22.3

Inception-V3
 0

 5

 10

 15

 20

 25

En
er

gy
 o

n
X

ia
oM

I 1
0

(J
) 27.0

25.2

13.6
16.1

2.2

VGG11
 0

 2

 4

 6

En
er

gy
 o

n
R

ed
m

i (
J)

6.3
5.6

4.7

6.2

1.4

VGG16
 0

 2.5

 5

 7.5

 10

12.5

En
er

gy
 o

n
R

ed
m

i (
J)

7.6

12.4

9.4
11.0

1.7

VGG19
 0

 50

 100

 150

 200

En
er

gy
 o

n
R

ed
m

i (
J)

111.3

199.4

148.3

X

47.9

ResNet34
 0

 20

 40

 60

En
er

gy
 o

n
R

ed
m

i (
J)

36.4

59.6

42.5

52.4

15.1

ResNet18
 0

 20
 40
 60
 80

 100
 120

En
er

gy
 o

n
R

ed
m

i (
J)

62.6

101.9
111.7

101.7

31.1

Inception-V3
 0

 5

 10

 15

 20

En
er

gy
 o

n
R

ed
m

i (
J) 15.6

18.8

13.0

18.5

4.6

Figure 6: Per-batch energy consumption of different models (batch size = 64) on different devices.

0 16 32 48 64 80 96 112128
Batch size

 0

 2

 4

La
te

nc
y

(s
)

TFLite-FP32
MNN-FP32
MNN-INT8
Ours

(a) VGG16 Latency

0 16 32 48 64 80 96 112128
Batch size

 0

 10

 20

 30

En
er

gy
 (J

)

TFLite-FP32
MNN-FP32
MNN-INT8
Ours

(b) VGG16 Energy

0 16 32 48 64 80 96 112128
Batch size

 0

 2

 4

 6

 8

La
te

nc
y

(s
)

TFLite-FP32
MNN-FP32
MNN-INT8
Ours

(c) InceptionV3 Latency

0 16 32 48 64 80 96 112128
Batch size

 0

 20

 40

En
er

gy
 (J

)

TFLite-FP32
MNN-FP32
MNN-INT8
Ours

(d) InceptionV3 Energy

Figure 7: Per-batch training time and energy consumption
under various batch sizes.
of them use the same mixed-precision training algorithm, the im-
provements come from Mandheling’s ability to fully utilize the DSP
hardware. Note that the DSP HVX vector instruction can calculate
up to 128 INT8 arithmetic operations, while CPU NEON can only
perform four operations.
Impacts of batch size. We then evaluate Mandhelingwith various
batch sizes from 4 to 128 with the VGG16 and InceptionV3 models
on the Xiaomi 11 Pro. As shown in Figure 7, Mandheling consis-
tently outperforms other baselines on each batch size, e.g., 4.81×
lower latency and 6.90× lower energy consumption on average.
Besides, the performance gap between Mandheling and baselines
is bigger as batch sizes increase. For instance, Mandheling reduces
latency by up to 8.56× and energy consumption by 12.67× for batch
size 128 thanks to the batch-splitting technique (§3.5).

Method CPU Conf. Time (s) Energy (J)
H L H L

M
N
N
-F
P3

2 BIG 1× 4.88 10.81 11.05 6.90
BIG 2× 2.87 5.89 12.85 7.50

BIG 4× (default) 2.14 3.86 11.90 7.10
LITTLE 1× 25.20 42.57 13.35 21.95
LITTLE 4× 10.75 17.06 14.85 9.55
Hybrid 8× 4.50 7.58 25.40 12.45

M
N
N
-IN

T8

BIG 1× 5.59 14.75 9.85 4.35
BIG 2× 3.07 7.37 10.60 5.25

BIG 4× (default) 1.79 3.8 7.90 4.55
LITTLE 1× 40.13 81.20 12.65 25.85
LITTLE 4× 10.36 20.64 10.35 5.95
Hybrid 8× 2.71 4.96 12.10 6.20

O
ur
s

BIG 1× 0.29 0.41 0.70 0.65
BIG 2× (default) 0.25 0.32 0.90 0.70

BIG 4× 0.24 0.31 1.20 0.90
LITTLE 1× 0.79 1.61 0.80 1.15
LITTLE 4× 0.49 0.68 0.90 0.75
Hybrid 8× 0.34 0.39 1.60 0.90

Table 7: The performance impacts of the selection of CPU
cores and their frequency (H/L: highest/lowest frequency
available). Highlighted numbers indicate the best perfor-
mance or least energy consumption.
Impacts ofCPU cores. Sincemost baselines and part of Mandheling
run on CPUs, it’s intuitive to test how the choice of CPU cores af-
fects their performance. In this experiment, we use the VGG16
model with batch size 64. We vary the CPU core numbers and
the frequency for each core on the Xiaomi 11 Pro. The results are
summarized in Table 7.

As observed, the choice of CPU cores opens rich tradeoffs for
Mandheling and baselines between training speed and energy con-
sumption. Running on 4 BIG CPU cores with the highest frequency
enables Mandheling to train with the fastest speed (0.24s per batch),
yet its energy consumption is 1.9× higher than 1 BIG CPU core with
the lowest frequency. The default configuration for Mandheling is
to use 2 BIG CPU cores with DVFS to balance the two key metrics.
In reality, a developer or the OS might control the CPU cores to
harness such a tradeoff. For instance, on a low-power device, the OS

ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia Daliang Xu et al.

0 3 6 9 12 15 18 21 24 27 30
Time (hours)

0

20

40

60

80

A
cc

ur
ac

y
(%

)

FloatFL (CPU,FP32)
Int8FL (CPU,INT8)
Int8FL (DSP,INT8)

(a) VGG11-CIFAR10-Local

0 30 60 90 120 150 180 210
Time (hours)

0

20

40

60

80

A
cc

ur
ac

y
(%

)

FloatFL (CPU,FP32)
Int8FL (CPU,INT8)
Int8FL (DSP,INT8)

(b) ResNet18-CIFAR10-Local

0.0 0.2 0.4 0.6 0.8 1.0
Time (hours)

10
20
30
40
50
60
70
80

A
cc

ur
ac

y
(%

)

FloatFL (CPU,FP32)
Int8FL (CPU,INT8)
Int8FL (DSP,INT8)

(c) LENET-FEMNIST-Federated

0 1 2 3 4 5
Time (hours)

0
10
20
30
40
50
60
70

A
cc

ur
ac

y
(%

)

FloatFL (CPU,FP32)
Int8FL (CPU,INT8)
Int8FL (DSP,INT8)

(d) VGG16-CIFAR100-Federated

Figure 8: Convergence accuracy across clock time under sin-
gle device and federated scenarios.

Dataset Model Methods Acc. Training Cost to Convergence
Round
number

Clock
Hours

Energy
(WH)

Centralized
CIFAR-10 VGG11

MNN-FP32 89.87% 150 29.13 187.01
MNN-INT8 87.17% 150 24.77 153.33
Ours 87.17% 150 7.50 31.39

Centralized
CIFAR-10 ResNet18

MNN-FP32 92.49% 150 223.55 1,435.19
MNN-INT8 90.62% 150 135.71 840.04
Ours 90.62% 150 35.68 149.32

Federated
FEMNIST LeNet

MNN-FP32 84.18% 990 0.97 0.00057
MNN-INT8 82.04% 4,960 0.39 0.00029
Ours 82.04% 4,960 0.19 0.00007

Federated
CIFAR-100 VGG16

MNN-FP32 71.15% 1,960 8.35 2.74
MNN-INT8 68.42% 2,200 1.56 1.26
Ours 68.42% 2,200 0.78 0.21

Table 8: A summary of end-to-end training costs up to con-
vergence under different training scenarios.

might instruct Mandheling to use only one BIG CPU core for train-
ing. We should note that Mandheling still significantly outperforms
other baselines with any settings.

4.3 End-to-End Convergence
We now demonstrate that Mandheling can significantly accelerate
model convergence while guaranteeing model accuracy in end-
to-end training experiments. We focus on the time-to-accuracy
metric [77, 86, 91, 94, 99].
Learning on a single device is the case when all training data
resides in a single device. We train the VGG16 and the ResNet18
with training set CIFAR-10 on the Xiaomi 11 Pro and verify the
accuracy after each epoch. We fix the CPU frequency to the max
value and 10 minutes of sleep after training 10 epochs to avoid
shutdown due to overheating. Note that sleep time does not count
in the time-to-accuracy metric.

As illustrated in Figures 8(a) and (b) and summarized in the first
two rows of Table 8, Mandheling’s convergence accuracy is only 1.9-
2.7% lower than training with FP32. This accuracy drop is consistent
with the numbers reported by the original algorithm paper [77] and

0 5 10 15 20
Time (minutes)

 30
 35
 40
 45
 50
 55

Te
m

pe
ra

tu
re

 (◦
C

)

MNN-FP32 MNN-INT8 Ours

1.6

1.7

1.8

1.9

2.0

Fr
eq

ue
nc

y
(G

H
z)

(a) XiaoMI 11 Pro

0 5 10 15 20
Time (minutes)

 40

 50

 60

 70

Te
m

pe
ra

tu
re

 (◦
C

)

1.8

2.0

2.2

2.4

2.6

Fr
eq

ue
nc

y
(G

H
z)

Frequency Temperature

(b) XiaoMI 10

Figure 9: The temperature and CPU frequency dynamics
during on-device training on different devices.

is generally accepted by the relevant ML community [16, 22, 23, 39,
53, 54, 65, 77, 78, 80, 81, 86, 91, 94–99]. However, it takes 5.06-6.27×
less time and consumes 5.96-9.62× less energy for Mandheling to
achieve 87.17% and 90.40% convergence accuracy compared with
MNN-FP32. Compared to MNN-INT8, Mandheling converges to
the same accuracy as they both use the NITI training algorithm, but
it takes 3.55× less time and consumes 5.46× less energy on average.
Cross-device federated learning is another killer use case that
allows many devices to collaboratively train a model without giving
away their training data. In our experiments, we use a popular FL
simulation platform [85] and plug in the tested on-device training
performance of Mandheling and baselines. Both FloatFL and Int8FL
use the traditional FL protocol FedAvg. For a fair comparison, we
set the number of the local epoch as 1 for all experiments. We use
FEMNIST [66] and CIFAR-100 [47] as the testing datasets and follow
prior work [36] to partition them into non-IID distribution.

As demonstrated in Figures 8(c) and (d) and the last three rows
of Table 8, Mandheling’s accuracy is 2.14% and 2.73% lower than
FloatFL on FEMNIST and CIFAR-100, respectively. However, it only
takes 19.58% and 9.3% of clock time to converge (i.e., 5.26× and
10.75× speedup) with Mandheling, respectively. Such tremendous
improvement over the FloatFL protocol comes from both the re-
duced on-device training time and the reduced communication
time for applying INT8-based training. Table 8 also shows that
Mandheling reduces the energy consumption of a single client by
8.14× and 13.1×, respectively.
Thermal impacts. To reach a usable accuracy level, on-device
training often takes a substantial amount of time [18], e.g., minutes
for each round of federated learning or even hours for continuous
local transfer learning [82]. Such a long duration of intensive com-
putation may lead to thermal issues and, therefore, a CPU frequency
change due to DVFS. Thus, we investigate the thermal dynamics
of on-device training on two devices and illustrate the results in
Figure 9. On both tested devices, we observe the temperature ris-
ing and the CPU underclocking, but the trend for Mandheling is
much milder than for the other two baselines. Using MMN-FP32
and the Xiaomi 10 as an example, the device temperature rises
sharply from 29°C to 68°C in 2 minutes, and the CPU frequency
drops from 2.8GHz to 1.3GHz. On the other hand, it takes about
18 minutes for Mandheling to raise the temperature from 29°C to
58°C, which leads to almost no CPU underclocking. This is because
DSP frequency is 4× lower than CPU frequency and is designed for
low-power scenarios.

Mandheling: Mixed-Precision On-Device DNN Training with DSP Offloading ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

VGG11 0

 1

 2

 3

La
te

nc
y

(s
)

0.94
0.73

3.43

2.74

0.56 0.54 0.45

VGG16 0

 1

 2

 3

 4

 5

La
te

nc
y

(s
)

2.01

1.10

4.61

4.11

0.63 0.57 0.50

ResNet34 0

 5

 10

 15

 20

 25

 30

La
te

nc
y

(s
)

11.36

7.26

27.68

13.02

4.59 3.85 3.22

MNN-FP32
MNN-INT8

Ours-unopt
Ours-adaptive

Ours-reuse
Ours-split

Ours

Figure 10: Ablation study of Mandheling.

VGG11 0

0.25

0.5

0.75

 1

La
te

nc
y

(s
)

0.89 0.86
0.96

0.76

0.47

0.64

0.23

VGG16 0

0.5

 1

1.5

 2

La
te

nc
y

(s
)

2.13

1.41 1.45

1.15

0.69
0.91

0.30

MNN-FP32
MNN-WAGEUBN

MNN-MLS Format
MNN-INT8

Ours-WAGEUBN
Ours-MLS Format

Ours

(a) Latency

VGG11 0

 2

 4

 6

En
er

gy
 (J

)

5.28
4.90

5.46

4.33

1.73
2.36

0.84

VGG16 0

 5

 10

En
er

gy
 (J

)

12.61

7.99 8.21
6.51

2.55
3.33

1.12

(b) Energy consumption

Figure 11: Mandheling’s performance using different mixed-
precision training algorithms. "MNN-*" are baselines running
onCPU;while "Ours-*" are running onDSPusing Mandheling.

4.4 Ablation Study
We further conduct a breakdown analysis of the benefit brought by
each of Mandheling’s techniques. The experiments are performed
with the VGG11, VGG16 and ResNet34 models on the Xiaomi 10.
The results are illustrated in Figure 10.

We observe that all techniques make a non-trivial contribution to
the improvement. For instance, the per-batch training time for the
ResNet34 model is 27.68s without any optimizations. When the self-
adaptive rescaling is applied, the latency reduces to 13.02s. Adding
the compute subgraph-reusing technique further decreases the
latency to 4.59s. The other two techniques, batch splitting and CPU-
DSP co-scheduling, also result in 22.9% and 19.5% lower latency,
respectively. Since the four key techniques optimize the training
cost from different aspects, they can be well orchestrated to provide
accumulative optimization. Besides, the benefits of batch splitting
are rather small for VGG11 compared to the other two models. That
is because the workload of the VGG11 model is smaller, leading to
the lack of high cache pressure that would motivate the use of the
batch-splitting technique.

4.5 Fitting to Various Training Algorithms
Recall that Mandheling is an underlying independent framework
that supports different kinds of mixed-precision training algorithms.

Therefore, we also test Mandheling with different training algo-
rithms: NITI [77] (default), MLS Format [94], and WAGEUBN [86].
The experiments are performed with VGG11 and VGG16 on the
Xiaomi 11 Pro.

As shown in Figure 11, the training speeds of three mixed-
precision algorithms are all faster than that of MNN-FP32 (3.08×,
2.34×, and 7.1× speedup). Mandheling’s energy consumption im-
provement is more significant, i.e., 3.64× and 6.85× average reduc-
tion for VGG11 andVGG16, respectively. That is because Mandheling’s
key techniques aim to solve generic challenges to support different
kinds of mixed-precision training algorithms. When comparing the
same mixed-precision training algorithms running on CPU and
DSP, Mandheling is still 2.04×, 1.59×, and 3.83× faster, respectively.
Such benefits come from Mandheling’s effective DSP offloading.
Among the different training algorithms, NITI has the lowest train-
ing latency because it maximizes the usage of INT8 in its data
flow.

5 DISCUSSION
Applicability and comparison to more hardware Mandheling
currently leverages mobile DSP and CPU for training. We now
discuss how Mandheling can incorporate more types of hardware.

NPUs and XPUs are equipped on high-end mobile platforms
nowadays and can deliver significantly higher computing capac-
ity than general-purpose processors. Mandheling’s abstraction of
mixed-precision training algorithms can ease efforts to support
training on such hardware. Moreover, its four key techniques are
highly suitable for solving NPUs’/XPUs’ common performance is-
sues. For instance, CPU-XPU co-scheduling is useful for tackling
the challenge that XPUs typically support only a small set of NN
operators [40, 90]. Nevertheless, extra engineering effort should
be put in to extend Mandheling for NPUs/XPUs because they have
their own architecture-level specific features that differ from DSPs.
For example, Kirin’s NPU supports hardware-level matrix multipli-
cation operations, while DSP only supports vector multiplication.
Fully optimizing operator implementation and improving memory
access efficiency to unleash its matrix operation capability is cru-
cial to improving its training performance. Offloading on-device
training tasks on such hardware demands a new hardware-software
co-design mixed-precision on-device training algorithm to improve
training accuracy and efficiency.

Moreover, Mandheling currently does not leverage mobile GPU
for training. This is becausemobile GPU is not as efficient as CPU for
on-device training, as shown in prior work [20, 90], not to mention
DSP. The observation is also confirmed in our experiments: Figure 5
shows that the latency of MNN-FP32-GPU is 1.6–3.0× higher than
that of MNN-FP32.
The practicality of Mandheling. Mandheling takes on-device
training one step closer to real applications by significantly reducing
its energy cost. Even with the performance boost of Mandheling,
there may be concerns that it is still too heavy to train modern
DNNs on mobile devices. We have the following comments. First,
end-to-end training does not necessarily execute on one device. For
example, the model could be pre-trained on the cloud with public
data and fine-tuned or personalized on each device [79, 82, 83].
Alternatively, in federated learning, the training cost is amortized

ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia Daliang Xu et al.

across millions of devices [45, 46, 85]. Second, devices have plenty
of idle time for local training. Previous research shows that a device
has an average of 2.7 hours available for on-device training per
day [82]. Meanwhile, training the Inception-V3 model locally on the
Xiaomi 11 Pro with 20K personalized 32×32 labeled pictures takes
only 31.25 seconds every day. The training process only consumes
6.36 mAh (0.13% battery) in total.

6 RELATEDWORK
Mixed-precision DNN training. Recently, many mixed-precision
DNN training algorithms have been proposed to reduce training
costs [16, 22, 23, 39, 53, 54, 65, 77, 80, 81, 95–98]. The key idea is to
replace the default numerical format of FP32 with lower precision
for activations and/or weights, e.g., FP16, INT8, or even BOOL.
Octo [95] further proposes an INT8-based training algorithm and
also builds a system for edge GPUs. Instead of contributing new
mixed-precision training algorithms, Mandheling is designed as a
generic, underlying system to efficiently support those algorithms.
On-chip DNN offloading has been studied to enable faster DNN
inference on heterogeneous mobile processors like GPU and DSP.
Most studies focus on how to partition and schedule the workloads
on different processors, such as intra-layer [44, 88], inter-layer [30],
block-layer level [32, 49], and model level [27, 51, 89]. However,
they only focus on DNN inference. Besides ML tasks, GPU/DSP are
also leveraged for signal, sound and image processing [26, 50, 64].
Mandheling is motivated by those efforts and is the first framework
to support the offloading of training workloads to mobile DSP.
DNN inference optimizations. Besides on-chip DNN offloading,
there have been many other research efforts towards improving
DNN inference performance on devices. For instance, some ap-
ply structured pruning techniques to trade off latency and model
accuracy [25, 33, 34]. Some improve low-level kernel implementa-
tion through a compiler, core scheduling, etc. [21, 56, 76]. Some of
them optimize DNN inference in specific scenarios [38, 84, 87, 89].
Mandheling is inspired by those works, yet focuses on training
instead of inference. As previously discussed, DNN training faces
many unique challenges as compared to inference, so Mandheling
contributes novel techniques in addressing those challenges.
Federated learning is an emergingmachine-learning paradigm [46,
58, 60, 61] that is built atop on-device training and requires many
clients to collaboratively train a DNN model. The communication
bottleneck seriously affects system efficiency and model accuracy
[43]. Therefore, prior work mostly focuses on the model compres-
sion technique [41, 52, 68, 69, 73] to reduce communication traffic.
As an underlying framework, Mandheling is orthogonal to and
compatible with those algorithm-level optimizations.

7 CONCLUSIONS
In this paper, we have proposed Mandheling, the first system that
enables highly resource-efficient on-device training by orchestrat-
ingmixed-precision trainingwith on-chipDSP offloading. Mandheling
incorporates novel techniques such as self-adaptive rescaling and
CPU-DSP co-scheduling to fully unleash the power of DSP. We
conducted extensive experiments to evaluate Mandheling.

8 ACKNOWLEDGEMENT
This work was partly supported by the National Key R&D Program
of China under grant number 2020YFB1805500, the National Natural
Science Foundation of China under the grant numbers 62172008
and 62102009, the National Natural Science Fund for the Excellent
Young Scientists Fund Program (Overseas), and the PKU-Baidu
Fund Project under the grant number 2020BD007. Mengwei Xu was
partly supported by NSFC (No. 62102045), Beijing Nova Program
(No.Z211100002121118), and Young Elite Scientists Sponsorship
Program by CAST (No.2021QNRC001).

REFERENCES
[1] Federated learning: Collaborative machine learning without centralized training

data. https://ai.googleblog.com/2017/04/federated-learning-collaborative.html,
2017.

[2] How apple personalizes siri without hoovering up your data. https:
//www.technologyreview.com/2019/12/11/131629/apple-ai-personalizes-siri-
federated-learning/, 2019.

[3] Qualcomm hexagon nn offload framework. https://source.codeaurora.org/quic/
hexagon_nn/, 2020.

[4] dsp-processor. https://developer.qualcomm.com/software/hexagon-dsp-sdk/dsp-
processor, 2021.

[5] General data protection regulation. https://gdpr-info.eu/, 2021.
[6] Genshin. https://genshin.mihoyo.com/, 2021.
[7] /hexagon-dsp-sdk. https://developer.qualcomm.com/software/hexagon-dsp-sdk,

2021.
[8] Kirin hiai npu. https://developer.huawei.com/consumer/cn/hiai/, 2021.
[9] Qualcomm hexagon. https://en.wikipedia.org/wiki/Qualcomm_Hexagon, 2021.
[10] Samsung npu. https://semiconductor.samsung.com/support/tools-

resources/dictionary/the-neural-processing-unit-npu-a-brainy-next-
generation-semiconductor/, 2021.

[11] Tensorflow graph reusing. https://www.tensorflow.org/guide/function, 2021.
[12] Tiktok. https://www.tiktok.com, 2021.
[13] Tnn. https://github.com/Tencent/TNN, 2021.
[14] Youtube. https://www.youtube.com, 2021.
[15] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jef-

frey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. Tensorflow: A system for large-scale machine learning. In 12th USENIX
Symposium on Operating Systems Design and Implementation), pages 265–283,
2016.

[16] Ron Banner, Itay Hubara, Elad Hoffer, and Daniel Soudry. Scalable methods for
8-bit training of neural networks. Advances in neural information processing
systems, 31, 2018.

[17] Jean Christophe Beyler and Philippe Clauss. Performance driven data cache
prefetching in a dynamic software optimization system. In Proceedings of the
21st annual international conference on Supercomputing, pages 202–209, 2007.

[18] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex
Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi,
H Brendan McMahan, et al. Towards federated learning at scale: System design.
arXiv preprint arXiv:1902.01046, 2019.

[19] Léon Bottou. Large-scale machine learning with stochastic gradient descent.
In Proceedings of 19th International Conference on Computational Statistics,
pages 177–186. Springer, 2010.

[20] Dongqi Cai, Qipeng Wang, Yuanqiang Liu, Yunxin Liu, Shangguang Wang, and
Mengwei Xu. Towards ubiquitous learning: A first measurement of on-device
training performance. In Proceedings of the 5th International Workshop on
Embedded and Mobile Deep Learning, pages 31–36, 2021.

[21] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. 𝑇𝑉𝑀 : An
automated end-to-end optimizing compiler for deep learning. In 13th USENIX
Symposium on Operating Systems Design and Implementation, pages 578–594,
2018.

[22] Xi Chen, Xiaolin Hu, Hucheng Zhou, and Ningyi Xu. Fxpnet: Training a deep
convolutional neural network in fixed-point representation. In 2017 International
Joint Conference on Neural Networks, pages 2494–2501. IEEE, 2017.

[23] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binarycon-
nect: Training deep neural networks with binary weights during propagations.
Advances in neural information processing systems, 28, 2015.

[24] Anish Das, Young D Kwon, Jagmohan Chauhan, and Cecilia Mascolo. En-
abling on-device smartphone gpu based training: Lessons learned. In 2022
IEEE International Conference on Pervasive Computing and Communications
Workshops and other Affiliated Events (PerCom Workshops), pages 533–538.
IEEE, 2022.

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://www.technologyreview.com/2019/12/11/131629/apple-ai-personalizes-siri-federated-learning/
https://www.technologyreview.com/2019/12/11/131629/apple-ai-personalizes-siri-federated-learning/
https://www.technologyreview.com/2019/12/11/131629/apple-ai-personalizes-siri-federated-learning/
https://source.codeaurora.org/quic/hexagon_nn/
https://source.codeaurora.org/quic/hexagon_nn/
https://developer.qualcomm.com/software/hexagon-dsp-sdk/dsp-processor
https://developer.qualcomm.com/software/hexagon-dsp-sdk/dsp-processor
https://gdpr-info.eu/
https://genshin.mihoyo.com/
https://developer.qualcomm.com/software/hexagon-dsp-sdk
https://developer.huawei.com/consumer/cn/hiai/
https://en.wikipedia.org/wiki/Qualcomm_Hexagon
https://semiconductor.samsung.com/support/tools-resources/dictionary/the-neural-processing-unit-npu-a-brainy-next-generation-semiconductor/
https://semiconductor.samsung.com/support/tools-resources/dictionary/the-neural-processing-unit-npu-a-brainy-next-generation-semiconductor/
https://semiconductor.samsung.com/support/tools-resources/dictionary/the-neural-processing-unit-npu-a-brainy-next-generation-semiconductor/
https://www.tensorflow.org/guide/function
https://www.tiktok.com
https://github.com/Tencent/TNN
https://www.youtube.com

Mandheling: Mixed-Precision On-Device DNN Training with DSP Offloading ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

[25] Biyi Fang, Xiao Zeng, and Mi Zhang. Nestdnn: Resource-aware multi-tenant
on-device deep learning for continuous mobile vision. In Proceedings of the 24th
Annual International Conference on Mobile Computing and Networking, pages
115–127, 2018.

[26] Petko Georgiev, Nicholas D Lane, Cecilia Mascolo, and David Chu. Accelerating
mobile audio sensing algorithms through on-chip gpu offloading. In Proceedings
of the 15th Annual International Conference on Mobile Systems, Applications,
and Services, pages 306–318, 2017.

[27] Petko Georgiev, Nicholas D Lane, Kiran K Rachuri, and Cecilia Mascolo. Dsp.
ear: Leveraging co-processor support for continuous audio sensing on smart-
phones. In Proceedings of the 12th ACM Conference on Embedded Network
Sensor Systems, pages 295–309, 2014.

[28] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large
minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677,
2017.

[29] Wentian Guo, Yuchen Li, and Kian-Lee Tan. Exploiting reuse for gpu subgraph
enumeration. IEEE Transactions on Knowledge and Data Engineering, 2020.

[30] Donghee Ha, Mooseop Kim, KyeongDeok Moon, and Chi Yoon Jeong. Accelerat-
ing on-device learning with layer-wise processor selection method on unified
memory. IEEE Sensors, 21(7):2364, 2021.

[31] Myeonggyun Han and Woongki Baek. Herti: A reinforcement learning-
augmented system for efficient real-time inference on heterogeneous embedded
systems. In 2021 30th International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 90–102. IEEE, 2021.

[32] Myeonggyun Han, Jihoon Hyun, Seongbeom Park, Jinsu Park, andWoongki Baek.
Mosaic: Heterogeneity-, communication-, and constraint-aware model slicing
and execution for accurate and efficient inference. In 2019 28th International
Conference on Parallel Architectures and Compilation Techniques, pages 165–
177. IEEE, 2019.

[33] Rui Han, Qinglong Zhang, Chi Harold Liu, Guoren Wang, Jian Tang, and Ly-
dia Y Chen. Legodnn: block-grained scaling of deep neural networks for mobile
vision. In Proceedings of the 27th Annual International Conference on Mobile
Computing and Networking, pages 406–419, 2021.

[34] Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad Agarwal, AlecWolman,
and Arvind Krishnamurthy. Mcdnn: An approximation-based execution frame-
work for deep stream processing under resource constraints. In Proceedings
of the 14th Annual International Conference on Mobile Systems, Applications,
and Services, pages 123–136, 2016.

[35] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise
Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ra-
mage. Federated learning for mobile keyboard prediction. arXiv preprint
arXiv:1811.03604, 2018.

[36] Chaoyang He, Songze Li, Jinhyun So, Xiao Zeng, Mi Zhang, Hongyi Wang,
Xiaoyang Wang, Praneeth Vepakomma, Abhishek Singh, Hang Qiu, et al. Fedml:
A research library and benchmark for federated machine learning. arXiv preprint
arXiv:2007.13518, 2020.

[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[38] Loc N Huynh, Youngki Lee, and Rajesh Krishna Balan. Deepmon: Mobile
gpu-based deep learning framework for continuous vision applications. In
Proceedings of the 15th Annual International Conference on Mobile Systems,
Applications, and Services, pages 82–95, 2017.

[39] Benoit Jacob, Skirmantas Kligys, Bo Chen,Menglong Zhu,MatthewTang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of
neural networks for efficient integer-arithmetic-only inference. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 2704–
2713, 2018.

[40] Joo Seong Jeong, Jingyu Lee, Donghyun Kim, Changmin Jeon, Changjin Jeong,
Youngki Lee, and Byung-Gon Chun. Band: coordinated multi-dnn inference
on heterogeneous mobile processors. In Proceedings of the 20th Annual
International Conference on Mobile Systems, Applications and Services, pages
235–247, 2022.

[41] Divyansh Jhunjhunwala, Advait Gadhikar, Gauri Joshi, and Yonina C Eldar. Adap-
tive quantization of model updates for communication-efficient federated learn-
ing. In 2021 IEEE International Conference on Acoustics, Speech and Signal
Processing, pages 3110–3114. IEEE, 2021.

[42] Xiaotang Jiang, HuanWang, Yiliu Chen, Ziqi Wu, LichuanWang, Bin Zou, Yafeng
Yang, Zongyang Cui, Yu Cai, Tianhang Yu, et al. Mnn: A universal and efficient
inference engine. arXiv preprint arXiv:2002.12418, 2020.

[43] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Ben-
nis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, et al. Advances and open problems in federated learning.
Foundations and Trends® in Machine Learning, 14(1–2):1–210, 2021.

[44] Youngsok Kim, Joonsung Kim, Dongju Chae, Daehyun Kim, and Jangwoo Kim.
𝜇layer: Low latency on-device inference using cooperative single-layer accel-
eration and processor-friendly quantization. In Proceedings of the Fourteenth

EuroSys Conference 2019, pages 1–15, 2019.
[45] Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage, and Peter Richtárik. Fed-

erated optimization: Distributed machine learning for on-device intelligence.
arXiv preprint arXiv:1610.02527, 2016.

[46] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. Federated learning: Strate-
gies for improving communication efficiency. arXiv preprint arXiv:1610.05492,
2016.

[47] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features
from tiny images. 2009.

[48] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. Advances in neural information
processing systems, 25, 2012.

[49] Nicholas D Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, Lei Jiao,
Lorena Qendro, and Fahim Kawsar. Deepx: A software accelerator for low-power
deep learning inference on mobile devices. In 2016 15th ACM/IEEE International
Conference on Information Processing in Sensor Networks, pages 1–12. IEEE,
2016.

[50] Nicholas D Lane, Petko Georgiev, and Lorena Qendro. Deepear: robust smart-
phone audio sensing in unconstrained acoustic environments using deep learning.
In Proceedings of the 2015 ACM international joint conference on pervasive and
ubiquitous computing, pages 283–294, 2015.

[51] Royson Lee, Stylianos I Venieris, Lukasz Dudziak, Sourav Bhattacharya, and
Nicholas D Lane. Mobisr: Efficient on-device super-resolution through hetero-
geneous mobile processors. In The 25th Annual International Conference on
Mobile Computing and Networking, pages 1–16, 2019.

[52] Ang Li, Jingwei Sun, Pengcheng Li, Yu Pu, Hai Li, and Yiran Chen. Hermes:
an efficient federated learning framework for heterogeneous mobile clients. In
Proceedings of the 27th Annual International Conference on Mobile Computing
and Networking, pages 420–437, 2021.

[53] Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate binary convolutional
neural network. Advances in neural information processing systems, 30, 2017.

[54] Zhouhan Lin, Matthieu Courbariaux, Roland Memisevic, and Yoshua Bengio.
Neural networks with few multiplications. arXiv preprint arXiv:1510.03009,
2015.

[55] TensorFlow Lite. Deploy machine learning models on mobile and iot devices,
2019.

[56] Yizhi Liu, Yao Wang, Ruofei Yu, Mu Li, Vin Sharma, and Yida Wang. Optimizing
cnn model inference on cpus. In 2019 USENIX Annual Technical Conference,
pages 1025–1040, 2019.

[57] Christos Louizos, Matthias Reisser, Tijmen Blankevoort, Efstratios Gavves, and
Max Welling. Relaxed quantization for discretized neural networks. arXiv
preprint arXiv:1810.01875, 2018.

[58] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-efficient learning of deep networks
from decentralized data. In Artificial intelligence and statistics, pages 1273–1282.
PMLR, 2017.

[59] Sparsh Mittal. A survey of recent prefetching techniques for processor caches.
ACM Computing Surveys, 49(2):1–35, 2016.

[60] Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego Perino, and
Nicolas Kourtellis. Ppfl: privacy-preserving federated learning with trusted execu-
tion environments. In Proceedings of the 19th Annual International Conference
on Mobile Systems, Applications, and Services, pages 94–108, 2021.

[61] Chaoyue Niu, Fan Wu, Shaojie Tang, Lifeng Hua, Rongfei Jia, Chengfei Lv, Zhi-
hua Wu, and Guihai Chen. Billion-scale federated learning on mobile clients:
A submodel design with tunable privacy. In Proceedings of the 26th Annual
International Conference on Mobile Computing and Networking, pages 1–14,
2020.

[62] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
Pytorch: An imperative style, high-performance deep learning library. arXiv
preprint arXiv:1912.01703, 2019.

[63] Robert Pyka, Christoph Faßbach, Manish Verma, Heiko Falk, and Peter Marwedel.
Operating system integrated energy aware scratchpad allocation strategies for
multiprocess applications. In Proceedingsof the 10th international workshop on
Software & compilers for embedded systems, pages 41–50, 2007.

[64] Rajib Rana, Margee Hume, John Reilly, Raja Jurdak, and Jeffrey Soar. Opportunis-
tic and context-aware affect sensing on smartphones. IEEE Pervasive Computing,
15(02):60–69, 2016.

[65] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-
net: Imagenet classification using binary convolutional neural networks. In
European conference on computer vision, pages 525–542. Springer, 2016.

[66] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush,
Jakub Konečnỳ, Sanjiv Kumar, and H Brendan McMahan. Adaptive federated
optimization. arXiv preprint arXiv:2003.00295, 2020.

[67] Venu Gopal Reddy. Neon technology introduction. ARM Corporation, 4(1):1–33,
2008.

ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia Daliang Xu et al.

[68] Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and
Ramtin Pedarsani. Fedpaq: A communication-efficient federated learning method
with periodic averaging and quantization. In International Conference on
Artificial Intelligence and Statistics, pages 2021–2031. PMLR, 2020.

[69] Nir Shlezinger, Mingzhe Chen, Yonina C Eldar, H Vincent Poor, and Shuguang
Cui. Federated learning with quantization constraints. In 2020 IEEE International
Conference on Acoustics, Speech and Signal Processing, pages 8851–8855. IEEE,
2020.

[70] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[71] Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. Don’t decay
the learning rate, increase the batch size. arXiv preprint arXiv:1711.00489, 2017.

[72] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. Rethinking the inception architecture for computer vision. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 2818–
2826, 2016.

[73] Hanlin Tang, Shaoduo Gan, Ce Zhang, Tong Zhang, and Ji Liu. Communica-
tion compression for decentralized training. Advances in Neural Information
Processing Systems, 31, 2018.

[74] Devesh Tiwari, Sanghoon Lee, James Tuck, and Yan Solihin. Mmt: Exploiting fine-
grained parallelism in dynamic memory management. In 2010 IEEE International
Symposium on Parallel & Distributed Processing, pages 1–12. IEEE, 2010.

[75] Haozhao Wang, Zhihao Qu, Qihua Zhou, Haobo Zhang, Boyuan Luo, Wenchao
Xu, Song Guo, and Ruixuan Li. A comprehensive survey on training acceleration
for large machine learning models in iots. IEEE Internet of Things Journal, 2021.

[76] Manni Wang, Shaohua Ding, Ting Cao, Yunxin Liu, and Fengyuan Xu. Asymo:
scalable and efficient deep-learning inference on asymmetric mobile cpus. In
Proceedings of the 27th Annual International Conference on Mobile Computing
and Networking, pages 215–228, 2021.

[77] Maolin Wang, Seyedramin Rasoulinezhad, Philip HW Leong, and Hayden KH
So. Niti: Training integer neural networks using integer-only arithmetic. arXiv
preprint arXiv:2009.13108, 2020.

[78] Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash
Gopalakrishnan. Training deep neural networks with 8-bit floating point num-
bers. Advances in neural information processing systems, 31, 2018.

[79] Qipeng Wang, Mengwei Xu, Chao Jin, Xinran Dong, Jinliang Yuan, Xin Jin, Gang
Huang, Yunxin Liu, and Xuanzhe Liu. Melon: Breaking the memory wall for
resource-efficient on-device machine learning. 2022.

[80] Shuang Wu, Guoqi Li, Feng Chen, and Luping Shi. Training and inference with
integers in deep neural networks. arXiv preprint arXiv:1802.04680, 2018.

[81] Xundong Wu, Yong Wu, and Yong Zhao. Binarized neural networks on the
imagenet classification task. arXiv preprint arXiv:1604.03058, 2016.

[82] Mengwei Xu, Feng Qian, Qiaozhu Mei, Kang Huang, and Xuanzhe Liu. Deep-
type: On-device deep learning for input personalization service with minimal
privacy concern. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies.

[83] Mengwei Xu, FengQian,Mengze Zhu, FeifanHuang, Saumay Pushp, andXuanzhe
Liu. Deepwear: Adaptive local offloading for on-wearable deep learning. IEEE
Transactions on Mobile Computing, 19(2):314–330, 2019.

[84] Mengwei Xu, Mengze Zhu, Yunxin Liu, Felix Xiaozhu Lin, and Xuanzhe Liu.
Deepcache: Principled cache for mobile deep vision. In Proceedings of the 24th
Annual International Conference on Mobile Computing and Networking, pages
129–144, 2018.

[85] Chengxu Yang, QipengWang, Mengwei Xu, Zhenpeng Chen, Kaigui Bian, Yunxin
Liu, and Xuanzhe Liu. Characterizing impacts of heterogeneity in federated learn-
ing upon large-scale smartphone data. In Proceedings of the Web Conference
2021, pages 935–946, 2021.

[86] Yukuan Yang, Lei Deng, ShuangWu, Tianyi Yan, Yuan Xie, and Guoqi Li. Training
high-performance and large-scale deep neural networks with full 8-bit integers.
Neural Networks, 125:70–82, 2020.

[87] Hyunho Yeo, Chan Ju Chong, Youngmok Jung, Juncheol Ye, and Dongsu Han.
Nemo: enabling neural-enhanced video streaming on commodity mobile de-
vices. In Proceedings of the 26th Annual International Conference on Mobile
Computing and Networking, pages 1–14, 2020.

[88] Qunsong Zeng, Yuqing Du, Kaibin Huang, and Kin K Leung. Energy-efficient
resource management for federated edge learning with cpu-gpu heterogeneous
computing. IEEE Transactions on Wireless Communications, 20(12):7947–7962,
2021.

[89] Jinrui Zhang, Deyu Zhang, Xiaohui Xu, Fucheng Jia, Yunxin Liu, Xuanzhe Liu,
Ju Ren, and Yaoxue Zhang. Mobipose: Real-time multi-person pose estimation on
mobile devices. In Proceedings of the 18th Conference on Embedded Networked
Sensor Systems, pages 136–149, 2020.

[90] Qiyang Zhang, Xiang Li, Xiangying Che, Xiao Ma, Ao Zhou, Mengwei Xu, Shang-
guang Wang, Yun Ma, and Xuanzhe Liu. A comprehensive benchmark of deep
learning libraries on mobile devices. arXiv preprint arXiv:2202.06512, 2022.

[91] Xishan Zhang, Shaoli Liu, Rui Zhang, Chang Liu, Di Huang, Shiyi Zhou, Jiaming
Guo, Qi Guo, Zidong Du, Tian Zhi, et al. Fixed-point back-propagation training.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 2330–2338, 2020.
[92] Qin Zhao, Rodric Rabbah, and Weng-Fai Wong. Dynamic memory optimization

using pool allocation and prefetching. ACM SIGARCH Computer Architecture
News, 33(5):27–32, 2005.

[93] Yongwei Zhao, Chang Liu, Zidong Du, Qi Guo, Xing Hu, Yimin Zhuang, Zhenx-
ing Zhang, Xinkai Song, Wei Li, Xishan Zhang, et al. Cambricon-q: a hybrid
architecture for efficient training. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture, pages 706–719. IEEE, 2021.

[94] Kai Zhong, Tianchen Zhao, Xuefei Ning, Shulin Zeng, Kaiyuan Guo, Yu Wang,
and Huazhong Yang. Towards lower bit multiplication for convolutional neural
network training. arXiv preprint arXiv:2006.02804, 3(4), 2020.

[95] Qihua Zhou, Song Guo, Zhihao Qu, Jingcai Guo, Zhenda Xu, Jiewei Zhang, Tao
Guo, Boyuan Luo, and Jingren Zhou. Octo:{INT8} training with loss-aware
compensation and backward quantization for tiny on-device learning. In 2021
USENIX Annual Technical Conference, pages 177–191, 2021.

[96] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou.
Dorefa-net: Training low bitwidth convolutional neural networks with low
bitwidth gradients. arXiv preprint arXiv:1606.06160, 2016.

[97] Yiren Zhou, Seyed-Mohsen Moosavi-Dezfooli, Ngai-Man Cheung, and Pascal
Frossard. Adaptive quantization for deep neural network. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 32, 2018.

[98] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary
quantization. arXiv preprint arXiv:1612.01064, 2016.

[99] Feng Zhu, Ruihao Gong, Fengwei Yu, Xianglong Liu, Yanfei Wang, Zhelong Li,
Xiuqi Yang, and Junjie Yan. Towards unified int8 training for convolutional neural
network. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1969–1979, 2020.

	Abstract
	1 Introduction
	2 Background and Motivations
	2.1 On-Device DNN Training
	2.2 Mixed-Precision Training
	2.3 Mobile DSP Offloading

	3 The Design
	3.1 Overview
	3.2 Mixed-Precision Training Abstraction
	3.3 CPU-DSP Co-Scheduling
	3.4 Self-Adaptive Rescaling
	3.5 Batch Splitting
	3.6 Compute Subgraph Reuse

	4 Implementation and Evaluation
	4.1 Experimental Methodology
	4.2 Per-Batch Performance
	4.3 End-to-End Convergence
	4.4 Ablation Study
	4.5 Fitting to Various Training Algorithms

	5 Discussion
	6 Related Work
	7 Conclusions
	8 ACKNOWLEDGEMENT
	References

