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ABSTRACT
Natural language processing (NLP) sees rich mobile appli-
cations. To support various language understanding tasks,
a foundation NLP model is often fine-tuned in a federated,
privacy-preserving setting (FL). This process currently relies
on at least hundreds of thousands of labeled training samples
from mobile clients; yet mobile users often lack willingness
or knowledge to label their data. Such an inadequacy of data
labels is known as a few-shot scenario; it becomes the key
blocker for mobile NLP applications.
For the first time, this work investigates federated NLP

in the few-shot scenario (FedFSL). By retrofitting algorith-
mic advances of pseudo labeling and prompt learning, we
first establish a training pipeline that delivers competitive
accuracy when only 0.05% (fewer than 100) of the training
data is labeled and the remaining is unlabeled. To instantiate
the workflow, we further present a system FeS1 , addressing
the high execution cost with novel designs: (1) Curriculum
pacing, which injects pseudo labels to the training workflow
at a rate commensurate to the learning progress; (2) Rep-
resentational diversity, a mechanism for selecting the most
learnable data, only for which pseudo labels will be gener-
ated; (3) Co-planning of a model’s training depth and layer
capacity. Together, these designs reduce the training delay,
client energy, and network traffic by up to 46.0×, 41.2× and
3000.0×, respectively. Through algorithm/system co-design,
FeS demonstrates that FL can apply to challenging settings
where most training samples are unlabeled.

1FeS is available at https://github.com/UbiquitousLearning/FeS.
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1 INTRODUCTION
Mobile NLP& training data Mobile NLP sees rich applica-
tions on mobile devices. Examples include auto completion,
QA, and sentiment analysis [45, 73, 78, 81, 106]. NLP mod-
els are trained in two phases. (1) Pre-training initializes a
foundation model (e.g., BERT [22]). This phase learns lan-
guage representations. (2) Fine-tuning adjusts the model to
specific NLP tasks and domains, such as to tag named iden-
tities (a task) in a user text message (a domain). Of NLP
training, a core issue is training data. While pre-training is
self-supervised and only needs unlabeled data, fine-tuning
data is more difficult to obtain for the following reasons.

First, fine-tuning often requires mobile users’ private data
such as their text messages. Fortunately, such a privacy con-
cern is mostly addressed by federated learning (FL) [13, 42, 61,
98, 102], in which clients cooperate to train a model without
sharing their raw data.

A much bigger challenge is the need for data labels. While
prior ML research tackled training with scarce labels (re-
ferred to as few-shot or zero-shot scenarios) [15, 20, 29, 30,
72], the mobile environment exacerbates such scarcity, as
most mobile users lack motivations for labeling their data
(e.g., to tag which words of a text message belong to named
identities) [93] or the knowledge to do so (e.g., is a given sen-
tence subjective or objective?) [69]. As a result, most clients
are likely to have no labeled data (although they may have
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Figure 1: Classic and few-shot federated scenarios

abundant unlabeled data); across all clients, only a small
fraction of the total data is labeled [71, 82, 93].
FedFSL We addressmobile NLP trainingwhere data labeling
challenges are at their extreme. (1) Highly scarce data labels,
e.g. less than 0.1% of all, which are 1–2 orders of magnitude
smaller than prior few-shot research [23, 25, 26, 41, 101, 109]
(at least 4%). (2) Highly skewed label availability, as opposed
to most prior work that rely on uniformly distributed la-
bels [46, 50, 74, 102]. As we will show (§2.4), these two chal-
lenges render most prior work inadequate, resulting in sig-
nificant loss in training accuracy. To this end, we design
a runtime system for few-shot NLP learning in federated
settings, which we refer to as FedFSL.
ML building blocks We identify two ML algorithms as key
building blocks underpinning practical FedFSL. (1) Pseudo
labeling [49] allows to train a model M with a small number
of labeled samples (called gold labels) together with many
unlabeled samples. To do so, M makes inference on unla-
beled training data, from which high-confident results (i.e.,
pseudo labels) are selected to further train M . Such positive
feedback reinforces the model’s capability in decision mak-
ing. (2) Prompt learning [71] is a recent NLP advance that
better adjusts pretrained models to downstream tasks. With
it, even a weak model is able to generate pseudo labels with
less errors. Integrating the two algorithms, we show that a
model can be fine-tuned with only tens of gold labels, while
still achieving 85.8%–97.0% of relative accuracy as compared
to a fully supervised training with thousands of labels.
Challenges Despite of satisfactory accuracy, FedFSL can
be far more expensive than standard FL, notably:

• Planning for FSL. Our FedFSL pipeline must run infer-
ence and training in an iterative fashion. In an inference
round, each participating client generates pseudo labels.
Using both its gold and pseudo labels, a client runsmultiple
training rounds before uploading its local model updates
to the cloud server. Having aggregated updates from many
clients, the server dispatches an updated model to clients
for future pseudo labeling.
This process crucially depends on a coherent plan for in-
ference and training: what pseudo labels to be injected
to the learning process and at what pace. For instance,
generating too few pseudo labels per round slows down
training; generating too many pseudo labels, especially

when the model is still weak, results in excessive erro-
neous labels that mislead training. The decision must also
be dynamic, catering to different datasets and different
times in a training session.
• Excessive on-device inference. After receiving an ag-
gregated model from the server, a mobile client may run
inference on all its unlabeled data for pseudo labeling [17].
However, most of the inference is in vain, as only a small
fraction (the most confident) of pseudo labels will be se-
lected for subsequent training. The inference dominates
the total energy cost, up to 87.4% per our measurement.
The clients need an efficient mechanism for skipping gen-
erating pseudo labels for much of the data.
• Training a large model on-device. Language prompts
rely on a large foundation model to work, as only a large
model contains sufficiently rich knowledge amenable to
extraction via prompts [12, 56]. Compared to models com-
monly used for FL, e.g., DistilBERT [70] and ALBERT [48],
a large model such as RoBERTa-large [58] achieves up to
38.9% higher accuracy, at the cost of 7.6× more computa-
tion and 4.8× more memory. Training with a small batch
size 4 takes 75.9 seconds, 910.8 joules, and over 10 GB of
memory on mainstream mobile hardware.

Our solution We present FeS, the first framework that
manages Federated Few-Shot learning for mobile NLP. Cor-
responding to the challenges above, FeS centers on three
new designs.

Curriculum pacing (§3.1): To plan pseudo labeling and
training, the key is to be commensurate with the learning
progress. Intuitively, only as the model becomes confident
via training, the client may pick increasingly more pseudo
labels per round. Specifically, we characterize the training
pace as a configuration 𝜋 = ⟨𝑓 , 𝑛, 𝑘⟩, where 𝑓 is the num-
ber of training rounds between re-generations of pseudo
labels; 𝑛 is the number of participating clients; 𝑘 is the con-
fidence threshold for selecting pseudo labels. Continuously
weighting the model’s recent learning progress against the
training cost, FeS probes for configurations and switches to
the most suitable ones, pacing through a dynamic curriculum
of training.

On-device inference with representational diversity
(§3.2): To reduce the inference effort, a client only selects
its samples worth learning most and generates their pseudo
labels accordingly. How to identify such samples? Motivated
by representation learning [37, 60, 68], our rationale is to di-
versify their data representations. For instance, the selected
samples could be sentences showing varying lengths and
word frequencies. The rationale entails a lightweight imple-
mentation: a client estimates the approximate representa-
tions of its samples by running inference with a low-cost
proxy model; the client only does the estimation once, ahead
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of any training sessions; during a training session, the client
selects samples for pseudo labeling by jointly considering
representativeness and diversity.We are the first to apply rep-
resentational filtering in the FedFSL scenario, i.e., a training-
inference collaborative pipeline.

Co-planning of training depth and layer capacity (§3.3):
A canonical approach to efficient fine-tuning is to only train
the top layers2 which encode task-specific knowledge while
freezing the bottom layerswhich encode task-agnostic knowl-
edge. For FedFSL however, we find that layer freezing alone is
inadequate, resulting in inferior model accuracy.We attribute
the observation to that much of the task-agnostic knowledge
shall be adjusted as well in case of label scarcity. Therefore,
FeS controls a model’s training depth and its capacity jointly.
Specifically, each client trains a model’s top layers with full
layer capacity, trains the middle layers with reduced capac-
ity, and freezes the very bottom layers. The client reduces
a layer’s capacity by only tuning its bias while freezing its
weights, a technique retrofitted from prior work [59, 76, 103].
FeS is the first to explore the synergy between layer freezing
and model capacity, to our best knowledge.
It is worth noting that the above designs are compatible

with existing FL optimizations such as client scheduling [52,
62] and training data sampling [51, 86]. FeS can be realized
as an enhancement to existing FL frameworks, enabling them
to operate with scarce labels.
Results We implement FeS and test it on two embedded
devices: NVIDIA TX2 [1] and RaspberryPi 4B [2]. Large-scale
training is emulated as prior FL literature does [47, 50, 52]. On
a diverse set of NLP benchmarks, FeS reaches ∼90% relative
accuracy while requiring three orders of magnitude fewer
samples. Compared to vanilla few-shot fine-tuning for NLP,
FeS reduces the training delay from 2.1–9.1 hours to 0.1–0.4
hours (up to 46.0× reduction). Compared to strong baselines
that use bias-only tuning [103], FeS still reduces the delay
by 4.3×–14.6×. Our key designs contribute to the results
significantly: curriculum pacing, representational filtering
and depth/capacity co-planning reduce the delay by up to
3.5×/3.5×/62.3×, respectively. FeS for the first time fine-tunes
a big language model (RoBERTa-large) on mobile/embedded
devices with only 8GB of RAM; it reduces the network traffic
for model aggregation by 1,841.7× and per-device energy
consumption by 21.7× on average.
Contributions We present the first work that investigates
NLP training with scarce data labels in a federated setting.
• Algorithmic foundationWe identify the algorithm
foundation as a combination of pseudo labels and lan-
guage prompts. Compared to training with fully la-
beled data, we show it is possible to reduce the amount

2Top layers: layers closer to a model’s output [38].

of labels by three orders ofmagnitudewhile still achiev-
ing 90% of the relative accuracy.
• System designs We tackle the high cost of FedFSL
with novel designs: representational diversity (which
optimizes inference), co-planning of learning depth
and capacity (which optimizes training), and curricu-
lum pacing (which orchestrates the two).
• Experimental evaluation Through experiments on
real hardware, for the first time we show it is both
desirable and practical for mobile devices to train NLP
models – even with scarce labels.

2 MOTIVATIONS
2.1 Mobile NLP and Its Obstacles
This work is concernedwith NLPmodel fine-tuning: adapting
a foundation model to various downstream tasks such as text
classification and sequence tagging. While the foundation
model is pre-trained by big companies once, the subsequent
fine-tuning recurs for individual tasks and involves mobile
clients. Therefore, fine-tuning has a strong impact on both
the model accuracy and client efficiency.

Explored: fine-tuning is often privacy-sensitive. It
relies on domain samples that are often generated by users,
such as user reviews, messages, or emails. Collecting them to
the cloud for training raises privacy concerns and is heavily
regulated [64, 83]. In response, federated learning [61, 98] is
the de facto approach that trains models with good accuracy
without data sharing. Training NLP models in a federated
setting is referred to as FedNLP [16, 102].

Unexplored: fine-tuning is often few-shot.While train-
ing samples on clients can be abundant, the labeled ones are
often scarce. To exacerbate the problem, the numbers of la-
bels could vary drastically across clients. Such skewed label
distribution, combined with the non-IID data distribution
nature in FL (e.g., skewed class distribution [54, 102]), could
further degrade the fine-tuning accuracy. The causes for label
scarcity are fundamental.
• Users lack willingness. Each sample is accessible to only
one client user who can label it. Reports show that most
users are reluctant to label their data [25, 97]. This is fun-
damentally different from traditional centralized or crowd-
sourced data labeling services that can recruit highly spe-
cialized data labelers [53].
• Users lack expertise. Data labeling for certain NLP tasks
require domian-specific knowledge, which most users do
not possess, e.g., cross-lingual transfer [66], Q&A [99], or
biomedical text corpora understanding [112].
• Diverse NLP tasks. Downstream tasks are emerging over
time, e.g., new domains, topics, or data distributions. Ask-
ing users to label a large amount of data for each task is
tedious, inefficient, and impractical.
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• Mislabels are not uncommon.Mislabels are common in real
world, e.g., 6% in the well-established ImageNet or even
more than 10% in other crowd-sourced datasets [63]. In
FedFSL, since the labels from end users are merely im-
possible to be verified, we expect an even higher ratio of
mislabels, which can significantly harm the model quality.
Instead, trainers might only use the labels from very few,
highly trustworthy people.

In essence, we argue that few-shot is a more realistic way
to depict NLP training, a scenario we call as FedFSL. Unfor-
tunately, FedFSL, in particular its system implications, are
rarely investigated – in comparison, prior FL literature as-
sumes abundant data labels (at least hundreds of thousands)
uniformly distributed across clients.

2.2 Key Algorithm Blocks for FedFSL
In ML literature, there are two complementary approaches to
address the few-shot issue. One is to exploit the abundant un-
labeled data across clients. The other is to boost the model’s
ability of learning from few samples. For each approach, we
identify a technique; together, they form the algorithmic
foundation for FedFSL.
• Pseudo labeling [49] allows trainingwith few/zero

labeled samples andmanyunlabeled samples. As it trains
a model, the trainer makes the current model infer on unla-
beled data, and uses the inference results (i.e. pseudo labels)
as if they are true labels for successive training. The efficacy
of pseudo labeling has been established both empirically
[19, 104] and theoretically [8, 49]. Intuitively, it works be-
cause training with pseudo labels encourages the model to
learn a decision boundary that lies in a region where the
example density is lower. Often, such a decision boundary
yields good generalization performance (i.e. higher model
accuracy), even though the true labels of individual sam-
ples remain unknown. In ML’s lingo, such a training strategy
roots in entropy regularization: the resultant model will make
a prediction on unlabeled data with low class overlap (e.g.
“great”:0.9, “bad”:0.1 rather than “great”:0.6, “bad”:0.4) and
therefore low entropy. Pseudo labeling also tackles the chal-
lenge of skewed distribution of label classes. Since pseudo
labeling involves more clients and therefore more diversified
label classes for training, the fine-tuned model is likely to be
more unbiased and accurate.
• Prompt learning [56] is a powerful NLP technique that

boosts accuracy in model fine-tuning, which is commonly
used in few-shot scenarios [30, 57, 59, 71]. For FedFSL, we
find prompts crucial to the early stage of a training sessions,
when the model is weak and can barely generate useful
pseudo labels.

Given a task, standard NLP fine-tuning (without prompts)
trains a new classification layer from scratch, which requires

Inference Training

ith iteration

ith+1 iteration

jth iteration

jth+f iteration

# of labelsClients
Updated model Updated labels

…

…
model

model

model

Figure 2: Workflow of FedFSL with pseudo labeling.
supervision from substantial labeled data. For example, sup-
pose we fine-tune a foundation model to classify YELP re-
views [108] and are only given two labeled samples [71]:
■ T1 (label=L1): “Most delicious pizza I’ve ever had.”
■ T2 (label=L2): “You can get better sushi for half the price.”

With such few samples, training a usable classification
layer is impossible. Consider an unlabeled example:
■ T3 (label=?): Pizza was good. Not worth the price.

The model may predict T3’s class probabilities closer to
L1 if the task is to classify user satisfaction, or closer to L2 if
the task is about whether price is mentioned. But without
such a task description, the model can only randomly guess
and generate an error-prone pseudo label.

To fix the problem, the insight of prompt learning is that
the foundation model already encodes knowledge for per-
forming various tasks; it just needs a prompt that describes
what the task is.

In the example above, if ML developers augment all sam-
ples with a leading prompt, e.g. T3 becomes:

"It was <MASK>. Pizza was good..."

Then all input samples are reformulated as cloze-style
phrases, which are exactly what the foundation model was
pre-trained for – to predict missing words (masked out) in
text. Next, the predicted masked word is mapped to a class,
yielding a label. For instance, a predicted word “terrible” will
map to label 1 and “great” will map to label 5. Compared
to initializing a whole classification layer from scratch, the
foundation model with prompts requires less finetuning be-
fore it can output labels with higher accuracy; in FedFSL,
this means that the pseudo labels are less erroneous.
More formally, a cloze question is called a pattern and

the mapping from words to classes is done by a verbalizer.
Given a task, there exist multiple possible pattern/verbalizer
pairs. The training loss is the cross-entropy between the
correct answer and the distribution of probabilities among
the tokens in the verbalizer. See recent surveys on prompt
learning [12, 56] for more details.

2.3 Our System Model
Systemmodel: FedFSLworkflow enhancedwith above
techniques We notice that pseudo labeling and prompt
learning can well orchestrate and be complimentary to each
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other: pseudo labeling heavily relies on the initial model accu-
racy to get enough, correct labels, for which prompt learning
can help; in turn, prompt learning’s ability is limited to the
few number of data labels and especially their skewed distri-
bution, for which pseudo labeling can help. Therefore, we
construct an enhanced FedFSL workflow by orchestrating
the two techniques atop FedNLP, shown in Fig. 2. This en-
hanced workflow is the algorithmic foundation of our future
design, and is still dubbed as FedFSL for simplicity.

Our goal is to fine-tune a pre-trained language model M
based on distributed clients’ data. We assume that each client
has a tiny training set with labels T (typically < 10) and a
much larger set of unlabeled samples D (typically > 1000).
In general, FeS consists of two loosely-coupled runtimes
residing in a central server.
• Inference runtime that continously generates new pseudo
labels on clients. Per 𝑓 training rounds, it dispatches the
global M to 𝑛 clients, where the model exhaustively infer-
ences on each local unlabeled data 𝑥 ∈ 𝐷 and generates a
pseudo label 𝑦. The data with the top 𝑘 highest confidence
(i.e., 𝑙𝑜𝑔𝑖𝑡𝑠) are added as training samples. In subsequent
training rounds, pseudo labels are treated equally as the
gold labels. The pseudo labels that are generated in pre-
vious rounds will also be re-labeled to avoid forgetting
events [80]. The above hyper-parameters < 𝑓 , 𝑛, 𝑘 > indi-
cate how inference runtime paces.
• Training runtime that follows a typical federated learn-
ing workflow to fine-tune M . Per round, the runtime
dispatches the global M to a random set of clients with
at least one gold or pseudo label. The on-device train-
ing is assisted with prompts, provided by the trainers ei-
ther in hand-crafted or automatic manner [28, 30, 55–57].
The updated models are then aggregated (default FedAvg
protocol [61]) on the server as the new global M . The
process continues till M reaches a satisfactory accuracy.
Notably, such a design is compatible with prior FL lit-
erature on client/data sampling [47, 50–52, 94], privacy
enhancements [24, 105], and communication optimiza-
tion [6, 88, 91].

2.4 Experimental Observations
Based on the FedFSL workflow presented above, we perform
a set of early experiments on its performance. The results
highlight the two sides of a coin: a satisfactory model accu-
racy yet huge resource cost on clients.
Observation-1: FedFSL achieves satisfactory accuracy with

scarce data labels; for which both pseudo labeling and prompt
learning are indispensable. Table 1 shows the convergence
accuracy of RoBERTa-large [58] on 4 popular NLP datasets3.
With only 64 data labels (0.005%–0.05% of the total dataset),
3You can find a detailed description of the datasets in §4.1.

Dataset Full-set
(oracle)

Vanilla-
FedFSL

Prompt-
Only

Pseudo-
Only

Both
(Ours)

AGNEWS (skewed) 93.0 64.8±3.1 68.4±2.4 67.5±1.3 90.2±0.5
MNLI (skewed) 85.0 37.7±5.6 42.4±5.8 42.7±6.3 77.4±1.2
YAHOO (skewed) 78.0 24.4±10.3 41.8±4.3 31.0±2.0 66.9±1.1
YELP-F (skewed) 70.0 38.3±8.8 51.2±1.8 45.7±4.4 58.2±2.4

YELP-F (uniform) 70.0 54.0±0.1 58.1±1.5 57.0±2.2 61.9±0.7

Table 1: Convergence accuracy with 64 gold labels.
“Full-Set” assumes every data is labeled (an oracle
case). “skewed” means the gold labels are located on
few clients instead of uniformly distributed across
clients.
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Figure 3: FedFSL convergence performance with dif-
ferent models and datasets. Batch size: 4.

FedFSL achieves 85.8%–97.0% relatively convergence accu-
racy to the full-set fine-tuning that assumes all data samples
are labeled. The accuracy could be further boosted by involv-
ing more data labels. Neither pseudo labeling nor prompt
learning alone is enough to exhibit a usable accuracy. With
only one of them, the relative convergence accuracy is 40%–
74%. Furthermore, the skewed label distribution challenges
the task: on YELP-F, a vanilla FedNLP method results in
much higher accuracy when the labels are uniformaly dis-
tributed; neverthelss, the challenge is mostly addressed by
FedFSL that achieves satisfactory accuracy in both cases.
Observation-2: FedFSL incurs huge system cost. Our exper-

iments highlight the excessive system cost (Figure 3), as
against the commonsense that few-shot learning is usually
fast and lightweight [20, 25, 31, 107]. For example, training
RoBERTa-large on AGNEWS takes 3.3 hours to converge, 7.3
million Joules of energy, 68.4 GBs of network transmission,
and 10.4 GB peak memory. The cost is about 1.4× higher than
a full-set supervised FedNLP process on the same model and
dataset. We then dive deeper into the implications behind
and identify three challenges for a resource-efficient FedFSL
system.
• Orchestrating training and inference FedFSL has

two coupled components: a federated learning runtime that
continuously updates a global model; an inference runtime
that keeps generating pseudo labels. The two components
must be paced harmoniously: the inference runtime gener-
ating too few pseudo labels could slow down the training;
otherwise, generating too many pseudo labels could lead to
resource waste or even excessive erroneous labels, especially
when the global model is still weak. A mechanism to orches-
trate the two components must be dynamic to fit the model
learning progress.
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• Prompt learning needs large NLP model. Compact
NLP models have been proposed for mobile scenarios with
acceptable accuracy degradation. However, our experiments
demonstrate that a large, fully-fledged foundational language
model is demanded in FedFSL. As shown in Figure 3, on MNLI
and YELP-F, a large RoBERTa-large model (24 transformer
blocks) can reach 91% and 88% relative accuracy to full-set
fine-tuning, while Bert-base (12 transformer blocks) can only
obtain 45% and 59%. The rationale is that a large language
model also encodes rich knowledge for downstream tasks,
from which hand-crafted prompts can better extract useful
information within limited data labels.
• Excessive on-device inference to obtain trustful

pseudo labels. Pseudo labeling typically requires perform-
ing inference on all unlabeled data, from which the most
confident/valuable ones can be selected for future training.
Note that the inference is not one-pass, as the model is con-
tinuously updated each round. According to our experiments,
up to 87.4% of the total energy cost on clients is attributed to
the inference. As will be shown in §3.2, randomly filtering
out a large portion of samples to speed up pseudo labeling
will degrade accuracy significantly.

3 FES DESIGN
Atop the FedFSL workflow presented in §2.2, FeS introduces
three key techniques to make it systematically practical by
addressing each of the challenges raised in §2.4.

3.1 Curriculum Pacing
FeS proposes to progressively speed up the pseudo labeling
speed, i.e., adding more pseudo labels at a higher frequency.
The rationales are two folds. First, at the beginning of FedFSL,
the language model is relatively weak and the produced la-
bels are prone to be erroneous, from which we better pick
only the very confident ones; as the training progresses, the
model becomes accurate enough to produce trustful pseudo
labels in faster speed. Second, as the model gets more ac-
curate, the utility of each data sample to further enhance
the model diminishes. It demands recruiting more data to
sustain an effective learning progress.
The configuration space. FeS further probes into more
detailed pacing configurations, and distills three key parame-
ters: 𝑓 indicates frequency of updating pseudo labels, i.e., the
number of training rounds before the next pseudo labeling;
𝑛 indicates the number of clients selected to perform pseudo
labeling; 𝑘 indicates the curriculum ratio (linear increase) of
data selected as pseudo labels for the subsequent training per
selected client. As long as 𝑘 is positive (e.g., 1%), the pseudo
labeling speeds up (e.g., 1% selected at 1st round, 2% selected
at 2nd round, etc). For example, <f,n,k>=<5,2,1> means infer-
ence line would provide 1% more pseudo labels compared to

Algorithm 1: Our Pacing Configurator
input :Target accuracy, 𝑎𝑐𝑐 ;

Initial configuration list, 𝑙 ;
Number of candidate configurations, 𝑡 ;
AUG-E threshold, 𝑠 ;
Trial round, 𝑟 .

output :Fine-tuned model, Θ𝑖 (i=1,2. . . ).

1 Function Cloud_controller():
2 Iteration 𝑖=0;
3 𝑙𝑤𝑖𝑛 , 𝑙𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 , 𝑖 ← Switch(𝑖, 𝑙 ); // initial pace configuration
4 while Eval(Θ𝑖 ) < 𝑎𝑐𝑐 do
5 Pacing(𝑖 , 𝑙𝑤𝑖𝑛 ); // training and labeling concurrently
6 𝐸 ← Compute AUG-E; // accuracy degradation detect
7 if 𝐸<𝑠 then
8 𝑙𝑤𝑖𝑛 , 𝑙𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 , 𝑖 ← Switch(𝑖, 𝑙𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 );
9 Exit training.

10 Function Switch(𝑖 , 𝑙𝑖𝑠𝑡 ):
11 𝑖𝑡𝑚𝑝 ← 𝑖;
12 for 𝑙 in 𝑙𝑖𝑠𝑡 do
13 while 𝑖 < 𝑖𝑡𝑚𝑝 + 𝑟 do
14 Pacing(i, 𝑙 ); i++;
15 𝐸 ← Compute AUG-E;
16 𝑙𝑤𝑖𝑛 , 𝑙𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← Configurations with highest 𝐸 and top-𝑡 𝐸.
17 Function Pacing(𝑖 , 𝑙 ):
18 𝐺𝑡𝑟𝑎𝑖𝑛 ,𝐺𝑙𝑎𝑏𝑒𝑙 ← Selects clients groups separately;
19 Send model Θ𝑖 and configuration 𝑙 to𝐺𝑡𝑟𝑎𝑖𝑛 and𝐺𝑙𝑎𝑏𝑒𝑙 ;
20 Parallel:𝐶𝑙𝑖𝑒𝑛𝑡_𝑙𝑎𝑏𝑒𝑙𝑖𝑛𝑔 (𝑖) ,𝐶𝑙𝑖𝑒𝑛𝑡_𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 (𝑖) ;
21 Θ𝑖+1 ← Aggregate receive updated model from𝐶𝑡𝑟𝑎𝑖𝑛 .
22 Function Client_training(i):
23 Θ𝑖+1 (𝑛) ← Update received model Θ𝑖 on local labeled data;
24 Send updated model Θ𝑖+1 (𝑛) to cloud.
25 Function Client_labeling(i):
26 𝑙𝑎𝑏𝑒𝑙𝑠 ← Generate pseudo labels per pacing configuration.

the prior updating from 2 clients every 5 rounds. The three
parameters form a configuration (denoted as < 𝑓 , 𝑛, 𝑘 >) that
can flexibly control the relative pacing between the training
and inference. As shown in Figure 4a, various configuration
leads to huge accuracy and cost tradeoff. Meanwhile, the
best configuration varies across datasets and models, i.e., no
silver-bullet configuration.
Lightweight configuration searching To search for an
effective configuration with low cost, we define a new metric
augment efficiency (AUG-E) to measure the gradient of the
time-to-accuracy curve.:

𝐴𝑈𝐺-𝐸 (𝑓 , 𝑛, 𝑘) = 𝜂Δ(𝑎𝑐𝑐)
𝐶𝑖𝑛𝑓 𝑒𝑟 (𝑓 , 𝑛) + 𝜃 ·𝐶𝑡𝑟𝑎𝑖𝑛 (𝑘)

(1)

where 𝐶𝑖𝑛𝑓 𝑒𝑟 = 𝑙𝑖 · 𝑛/𝑓 and 𝐶𝑡𝑟𝑎𝑖𝑛 = 𝑙𝑡 · 𝑘 . Here, 𝑙𝑖 stands for
inference latency and 𝑙𝑡 stands for training latency per batch.
AUG-E takes both (accuracy) gain and the cost for this gain
into account. Higher the AUG-E, more accuracy benefit is
brought from pseudo labeling cost.
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(a) Impacts of configuration (b) AUG-E across rounds

Figure 4: AUG-E metric at early rounds (a) can help
identify the pacing configurations that perform well
in end-to-end training (b) regarding both accuracy and
system cost (the higher AUG-E, the better). < 𝑓 , 𝑛, 𝑘 >

is the pacing configuration. Dataset: MNLI [89].
Algorithm 1 describes how FeS leverages AUG-E for con-

figuration searching in details. At the beginning, FeS tries
each configuration from an initial list we hand-picked through
extensive offline experiments (default size 32). After only a
few rounds, FeS evaluates those configurations using AUG-
E: the best one will be selected for future pseduo labeling
runtime (line 3, 10–16); the top-𝑡 (default 8) ones are packed
into a candidate list for future update in case (see below).
To understand how AUG-E helps predict those efficient

configurations ahead, we profile 8 random configurations
< 𝑓 , 𝑛, 𝑘 > and show their convergence performance and
AUG-E metric on MNLI dataset [89]. Figure 4 shows that
the most effective configurations with higher accuracy and
smaller training time would obtain a relatively higher AUG-
E score in the early stage of searching. For example, the
configuration <1,4,2> with the highest AUG-E converges
at 72.0% accuracy (2nd highest) within 0.4 hours (fastest).
Therefore, we can use AUG-E as an indicator to the end-to-
end performance of different pacing configurations.
Configuration switching In practice, we observe few cases
that the picked configuration performs badly as training goes
on. To mitigate the impacts of those corner cases, inspired
by [16], FeS adopts a configuration switching mechanism at
online. As described in Algorithm 1, once training alarms
due to sharp accuracy degradation (line 6–8), i.e., AUG-E is
below zero or extremely low, FeS seeks to switch the pacing
configuration (usually speeds up the inference). More specif-
ically, FeS repeats the configuration searching as it does at
the beginning rounds (line 10–16), but only with the short
top-𝑡 list of candidates that are proven to be relative effective
as discussed above.
Cost analysis The cost of configuration searching is negli-
gible as it spans only a few beginning rounds (typically 5);
and online switching on top-𝑡 configurations rarely happens
(typically < 2). Please note that the trials on different config-
urations could be amortized by leveraging the large amount
of idle devices in federated learning [13, 96].
Wrongly labeled data If malicious clients are unluckily
selected, FeS could encounter unexpected behavior such as

low AUG-E score. Those wrongly labeled data will be flagged
as ‘unlabeled’. Subsequently, these data points undergo re-
labeling using our pseduo-labeling mechanism. Another ad-
vantage of FeS is that it requires only a small number of
labeled training data, often in the tens. Consequently, it be-
comes easier for the cloud to identify trustworthy clients
whose data labels are more likely to be accurate.

3.2 Representational Filtering
To circumvent the exhaustive labeling (model inference) of
all local data, an intuitive approach is to early filter the data
that is likely to contribute minimally to subsequent training.
There are two key questions to be answered: (1) what metrics
shall be used to quantify the value of a sample if it is impor-
tant for training; (2) How can these metrics be efficiently
extracted for each sample? Ideally, this process should be
decoupled from the NLP model that is being continuously
trained, allowing for an offline, one-pass operation.
Representativeness- anddiversity-aware score The key
idea of FeS is to jointly consider two data aspects: represen-
tativeness helps many text instances to find similar demon-
strations, thus reducing duplicate labeling (inferring) cost
for similar samples; diversity guarantees enough statistical
utility, thus increasing the total convergence performance.
To do so, FeS first computes a vector representation for

each unlabeled training instance (a sentence) 𝑥 ∈ X, by aver-
aging the output vector for each of its word using the proxy
model discussed below. For each sample 𝑥 , we sort its 𝑘 most
similar samples in terms of the cosine similarity between
the embedding vectors. Those example ids are denoted as
V(𝑥). We denoted representative vector as E(𝑢) = {𝑥 | 𝑢 ∈
V(𝑥), 𝑥 ∈ X}. |E(𝑢) | means the quantity of samples that
sample 𝑢 is similar to. Bigger the |E(𝑢) |, larger the represen-
tativeness.
Now let L andU denote the sets of already chosen sam-

ples and remaining samples, respectively. Initially, L = ∅.
Every remaining sample 𝑢 ∈ U is scored as below:

score(𝑢) =
∑

𝑥 ∈E (𝑢)
𝜌−| {V (𝑥)∩L} |, 𝜌 > 1 (2)

where 𝜌 discounts 𝑥 that is close to the already selected in-
stances, thereby encouraging diversity. A sample with higher
score(𝑢) would be preferred for labeling. Once it is selected,
it will move fromU to L. Scores would be updated subse-
quently. According to Figure 5b, up to 95% online inferring
cost could be saved without harming convergence perfor-
mance apparently. This speeds up the end to end perfor-
mance significantly.
Low-cost proxy model Existing importance-based filter-
ing methods observe training loss [74], or weight norm [7,
43] to measure the importance of each training data. Those
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(a) Representative diversity (b) End-to-end performance

Figure 5: FeS’s representational filter helps find out
a small portion of samples (20%) that are diversified
in text semantic as compared to random filtering (a).
In end-to-end experiments (b), it accelerates conver-
gence by reducing pseudo labeling cost with negligible
accuracy loss. Dataset: YAHOO [108].

methods are not feasible in FedFSL that lacks data labels.
Inspired by sentence annotating task [37] and sentence-pair
regression task [68], we propose to use a BERT-like model
to obtain a feature representation for each data sample.
We use Sentence-BERT [68] as the proxy model, which

is priorly used for sentence similarity comparison. It is a
medium-sized NLP model that consists of 12 transformer
blocks, which is notably smaller than the NLP model being
trained in FedFSL as discussed in §2.2. Furthermore, the
proxy model is trained offline and independent from the NLP
model to be trained through FedFSL. Therefore, computing
the vector representation of each data is one pass and incurs
much less cost than performing inference each round. For
example, when computing the vector representation of YELP-
F [108], it incurs only an additional 8.4% time cost compared
to the FedFSL training process. Moreover, this cost can be
further amortized across multiple FedFSL tasks since they
share the same representative vectors.
Micro experiments are conducted to show how this ap-
proach works better than a random strategy. We use 392
unlabeled samples from the same client on MNLI [89], and
compare the filtered samples through our approach and a
random one. In Figure 5a, we visualize the distance between
those samples by the cosine similarity on the Sentence-BERT
output. A key observation is that, our representativeness-
aware filter can effectively select more diversified samples
for pseudo labeling than a random filter. We further compare
the end-to-end performance in Figure 5b with the same set-
ting used in §4. Our approach filters 95% unlabeled samples
and brings up to 7.2× convergence speedup on MNLI, with
less than 1% accuracy loss. In comparison, randomly filter-
ing data for pseudo labeling degrades the model accuracy
significantly.

Figure 6: The per-round compute and communication
time with different on-device training optimizations.
Full: training everything; Freeze: freeze as many lay-
ers as possible with acceptable loss; Bias: training only
bias for each layer.

3.3 Training Depth/Capacity Co-planning
In order to enhance training efficiency in terms of aspects
such as energy consumption per batch and memory us-
age, a prevailing method is to limit the depth of the lay-
ers [32, 102]. This technique, also referred to as freezing,
ensures that backward propagation is only performed across
the top k layers nearest to the model output and encapsu-
late task-specific knowledge. Another underutilized strategy
pertains to controlling the capacity of the layer, or determin-
ing how many weights to update within each layer. Recent
research [18, 59, 103] indicates that adjusting only the bias
of a layer, which typically represents a meager 0.1% of total
weights, whilst maintaining the other weights as frozen, does
not detrimentally affect model accuracy. This is attributed
to that bias values are responsible for the predicted class or
hidden-state. Altering the bias allows for an efficient modifi-
cation of the output vocabulary, thereby mitigating the risks
of catastrophic forgetting or overfitting [27, 35, 44, 100].

Observation: compute-network tradeoff by control-
ling the layer depth and capacity. In the context of FedFSL,
however, we observe that controlling either the layer depth
or capacity alone is inadequate towards resource-efficient
training on client devices. Layer freezing can almost linearly
scale down the resource cost with the freezed depth, e.g.,
up to 83% in AGNEWS (20 out of 24 layers) without accuracy
degradation. However, the non-freezed layers still comprise
of hundreds of MBs weights, in which case the network
transmission bottlenecks the learning process. Meanwhile,
controlling the layer capacity by only updating model bias
brings much more significant reduction on the communica-
tion; yet the compute time bottlenecks as it still demands a
complete forward-backward pass.
Naive use of bias-tuning brings a significant runtime re-

duction on high-end mobile devices. But on a much wimpy
device, the speed-up drops. As shown in Figure 6, on NVIDIA
TX2, bias-tuning reduces the elapsed training time per FL
round by 8.2×. Because TX2 is with strong GPU capacity,
the compute cost is not heavy, leaving the network as the
bottleneck, which is alleviated by bias-tuning.While on Rasp-
berry Pi 4B, bias-tuning’s speed-up drops to 2.4×, because
RPI4B computes slow with weak CPU capacity, which is the
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Figure 7: Comparing our approach of co-planning the
tuned layer depth and capacity to traditional ones.

bottleneck that vanilla bias-tuning could not handle. In con-
trast, freezing the top layers can reduce the elapsed training
time per round by 6.0× on RPI4B because it brings linear
computation reduction.

Co-planning the tuned layer depth and capacity To
balance the compute and network, FeS carefully controls
both the layer depth and capacity. Simply applying both
techniques, i.e., freezing some layers and updating the bias
of the rest layers, does not fully exploit the potential of them.
Instead, we propose a mixed depth/capacity tuning para-
digm shown in Figure 7: trains very few top layers with
full capacity; trains a few middle layers with reduced capac-
ity (i.e., only bias updated); freezes the other bottom layers.
The rationale of such a terraced design is that, the layer
closer to the output encodes more downstream knowledge
which can be extracted with limited data labels. The con-
crete tuning decision is done offline on cloud. Specifically,
we use a FedFSL simulator that uses binary search to iden-
tify the optimal configuration. The simulator takes three
types of input: pre-trained model; datasets, which could be
a public one with similar classification difficulty to the pri-
vate dataset distributed across clients; the estimated FedFSL
runtime parameters including on-device training time and
network bandwidth.

In comparison, a random scheme often results in low con-
vergence accuracy or high resource costs due to either freez-
ing too many or too few layers. For instance, when consider-
ing the AGNEWS dataset, compared to our cherry-picked plan
(where we freeze 23 out of 24 layers, excluding only the bias
of layers 16–23), freezing all 23 layers leads to a significant
4.1% accuracy loss, while freezing just 16 layers incurs a
slowdown of 13.8× to achieve only a marginal accuracy gain.
Integrationwith other parameter-efficient fine-tuning
methods Enormous parameter-efficient fine-tuning meth-
ods are off-the-shelf to fine-tune large language models, such
as adapter [16, 65], LoRA [36, 39], etc. Our system already in-
cludes one popular technique: bitfit [103], that greatly saves
tunable parameters while preserving the few-shot ability
of large language models [59]. Other parameter-efficient
fine-tuning methods could also interplay our co-planning
schedule and reap benefits. For instance, adapters could be

Dataset AGNEWS [108] MNLI [89] YAHOO [108] YELP-F [108]
# Training 120k 392.7k 1.4M 650k
# Test 7.6k 9.8k 60k 50k

# Clients 100 1000 1000 1000
# Labels 64 64 64 64

Distribution Skewed Uniform Skewed Skewed
Prompt a ____ b a ?____, b Category: a ____ b It was ____. a

Table 2: Evaluation datasets. Label quantity of each
class follows prior work [102] where 𝛼 = 1. Please note
that 64 is the total number of labels across clients, not
per client.

Setup Labeling Training
Pacing Optimization Method Optimization

FedCLS / / Head-based /
FedFSL Static / Prompt-based /

FedFSL-BIAS Static / Prompt-based Bias-only tuning

FeS (Ours)
Curriculum

(§3.1)
Filtering
(§3.2)

Prompt-based
(§2.2)

Depth/Capacity
Co-planning (§3.3)

Table 3: Summary of baselines used in experiments.

utilized to fine-tune the middle layers with reduced capac-
ity, while fine-tuning the very top layers with full capacity,
which will not only lead to high parameter-efficiency but
also high computation-efficiency.

4 EVALUATION
We evaluate FeS to answer the following key questions: 1)
How much performance improvement (in terms of time-to-
accuracy and relative model accuracy) does FeS achieve? 2)
How much performance improvement does FeS achieves
across different number of gold labels? 3) How much per-
formance improvement does each component of FeS con-
tribute? 4) How much resource does FeS save?

4.1 Implementation and Setup
FeS prototype We have fully implemented the FeS pro-
totype atop PET [71] and FedNLP [102]. PET is a popular
prompt learning framework for NLP tasks. FedNLP is the
state-of-the-art framework for evaluating NLP tasks under
federated setting. As prior work [13], we adopt the parameter
server (PS) architecture among the clients and central server.
The on-device training and inference performance is tested
with PyTorch 1.10, and then plugged into FedNLP frame-
work. The models trained through prompt learning will be
collected in the central server and aggregated through Fe-
dAvg [61] algorithm, which is also the default setting in prior
FedNLP literature [102]. Both pseudo labeling and prompt
learning randomly select clients for labeling and training per
round.
BaselinesWe compare FeS to the following alternatives and
the key differences are summarized in Table 3. (1) FedCLS is
the vanilla federated fine-tuning method without optimiza-
tions [22, 70]. It trains only with the limited gold labels. (2)
FedFSL implements pseudo labeling and prompt learning but
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without our system optimizations. (3) FedFSL-BIAS runs the
FedFSL pipeline; it however tunes only the layer bias while
freezing the other weights. Both FedFSL and FedFSL-BIAS
use static pacing, i.e., adding 100 pseudo labels per selected
client per round. FeS and all baselines use the same set of
hyper-parameters as prior literature [16, 71, 102]: mini-batch
size as 4; local training epoch as 1; max sequence length as
256, per-round participant client number as 5.
Models We test two foundation NLP models: RoBERTa-
large [58] (default) and its light version RoBERTa-base, com-
posed of 24 and 12 transformer layers, respectively. They
are downloaded directly from Huggingface [90]. We use
RoBERTa-large for most of our experiments for its supe-
rior accuracy performance, as we discussed in §2.1. Gen-
erative tasks requiring mega large language models like
GPT3 [15] are out of this work’s scope. For most classifi-
cation or seq2seq tasks, BERT-like models are adequate to
achieve usable accuracy.
Dataset and few-shot setting We experiment with four
popular NLP datasets and prompts4, as shown in Table 2. (1)
AGNEWS [108] is a news classification dataset. (2) MNLI [89]
is a sentence understanding dataset. (3) YELP Review Full
(YELP-F) [108] is a restaurant rating dataset. (4) YAHOO [108]
is a question-answer pairing dataset. For each dataset, we
follow prior work [16, 25] to randomly select gold labels. By
default, the labels form a skewed distribution across clients to
be more realistic to real-world situation as discussed in §2.1.
For each dataset, we generate 3 different few-shot settings,
on which we repeat the experiments and report the mean
results.
Hardware As prior FL literature [47, 50, 52, 74, 102], our
experiments are carried out in an emulation manner on a
GPU server with 8x NVIDIA A40. The on-device training
time is obtained on 2 development boards with similar hard-
ware capacity to mainstream mobile devices, i.e., NVIDIA
TX2 [1] and Raspberry Pi 4B [2] The default testbed device
is NVIDIA TX2 without special statement. The numbers are
then plugged into the emulation framework to calculate the
elapsed time. We try various network bandwidths between
clients and server, with default number as 1MB/s, a typical
setting for mobile and IoT devices [4, 33].

4.2 End-to-end Performance
FeS significantly speeds upmodel convergence at high
accuracy. As demonstrates in Figure 8a and Table 4, FeS
achieves 86.8%-95.9% relative accuracy to a full-label fine-
tuning on four datasets, using only 64 data labels. In compari-
son, FedCLS only converges at 27.9%–37.3% relative accuracy.

4We attempt 6, 2, 6, 4 different prompts that are widely used in prior work
for each dataset, and use the one with highest accuracy. The verbalizers are
the same as the previous literature [71].

The improved performance is attributed to the pseudo label-
ing and prompt learning techniques adopted by FeS. Accord-
ingly, the other two baselines also achieve a competitive con-
vergence accuracy. However, FeS is much faster to converge:
FeS takes only 0.1–0.4 hours to reach the convergence accu-
racy of FedFSL on Jetson TX2, which is 8.2×–46.0× faster
than FedFSL. Even when compared to the stronger baseline,
FedFSL-BIAS, FeS still converges 4.3×–14.6× faster. On a
wimpier device RPI 4B, FeS converges a few times slower
due to the lengthened local training time. Nevertheless, it
consistently outperforms FedFSL by 28.3× and FedFSL-BIAS
by 10.8× on average.
We also observe FeS achieves 3.4%–18.1% higher relative

accuracy than FedFSL and FedFSL-BIAS, which are built
atop the same algorithmic foundation. There are two po-
tential reasons. First, by tuning fewer weights (bias), the
training algorithm can better extract consolidated knowl-
edge through fewer data labels. Second, FeS employs cur-
riculum pacing that effectively orchestrates pseudo labeling
with federated learning, whereas the two FedFSL baselines
use a static pacing strategy that could lead to insufficient or
excessive pseudo labels.
We then extend our experiments to RoBERTa-base and

present the results in Figure 8b. FeS achieves 8.0%–66.9%
higher relative accuracy than FedCLS. Compared to the more
competitive baselines, i.e. FedFSL/FedFSL-BIAS, FeS main-
tains high convergence accuracy and is 24.1×/4.6× faster
on average, respectively. In most cases, except for AGNEWS,
which is a relatively easy task, using small models with
weaker knowledge results in lower accuracy, as discussed
in §2. For instance, RoBERTa-base sees a decrease of 38.5%,
8.2% and 13.9% in convergence accuracy on MNLI, YAHOO
and YELP-F, respectively, when compared to RoBERTa-large.
Fortunately, FeS significantly reduces the large model fine-
tuning cost while maintaining its high performance.

FeS outperforms baselines in various network envi-
ronments. Figure 9 reports the performance of FeS and
baselines under various network environments from 0.1MB/s
to 10MB/s, which cover the typical WiFi and cellular band-
width. Our key observation is that FeS consistently outper-
forms other baselines under different network settings, with
improvement more significant at lower bandwidths. For in-
stance, with a bandwidth of 10MB/s, FeS is 19.0× and 33.6×
faster than FedFSL on AGNEWS and MNLI, respectively. When
the bandwidth drops to 0.1MB/s, the improvement reaches
224.3× and 661.7×, respectively. This is due to FeS signifi-
cantly reducing network transmission by tuning very few
parameters (∼0.1% of all.)

Our results show that FeS also outperforms FedFSL-BIAS
by 5.6×–7.4×. Those benefits arise from FeS’s greater effi-
ciency in both computation and communication, which is
also verified by the end-to-end performance.
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(a) RoBERTa-large [58]

(b) RoBERTa-base [58]
Figure 8: Overall Performance of FeS and baselines. Device: Jetson TX2.

Dataset AGNEWS MNLI YAHOO YELP-F
Time-to-acc (hr) Time-to-acc (hr) Time-to-acc (hr) Time-to-acc (hr)
TX2 RPI TX2 RPI TX2 RPI TX2 RPIPerf. Conv.

Acc. acc1 acc2 acc1 acc2

Conv.
Acc. acc1 acc2 acc1 acc2

Conv.
Acc. acc1 acc2 acc1 acc2

Conv.
Acc. acc1 acc2 acc1 acc2

FedCSL 27.9% X X X X 37.3% X X X X 34.6% X X X X 35.7% X X X X
FedFSL 92.5% 3.3 3.3 50.0 50.0 74.1% 9.2 X 137.5 X 84.3% 8.3 X 125.0 X 75.3% 2.1 X 31.3 X

FedFSL-BIAS 92.5% 1.7 1.7 25.0 25.0 88.1% 0.5 11.7 7.5 175.0 85.9% 3.3 5.3 50.0 80.0 79.4% 0.2 2.1 2.5 10.4
Ours 95.9% 0.4 0.4 5.5 5.5 92.2% 0.2 0.8 2.5 12.5 88.5% 0.3 0.7 5.0 10.0 86.8% 0.1 0.5 1.3 7.5

Table 4: The final convergence accuracy (“Conv. Acc.”) and the elapsed training time (“Time-to-acc”) to reach
different relative accuracy. NLP model: RoBERT-large. “acc1”/“acc2” are the final convergence accuracy of
FedFSL/FedFSL-BIAS, respectively. “X” means the accuracy cannot be achieved.

(a) AGNEWS (b) MNLI
Figure 9: FeS outperforms baselines under all net-
work bandwidths to reach the convergence accuracy
of FedFSL.

4.3 Impacts of Initial Gold Labels
We vary the initial data labels and compare the performance
of FeS to baselines on two datasets: AGNEWS and YAHOO. As
shown in Figure 10a, FeS performs on par with or slightly
higher than FedFSL in terms of relative accuracy from 0–
1024 initial data labels, which is up to 64.1% higher than
FedCLS. In some cases, FeS achieves satisfactory zero-shot
performance, e.g., 95.2% relative accuracy on AGNEWS while
FedCSL only reaches 31.1%. This observation paves the way
for future research on zero-shot learning in mobile NLP.
Furthermore, FeS also significantly reduces the end-to-end

convergence time under various initial data labels. For a fair
comparison, we only compare FedFSL and FeS that perform
alike. As shown in Figure 10b, to reach the same accuracy,
FeS reduces the elapsed training time by up to 18.3× and
17.1× on AGNEWS and YAHOO, respectively.

4.4 Significance of Key Designs
We perform an ablation study to understand the contribution
of each key technique of FeS presented in §3. As shown in
Figure 11, we find each of them significantly contributes to
the results: (1) The co-planning of training depth and capacity
reduces the convergence time by 8.0×–62.3× on different
datasets. The significant improvement comes from that most
of bottom layers (up to 66.7% on AGNEWS) are skipped, which
reduces the training latency linearly. Some middle layers (up
to 33.3%) are tuned with reduced capacity, and thus reduces
the network traffic. (2)With themodel optimized for training,
we observe the pseudo labeling accounts for more than 70%
of the total computation cost. The representative diversity
mechanism filters out up to 95% of the data, further reducing
the training time by 1.2×–3.5×. (3) Curriculum pacing further
reduces the training time by 1.6×–3.5× by selecting a (sub-
)optimal pacing configuration.
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(a) Convergence accuracy (b) Training time
Figure 10: The training accuracy (a) and training time (b) with different number of gold labels.

Figure 11: Model convergence delays with and with-
out FeS’s key designs, showing their significance. DC:
training depth/capacity co-planning; RF: representa-
tive filtering; CP: curriculum pacing.

Figure 12: The total energy consumption of all clients,
normalized to that of FedCLS.

Figure 13: The total network traffic of all clients.

4.5 Client Resource Cost
Energy consumption Figure 12 illustrates the average en-
ergy consumed during mobile NLP training tasks on each
device. It shows that FeS saves the energy consumption re-
markably, e.g., 7.7×–41.2× reduction compared to FedFSL
and 6.4×–18.0× reduction compared to FedFSL-BIAS. This
improvement comes from the reduced network transmission
time, the on-device training/labeling computations, and the
cherry-picked orchestrating pace.
Network traffic Figure 13 reports the total network traffic
incurred during fine-tuning to reach the convergence accu-
racy of FedFSL. It shows that FeS saves 1841.7× on average
and up to 3000.0× (reducing from 224.6 GB to 0.04 GB) net-
work traffic compared to FedFSL on four datasets. Please

note that reducing the network traffic not only speeds up
the convergence, but also mitigates the overhead on clients
and the monetary cost to FL developers. The cost is billed
by the amount of data transmitted on public cloud platforms
such as AWS [5], which charges $0.01/GB.
Memory footprint As shown in Figure 14, our training
depth and capacity co-planning mechanism can reduce the
memory footprint by 4.3–4.5 times, which is crucial for prac-
tical deployment on mobile devices. For example, FedFSL
requires 10.4 GB memory5 to train RoBERTa-large, which
is 2.4× higher than training RoBERTa-base. This excessive
memory requirementwould lead to out-of-memory and train-
ing failure on mobile devices which typically have only 8GB
RAM. FedFSL-BIAS reduces the memory usage of training
RoBERTa-large to 5.8 GB, which is still too large for mobile
devices. Because it only bypasses the memory bottleneck
of the weight update, but not the intermediate activations
which is the main memory bottleneck [18]. In comparison,
FeS only requires 2.3 GB memory due to the shallow training
depth and greatly saved intermediate activations.
Remark Training can be donewhen no user interactions are
present, e.g. when phone is idle/charged overnight which is
nearly a “clean” environment without other co-running appli-
cations to share memory. Moreover, memory inefficiency can
be compensated with acceptable training overhead through
advanced memory optimizations such as batch splitting and
model weight caching [85]. During the end-to-end conver-
gence, which typically takes between 0.1 to 0.8 hours, each
device typically engages in a few rounds of training, with
each round lasting only a few tens of seconds. As a result,
FeS shall not compromise user experience.

5 RELATEDWORK
Few-shot learning (FSL) and FedFSL FSL has been one
of the hottest topics in machine learning research, as it is
considered more akin to how human intelligence works [29,
67, 75, 77, 87]. FeS identifies two complementary algorith-
mic blocks, i.e., pseudo labeling [8, 19, 49, 104] and prompt
learning [56], and demonstrates satisfactory accuracy un-
der federated context. Prior work [40] introduced iterative

5Tested on a central server.
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Figure 14: Memory footprint of on-device training.

pseudo labeling into prompt learning for centralized training
of vision-language model, but it employed a fixed iterative
pace that could result in poor federated performance, as we
have demonstrated. Our harsh but practical assumptions
of highly scare and skewed data labels invalidates existing
FedFSL methods [23, 25, 26, 41, 101, 109], which assume at
least 4% of the data to be uniformly labeled across clients.
As far as we know, FeS achieves the state-of-the-art per-
formance in the FedFSL scenario. At system aspect, FSL is
generally considered lightweight due to fewer rounds of
training [20, 25, 31, 107]. However, we show that the cost
could be substantial in FL due to the use of the pseudo la-
beling (requiring on-device inference) and prompt learning
(requiring large NLP models). We are the first to tackle these
system challenges and enable practical FedFSL.
Large language model (LLMs) Few-shot prompt tuning
on LLMs such as GPT-3 [15] can rival the performance of
fully-supervised medium-size models like RoBERTa [58].
However, these models are too large (e.g., 175B+ parame-
ters for GPT-3) to be deployed on devices after training, and
deploying them on the cloud leads to privacy concerns [3, 79]
and network delays [34, 95]. We pioneer practical federated
prompt tuning, allowing resource-constrained devices to
achieve comparable few-shot performance while preserving
privacy and supporting offline inference.
FedNLP aims to achieve both high accuracy and privacy
preservation in NLP model fine-tuning. Recently, there are
a few literature investigating its implications, but mostly at
the algorithm aspect. [102] builds a benchmark for popu-
lar FedNLP tasks and datasets in a standard FL workflow.
[10] enhances the privacy of FedNLP by orchestrating with
differential privacy. SEFL [84] eliminates the need for the
trusted entities and is resilient to client dropouts in FedNLP
tasks. Those work are orthogonal to FeS. [16] is the only
work that we are aware of that tackles with huge system
cost of FedNLP. It proposes a FedNLP framework based on
lightweight, automatically configured adapters at runtime.
However, the adapter cannot be applied in few-shot NLP
scenarios according to our experiments.
FL system optimizations The huge resource cost of cross-
device FL has been well recognized by the research commu-
nity. In respond, lots of efforts have been invested, including

communication efficiency optimizations [13, 96], model com-
pression/quantization [11, 91], client/data sampling [47, 50–
52, 62, 86, 94, 110], and on-device training speedup [85, 92].
Instead, FeS addresses unique challenges raised by the few-
shot scenarios: pacing between pseudo labeling and training;
filtering redundant unlabeled data for pseudo labeling. The
design of FeS is mostly compatible with most optimizations
above as its FL training is loosely coupled with the pseudo
labeling.
Attacks in FL It is well known that FL cannot fully guaran-
tee privacy preservation, e.g., extraction attacks [9, 21, 111].
However, dropout, a common training technique used in
ML, is proven to be very effective to defend against those
attacks [21]. Moreover, [111] demonstrates that most at-
tacks suffer a significant decrease in success ratio when
training batch sizes are set greater than 1. Apart from that,
most data extraction attacks tend to be extremely resource-
intensive [9, 21, 111]. Though larger models leak more in-
formation than the smaller ones, it incur larger inversion
cost either (e.g., about 1672.52s for reconstructing one sen-
tence [111]). FeS avoids revealing training data and raises
the barrier for attackers (i.e. it requires much higher attack
capability and much longer time). Furthermore, integrat-
ing various privacy-preserving techniques, such as differ-
ential privacy [10] and secure aggregation [14], can further
enhance the security of FL. FeS is parameter-efficient and
thereby shall be easy to integrate with them.

6 CONCLUSIONS
FeS is a FedFSL framework that enables practical few-shot
NLP fine-tuning on federated mobile devices. At algorithm
aspect, it incorporates pseudo labeling and prompt learning
to achieve usable accuracy with only tens of data labels. At
system aspect, it proposes three novel techniques, i.e., by pac-
ing training and labeling, early filtering unlabeled data, and
reducing the tuning depth/capacity, to address the unique
challenge of huge resource cost raised by its algorithmic
foundation. On extensive experiments, FeS shows superior
system performance over existing approaches.
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