Elastic On-Device LLM Service

Wangsong Yin', Rongjie Yi%, Daliang Xu?, Gang Huang?,
Mengwei Xu®**, Xuanzhe Liu'*
Peking University, Beijing, China
Beijing University of Posts and Telecommunications, Beijing, China
3Beiyou Shenzhen Institute, Shenzhen, China
yws@stu.pku.edu.cn
{hg,liuxuanzhe}@pku.edu.cn
{mwx,xudaliang}@bupt.edu.cn

Abstract

On-device Large Language Models (LLMs) are transforming
mobile Al catalyzing applications like Ul automation with-
out privacy concerns. Nowadays the common practice is to
deploy a single yet powerful LLM as a general task solver
for multiple requests. We identify a key system challenge in
this paradigm: current LLMs lack the elasticity to serve re-
quests that have diversified Service-Level Objectives (SLOs)
on inference latency. To tackle this, we present ElastilM, an
on-device LLM service that elasticizes both the model and the
prompt dimension of a full LLM. It incorporates (1) a one-shot
neuron-reordering method, which leverages the intrinsic
permutation consistency in transformer models to generate
high-quality elasticized sub-models with minimal runtime
switching overhead; (2) a dual-head tiny language model,
which efficiently and effectively refines the prompt and or-
chestrates the elastification between model and prompt. We
implement such an elastic on-device LLM service on mul-
tiple COTS smartphones, and evaluate ElastilM on both
standalone NLP/mobile-agent datasets and end-to-end syn-
thesized traces. On diverse SLOs, ElastilLM outperforms 7
strong baselines in (absolute) accuracy by up to 14.83% and
10.45% on average, with <1% TTFT switching overhead, on-
par memory consumption and <100 offline GPU hours.

#Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ACM MOBICOM °25, November 4-8, 2025, Hong Kong, China

© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-1129-9/2025/11
https://doi.org/10.1145/3680207.3765259

CCS Concepts

« Computer systems organization — Embedded and cyber-
physical systems; « Computing methodologies — Natural
language generation.

Keywords

On-Device Large Language Models, Elastic Service, Service-
Level Objectives

1 Introduction

Large Language Models (LLMs) are ushering in a transfor-
mative era for mobile AL. A multitude of killer apps are built
on top of LLMs, encompassing mobile Ul automation [73],
API-calling [22, 79], and screen content comprehension [14].
For instance, one can easily place an order by simply saying
“Order a pizza now from Pizza Hut” in smartphone.

With ever-growing privacy concerns, deploying LLMs on
local devices [1, 48, 55, 85] is attracting attentions increas-
ingly. For instance, mobile GUI agent [45] handles users’
requests by accessing the device screen information, which
may contain highly private photos or chat history. To this
end, Google has developed Android AICore [1], a built-in
on-device LLM in Android OS that has been used by apps
like GBoard smart reply and Pixel voice recorder.
On-device LLM needs elasticity. LLM can handle ubiqui-
tous language tasks, at the cost of large parameter size, mak-
ing it neither “necessary” nor “practical” to deploy separated
LLMs on a device. Instead, on-device LLM is often shared
across tasks and apps, e.g., LLM-as-a-Service in OS [1]. How-
ever, a single static LLM cannot meet the diversified Service-
Level Objective (SLO) demanded by different LLM tasks.
Consequently, on-device LLM needs elasticity. Demand of
elasticity is further exaggerated and complicated since LLM
inference consists of two distinct stages: prefill (prompt pro-
cessing speed) and decode (token generation speed), whose
latencies are measured by Time-To-First-Token (TTFT) and
Time-Per-Output-Token (TPOT), respectively. For instance,
a chatbot [8] must behave both low TTFT and low TPOT to
match human reading speed; a Ul-automation agent [73, 88]

https://doi.org/10.1145/3680207.3765259

ACM MOBICOM ’25, November 4-8, 2025, Hong Kong, China

typically requires a low TTFT and an acceptable TPOT, as
TPOT can be overlapped with UI manipulations; a screen-
event recorder [14] running in background only needs a
tolerable TTFT/TPOT. Even in a single app, the SLOs maybe
also diversified due to the resource/task variation. Failing
to meet an SLO leads to serious consequences: a significant
degradation of user experience, or failure in the interactions
between LLM agents and the environments/tools [3, 22, 88].

Ideally, a request is sent to the elastic LLM with its prompt
as well as the SLO expected, and the LLM needs to provide the
highest text generation quality without failing the SLO. Fun-
damentally differing from prior work that elasticize CNNs in
pre-LLM era [27, 28, 30, 74], a key opportunity in our system
model is that, both model and input (prompts) dimensions of
the LLM can be elasticized. Through multi-scale LLM prun-
ing technique [47, 62, 78], one can get a crucial subset of
weights that running at different speed; similarly, through
scoring the importance of each input token [38, 52, 56], one
can prune the prompt into different lengths on demand. In
both ways, LLM accuracy is sacrificed for faster text gen-
eration in a flexible manner. Our pilot experiments in §2.2
explore how each dimension of elasticity impacts the LLM
inference latency: TTFT (often more time consuming and
requires higher elasticity) is proportional to both the prompt
length and the model size; TPOT is mainly proportional to
the model size with the help of KV cache [42].
Challenges. However, elasticizing an on-device LLM faces
the following unique challenges.

o Costly runtime switching between elasticized models. An
elastic LLM service has to frequently switch between the
sub-models at request level, yet traditional model elastifi-
cation methods (e.g. structural pruning) often ignore this
switching overhead [20, 43, 47, 74]. For instance, generated
by SoTA structural pruning [47], a sub-model of LLaMA-7B
with 20% parameters takes 8.2s to switch to 30% on Redmi
K60 Champion. The root cause is that, to utilize the deeply
optimized on-device NN inference libraries and hardware
throughput, the interleaved and overlapping sub-models’
weights must be re-layouted to contiguous format in mem-
ory before inference (or each sub-model must be maintained
an unacceptable standalone copy in memory). This switching
overhead is billed to TTFT since the switching can only be
performed right after the LLM receiving a request.

o Sensitive prompt-model orchestration strategy. There exist
multiple elastic strategies to meet an SLO, yet their output
text quality could differ significantly. Exemplified with a real
prompt from ARC_E dataset in Figure 5, although both elas-
tic strategies (50%/20% prompt/model pruning vs. 20%/50%
prompt/model pruning) can meet the SLO, only the first strat-
egy leads to a correct generated answer. Another instance
is that with randomized strategy, the top5 API selection of
Octopus dataset exhibits a 15.2% accuracy loss to the oracle

Wangsong Yin et al.

strategy on an SLO with 50% TTFT and 80% TPOT of the full
LLaMA-7B model. How to orchestrate the two dimensions of
elastification to maximize the LLM output quality at request
level has not been touched in prior study.

Our solution: ElastilM. We present ElastilM, a system for
elasticizing on-device LLMs. It tackles the above challenges
through the following novel techniques.

One-shot reordering of permutation consistent units
(83.2). This technique performs pruning on a fine granularity
of permutation consistent units in Transformers. Identified by
ElastilM, these units can be offline arbitrarily layouted in a
block (e.g., Attention or MLP) while guarantee the equiva-
lent input/output as original block, thereby fundamentally
avoiding the runtime switching overhead. Specifically, such a
unit is an entire attention head (i.e., columns in Wy /Wg /Wy,
and rows in Wy with the same indices), or an entire MLP
neuron (i.e., a column in W, and a row in Wy,wn). In the
one-shot reordering, ElastilM first profiles the importance
of the units through an eXplainable-AI (XAI) [35, 59, 64]
guided method, which measures unit importance via gradi-
ents. Then, ElastilM reorders the units in memory based
on their importance, making each contiguous memory seg-
ment (starting from base address to a memory pointer) a
sub-model. After reordering by importance, the pruning al-
ways extends from the periphery inward, thus requiring no
online reordering. The profiling and reordering are all done
offline, incurring no online overhead. The online switch-
ing of sub-models is zero-cost by only moving the pointer.
ElastilM further incorporates other optimizations such as
LoRA recovery and anchor layers locking to improve the
sub-models quality.

Dual-head Tiny Language Model (TLM) for prompt-
model elastification orchestration (§3.3). Different from
prior work [38, 56] that only focus on identifying impor-
tant tokens, ElastilM designs a dual-head TLM as an end-
to-end solution for determining an optimal prompt-model
elastification strategy. Specifically, the TLM features two
heads, namely score-head and decision-head. During infer-
ence, the score-head estimates the token importance, while
the decision-head chooses the proper prompt- and model-
elastification ratios (mapped to the real latency by a one-
shot profiling on various SoCs). At offline, the decision-head
learns from the prompts and groundtruth of a generic cor-
pora. As a self-induced labelling process, all possible strate-
gies of a prompt with its SLOs are traversed to get the infer-
ence result, and an optimal strategy is recorded as the label.
Both the training and inference of TLM are cost-effective
with careful optimizations like reusing the compact Mobile-
Bert and bottom layers sharing.

Evaluation. We have fully implemented ElastilM on 3
COTS smartphones and 5 base/instruction-tuned LLMs with
3B-7B parameters. The datasets encompass fundamental

Elastic On-Device LLM Service

App. Request 1 Request 2 Request 3
Layer Prompt [Prompt |[sLo]| |[Prompt][SLO]
I S IO Timeling

System MY | downgrade upgrade LLM I
Layer _—

Figure 1: The system model. The service can be upgrad-
ed/downgraded at runtime to adapt to various SLOs.

language tasks ARC_E/OBQA/PIQA/SCIQ [23, 40, 51, 83], mo-
bile UI automation tasks L1amaTouch [88], and mobile sys-
tem API-calling tasks Octopus [22]. Evaluation shows that
ElastilLMachieves up to 14.83% and on average 10.45% higher
absolute accuracy on end-to-end traces, and up to 40% on
standalone datasets, when meeting all request SLOs. Within
2% absolute accuracy loss, ElastilM can speed up TTFT
by up to 5x and TPOT by up to 2X. The runtime memory
consumption is also on-par with non-elastic LLM service.
The entire elastification of ElastilLM only takes 68.3 GPU
hours (within $100 GPU renting cost [7]) when elastictizing
LLaMA-7B for MI14 smartphone, being affordable for most
LLM service developers.

Contributions are listed as follows:

e We highlight the strong motivation and key challenges of
elastic on-device LLM service.

e We present ElastilM, a system that fully exploits the
space of model and prompt elastification through two
novel techniques/designs, one-shot reordering of permu-
tation consistent units and dual-head tiny language model.

e We conduct comprehensive experiments on ElastilM that
demonstrate its superior performance over competitive
baselines.

2 Background and Motivations

2.1 Elastic on-device LLM service

On-device LLM needs elasticity. As listed in Table 1, a
chatbot must behave both low TTFT and TPOT in order to
match human reading speed. A Ul-automation agent requires
a relatively low TTFT to generate the first action and an ac-
ceptable TPOT, since the following latency can be overlapped
with the manipulation of UI elements and thus transparent
to users. Besides, these mobile-agents typically only decode
few tokens compared to the prompt length, making a lower
TTFT more important. Failing to provide satisfactory latency
for a request leads to serious consequences: a significant
degradation in user experience, or failure in the interactions
between LLM agents and the environment/tools.

How to satisfy the heterogeneous demands of different
LLM requests, while not degrade the LLM output quality

ACM MOBICOM ’25, November 4-8, 2025, Hong Kong, China

Mobile LLM App. ‘ Service-Level Objective
Chatbot [8] Readable TTFT/TPOT
Always-on Voice Assistant [6, 15] Very-Low TTFT, medium TPOT
Background Screen-Event Recorder [14] Tolerable TTFT/TPOT

Low TTFT, low TPOT
Low TTFT, acceptable TPOT
Low TTFT, acceptable TPOT

Smart Message Reply [5]
API-Calling Agent [22]
UI-Automation Agent [73, 88]

Table 1: SLOs of various mobile LLM applications.

o »L'L: 250
o o
7S -
=R\ _ Ba® 200
2 e G S M
e g S 3
= 208 o 150 ~
BA® ~ a4® o
E © E £ 100
o o 10— £
o ° o
2° 22 50
3 S

0307020 fo %% To 2o 2,0 002020 %20 %0 10 B0 2% 0
Model Size Model Size
(a) Prefill latency. (b) Decode latency.

Figure 2: LLM inference latency w.r.t. prompt length
and model size. Measured on LLaMA-7B, Redmi K60
Champion (Snapdragon 8Genz2).

significantly? One plausible solution is to deploy a dedicated-
sized LLM for each SLO!. This is unfriendly (and even in-
feasible) to both the LLM service developers and users. On
one hand, costly GPU resources are required for pretraining
multiple LLMs; on the other hand, memory consumption
rises dramatically in order to manage these LLMs — running
counter to the motivation behind a single LLM service.
The system model. Thereby, we propose our system model.
As illustrated in Figure 1, at system layer, there is one run-
ning LLM that serves requests from the application layer
(e.g., apps/agents). Each request consists of a prompt (a text
sequence as LLM input) and an SLO (inference latency con-
straint). This single LLM can rapidly upgrade/downgrade
itself to a more bulky/swift one at runtime to adapt to a
specific SLO.

2.2 Opportunities and challenges

Observation#1: LLM inference latency is influenced by
two dimensions — prompt and model. An LLM inference
workload can be divided into two dimensions: prompt (acti-
vations) and model (weights). We conduct a measurement of
LLaMA-7B inference on Redmi K60 Champion smartphone
equipped with Snapdragon 8Gen2 SoC. We use 4 threads
(big cores). The “model size” here represents a sub-model of
LLaMA-7B [70] (e.g., 0.1 means 10% parameters). In Figure 2,
we observe that both the two dimensions can influence LLM
inference latency. TTFT is influenced by both prompt length

!In cloud datacenters, a tighter SLO can be achieved by scaling up hardware
resources, e.g., number of GPUs/TPUs. However, hardware resource of
mobile devices is limited and not scalable.

ACM MOBICOM ’25, November 4-8, 2025, Hong Kong, China

Contiguous in memory

Retained Pruned (hardware friendly dense kernels)
parameters parameters ——
~ ; SEmmmams)
. ICCCETT 12345678
12345678 Model -)
Downgrade! ata movemen
sub- [IIEIEINITINENE] (Costly)
[]
mode2 12345678 12378645
ms:dbe-|3 MOdeJ Data movement
12345678 Upgra (Costly)
OOT1T1TT1
Memory layout 14235786

(a) Pruned sub-models. (b) Model upgrade/downgrade.
Figure 3: Elastic LLM does not translate to Elastic LLM
service. Non-negligible request-level overhead of data
movement is still suffered when directly employing

model pruning.
100

=
o
o

c c

S_ S_

=R ey

ol {

N0 50 Dw 50
a . o .

=S <y

0 < LLaMA-7B | 10 2

) =@= Bloom-3B)

0% 08 To 07260%, 90%> <50%, 80%>

SLOs (<TTFT, TOPT>, %)
(b) Strategy selection.
Figure 4: Prompts of on-device LLM service are also
elasticizable. Yet the ratio needs careful (and content-
aware) selection to achieve an optimal orchestration
with model elastification.

Prompt Compression Ratio
(a) Prompt elastification.

defends the body through a cell diated i resp Which ii

When a person is inf d with the infl virus, the immune system
cell is responsible for protecting the body from the influenza virus infection?

When person infected with influenza virus,
immune system defends through cell- the immune system defends body through

mediated immune. Which responsible| | cell-mediated i r Which
for protecting from infl ? immune cell is responsible for protecting

body from influenza virus infection?

(503 5ub moce |

Figure 5: Sensitive prompt-model orchestration. We
use a prompt of ARC_E dataset and the elasticized
LLaMA-7B as an exemplification. The SLO is 40% TTFT
of the full LLM.

When person infected with influenza,

P

and model size; TPOT is mainly determined by model size?.
We have the following proportional relationships:

TTFT oc PromptLength X ModelSize,

1
TPOT o Modelsize, @
20nly when the prompt is extremely long (e.g. over 10K tokens), the
attention operator will dominate inference, and TPOT will then be influ-
enced by prompt length.

Wangsong Yin et al.

Notably, as shown Figure 2, TTFT is much longer than TPOT
(e.g, seconds v.s. milliseconds), which necessitates a more
aggressive elastification of TTFT.
Observation#2: LLMs are elasticizable; yet elastic LLM
does not necessarily translate to elastic LLM service.
DNNs are known to be elasticizable: they can provide vari-
ous compute-accuracy tradeoffs by a subset of their param-
eters (known as pruning [28, 47]). For instance, Sheared-
LLaMA [78] demonstrates that pruning off 60% parameters
of a 7B-size LLM can still retain 74% of original accuracy on
ARC_E dataset [23]. LLMPruner [47] further shows that with
lightweight Parameter-Efficient Fine-Tuning (PEFT) meth-
ods, the accuracy loss incurred by pruning could be recov-
ered. Since pruning (and PEFT) generates sub-models that
share the same superset of parameters, there is no overhead
of extra memory or pre-training that mentioned in §2.1.

Yet, the challenge is that, since the model upgrades/down-
grades itself to adapt to various requests’ SLOs, switching
between these sub-models is not overhead-free. As shown in
Figure 3a, although sub-models share the same superset of
parameters, they are no longer contiguous in memory. One
may change the deeply optimized dense kernels of on-device
NN libraries (e.g., MNN [39] or mllm [11]) to handcrafted
sparse kernels. However, these kernels typically undergo de-
graded performance without fully exploiting the parallelism
of processors (e.g., mobile GPUs/NPUs or multi-core CPUs).
Another compromising method is to perform a movement
of parameter data for each model switching, as shown in
Figure 3b. Although the switching overhead is mitigated
from iteration/operator level to request level, it is still non-
negligible. For instance, movement of LLaMA-7B’s a Wp
matrix (4096x4096) takes 139 ms on Redmi K60 Champion
smartphone in the worst case, and consequently the entire
model suffers time overhead at seconds level.
Observation#3: Prompts of on-device LLM service are
also elasticizable. Intuitively, as a natural language se-
quence, a prompt could still preserve essential semantic infor-
mation when refined to a shorter one. Especially, the prompts
of LLM service callers tend to be verbosely designed in order
to maximize the LLM’s instruction following [54, 92] and in-
context learning [25, 75] abilities. In other words, the prompt
dimension can also be elasticized just like the model dimen-
sion. We showcase employing a commonly used prompt com-
pression method LLMLingua2 [56] for Octopus [22] dataset,
which contains traces of an on-device API-calling agent.
LLMLingua?2 identifies and preserves most semantically sig-
nificant tokens by a dedicated language model. We report
top5 function match accuracy of Octopus. As shown in Fig-
ure 4a, the accuracy shows a well-performing tradeoff curve
when gradually compressing the prompt.

However, the challenge is the sensitive prompt-model or-
chestration. An intuitive example is that, if a request sets

Elastic On-Device LLM Service

its SLO as 40% TTFT and 80% TPOT?, we cannot know
which strategy is golden a priori — a 50% prompt with an
80% model? an 80% prompt with a 50% model? or others?*
Prompts with various content naturally require distinct and
customized strategies. In Figure 4b and Figure 5, we demon-
strate that a strategy without careful design (e.g., random)
may lead to a significant degradation on accuracy. We use
LLaMA-7B elasticized by our method (elaborated in §3.2) on
Octopus dataset. The prompt is elasticized by LLMLingua2.

3 ElastilM Design

3.1 Overview

Design goal. ElastilM aims to provide LLM service that
adapts to a specific Service Level Objective (SLO) of resource
constraint per request (prompt), while maximizing the ser-
vice quality (i.e., LLM generation accuracy).

SLO definition. In this paper, we define SLO of LLM service
as atuple < {rrrr, {rPOT >, Where { is the compression ratio
to full LLM latency. The SLOs that an LLM service should
serve is pre-defined by the service developers.

Workflow. As shown in Figure 6, ElastilM features a two-
stage workflow. At cloud offline stage, on one hand, the
model is elasticized to various levels of sub-models that share
the memory and can be cost-effectively switched (§3.2). On
the other hand, we on-cloud fine-tune a TLM for prompt
elastification (§3.3). At device online stage, the elasticized
LLM and fine-tuned TLM are deployed on mobile devices as
a service. For each LLM service request, the prompt and the
corresponding SLO are fed into the fine-tuned TLM. The TLM
then outputs a compressed prompt and selects a sub-model
with proper size. Finally, an LLM inference that satisfies
the given SLO is performed atop the sub-model and the
compressed prompt.

3.2 Model elastification

Permutation consistent units of Transformer models.
We explore a mathematically provable characteristic of Trans-
former models — permutation consistency.

Property 1. Units of a neuron network are called permutation
consistent units if they can be reordered between each other in
a block without affecting the block’s input/output.

This property indicates that a dense operator kernel can
equivalently process these units in arbitrary order without
any runtime data re-layout. The rationale behind it is that the
Reduce operator (e.g., sum/min/max) satisfies the commuta-
tive and associative laws. A basic block that contains such

3See our formal definition of SLO in §3.1.
4According to formula 1, there are multiple combinations of prompt and
model that can meet the exemplified SLO.

ACM MOBICOM ’25, November 4-8, 2025, Hong Kong, China

CLOUD OFFLINE i[ﬁi‘ EVICE ONLINE
_) L
Permutation imp; = 20w
consistent units 1444144 ‘¢ 4 Sub- LLM Inference
~ BECEETH}| mode =)

LLM weights Unit imp. profiling|- -:| —_—]

. S a
v —

submodel; € {levely, levelY., ... level}")|:

i, Elasticized

Mem. LLM weights |
One-shot unit-reordering ‘ éo::fce:s;i
Model Elastification|: prgmpt
Head-specific)
".-[:'._:: = fine-tuning [_ g Fine-tuned
- >3 ™M
Dual-head

- | EEEEEE - <SLOrrer, SLOTpor >|
Prompt Service level
objective

pretrained TLM

Prompt Elastification |-

Figure 6: Workflow of ElastilM.

18130004, 20,0.1, 3.0, 111
-4LAMNT7 0.4, 1.3, 0.5, L.

06T 07, 1.1, 6, Lofeh
o3 0.1,0.7,1.1, 1.6, 1.5§]

2
The two form a permutation consistent unit
Figure 7: Illustration of permutation consistency.

units is y = xW; W, in Figure 7. Its permutation consistent
unit is a column of W; together with the corresponding row
of W;. If we permute the weights as shown in Figure 7, the
intermediate activation xW, will be permuted in response.
Nevertheless, W] is also permuted in the same order, so the
multiplication of MatMul operator can still be performed cor-
rectly. Since the following addition of MatMul operator is a
Reduce operator, the calculated xW’; W', is exactly the same
as xW; W;. Notably, different from prior work [91] that also
leverages the Reduce operator to permute DNNs, ElastilM’s
key insight is to identify such a joint unit in two-layer blocks
that are ubiquitous in Transformers. Permutation of this unit
can be made completely offline, while [91] still needs online
reordering the input with a single operator level abstraction.

Property 2. Attention heads and MLP neurons of Transformer
models are permutation consistent units.

As shown in Figure 8, there are two types of permutation
consistent units in the main weights of a Transformer layer,
i.e., attention heads and MLP neurons, and they are inde-
pendent to each other. Specifically, the contiguous column-
s/rows with the same indices in Wp, Wk, Wyy and Wp (i.e., an

ACM MOBICOM ’25, November 4-8, 2025, Hong Kong, China

B

R ——

~o

Column of

leight

matrix
1 2 3 1 2 3 1

«~ N

2 3 12345
0 © D &
T} — [
At:leer;t(i’on\ 2 3 Row of Row of 1 3456

B . weight matrix
weight matrix

MLP neuron:

[R

(a) Each head is a
permutation consistent unit.

(b) Each neuronis a
permutation consistent unit.

Figure 8: Permutation consistent units in Transformer.

attention head) constitute a permutation consistent unit; a
column/row with the same index in W,,, and Wy, (ie., an
MLP neuron) also constitute a permutation consistent unit.
The derivation process is similar to the example in Property
1, Figure 7 — the last operator of attention and MLP blocks is
Reduce. Property 2 holds true for mainstream Transformer-
based language models with variants like RoPE® [61], biased
QKV [19], GQA [26] or gated MLP [70].

Our method: one-shot unit-reordering. Based on Prop-
erty 1 and Property 2, we propose a novel model elastification
method as shown in Figure 9. Its key idea is to “atomize” the
Transformer into the units shown in Figure 8, and then group
them to construct a series of sub-models that each is con-
tiguous in memory. To illustrate, basically, in Figure 7 each
column in W; and the row with same index in W, will be
assigned with an importance score offline. Then the column-
s/rows are reordered in W;/W, to make a submodel contigu-
ous. At online, W| and W, only need to slice a submatrix
(e.g., with indices 1,4 out of W//W,) out of the original one
by a zero-cost movement of memory pointer. Detailed later.
o Offline. Specifically, ElastilLM first profiles importance of
each unit offline (detailed later). Since these units are permu-
tation consistent, ElastiLM freely reorders them by their im-
portance in descending order (if importance is the higher the
better), starting from the base address of the weight tensor.
Notably, the reordering is only performed intra-block, e.g.,
reordering the unit of attention heads in the same attention
block. Then, ElastilM groups these units into sub-models.
For example, in Figure 9, sub-model in levelé” contains units
with indices (not address) “1 5 8 2”, and sub-model in level{w
contains “1 5 8 2 3 4 7”. The sub-model sizes and numbers

SRoPE only introduces position information in sequence axis and intra-head
axis.

Wangsong Yin et al.

Low-rank adapters

Sub-model| level}
sizes

Importance
1.30.90.8 0.8 1.30.50.8 1.3 .8 0.8 0.
OODDEODE =) BEEOO0OO0
1234567833'“- 1582347

Index layout

(a) Offline

Move the pointer

. detach . ter
Memory, pointer level! Memory pointer

—’__;
5823476 58234

levell 1

<

~|me
o|0s

attach
(b) Online
Figure 9: ElastilM offline profiles and reorders per-
mutation consistent units in one-shot; it online
switches (i.e., upgrade/downgrade) sub-models by
cost-effectively attaching/detaching the correspond-
ing adapters and moving the memory pointer.

{levelM, ... ,leveljw} are pre-defined by the developers. In
practice, we set this to a fine enough granularity (a global
ratio of 20% to 100% in a step size of 10%, by default). Such
a ratio is evenly shared by all Transformer layers that need
elastification. After that, low-rank adapters [34] are attached
to each sub-model to recover potential generation quality
loss (if there is any) of these sub-models. We elaborate such
a recovery process in the following parts. So far, the LLM
weights have been elasticized into a series of high-quality
sub-models that run in various speed. We demonstrate the
quality of generated sub-models in Figure 10a.

® Online. In Figure 9b, the upgrading of model is performed in
the following steps: ElastilM first detaches the correspond-
ing adapter from sub-model level, which has served the last
request. Then, it moves the ending memory pointer of the
weights tensor from the address of unit with index “2” to “7”.
After that, ElastilM attaches another adapter to sub-model
l evelé” , and the upgrading is finished. Such a process is very
cost-effective on mobile devices — it does not involve any
data movement compared to traditional pruning methods,
and can still utilize deeply-optimized dense kernels provided
by NN libraries. For instance, upgrading Wy to 4096x4096
size only takes 2 ms on Redmi K60 Champion smartphone,
while a naive pruning method must undergo a 140ms data
movement.

Profiling unit importance through explainable-AlI. Pa-
rameters of neuron networks are known to feature diverse
importance. For instance, a weight element with higher mag-
nitude may contribute more to NN capability [31, 36, 44].
Inspired by the concept of eXplainable-AI (XAI) [35, 59, 64],
ElastilM profiles unit importance with a more accurate

Elastic On-Device LLM Service

o

o
-
°

=
o Pruning - ESSSSSSS
2 - Jo—
0 Recovery > J 0.8
0 m@= Pruning g
. =90= Ours y L 0.6
g 04 of 5 — LLaMA-7B
j - 04 — Llama3-88
1| ¢ 0.2 —— Vicuna-v1.5-78
) :
4 Orca-mini-3B
< 0. 0.0
02 0.2 0.4 0.6 0.8

Sub-Model Size Imdportansce (de?ta Ios;()J
(a) Sub-model quality. (b) Anchor layers.
Figure 10: (a) ElastilLM generates sub-models that with
consistently higher quality than pruning and prun-
ing+recovery [47]. (b) A small portion of layers. i.e.,
“anchor layers”, is much more important than others.

method, i.e., by the next-token prediction loss function L on
a calibration corpus C. The intuition behind XAT is that, if a
unit is more important, it should make L larger on C when
been removed. Specifically, we define importance of unit i
as imp; = |L — Lw,=o|. By Maclaurin series [65], we get

oL
impi:|L_LM=0|=|8_MM+O(||M||2)|' (2)

Since the second term is a higher-order infinitesimal, ElastilLM
then takes |aa—vf,iWi| as a estimation of unit importance. By
default, C is set to a sub-set of bookcorpus [93], which is a
general-purpose language-modeling dataset.

Besides, interestingly, we find that several layers are much
more important than other layers. We call these layers “an-
chor layers”. We measure the importance of a layer by the
increase of loss function when a layer is removed. As shown
in Figure 10b, the importance of layers exhibits a power-law
distribution (80/20 rule), which means about 20% layers are
anchor layers. As a result, we lock these layers from elasti-
fication. For example, if we need a 50%-size sub-model of a
32 layers LLM, we retain 37.5% permutation consistent units
for each non-anchor layer (26 layers in total).
Task-agnostic low-rank recovery of sub-models. We add
Low-Rank Adapters (LoRAs) [34] to the frozen Wy, x/v/0 and
Wap/down of each sub-model to recover them from potential
accuracy loss. A LoRA is two low-rank matrices A € R™*"
and B € R™™ that trained as a side branch of main weights.
ElastilM’s default setting of r is 8, an empirically common
practice in LoRA-based tunings. LoRA weights are only 0.1%—
0.5% of the entire LLM weights, and thus such a method
only introduces <5% extra memory overhead even under
ElastilM’s fine-grained sub-model settings. The switching
overhead is also minimized since the attaching/detaching op-
erations are all low-rank MatMul and element-wise MatAdd.

Different from traditional language models that need tun-
ing on specific downstream tasks (e.g., Bert [24], T5 [58]),
LLM commonly serves as a generic task solver. Thereby,
ElastilLM’s sub-model recovery is task-agnostic. LoRAs are
trained with next-token prediction loss that identical to

ACM MOBICOM ’25, November 4-8, 2025, Hong Kong, China

085 = |
e
Fine-tuned am — {0‘2‘5
MobileBert layer a - { :
. 065 = little
| little g,y G
' boy <05~ PY
| MobileBert layer with 03)
am big —»< 2> big
I‘ma dream> tj»::—rdream
ittle
boy
with 001
big 20% — <o
dream 30% igoguei
[05]1 4 40% <001
<08> Ll inserted as 50% — <00 ' g
special tokens 60% — L2 Hrompt
706 288 PP
0.25
F Retain ' Discard 80% —<°% _ 80k
D 4 Promptj Model 90% —L°% model
size size 100%-> 5%

001

Figure 11: The dual-head TLM.

the pre-training process. Thanks to LoRA’s preservation of
the LLM backbone’s capability, a general, high-quality and
moderate-size corpus can handle this recovery well. By de-
fault, each sub-model is recovered on about 50M tokens of
Alpaca-cleaned [2, 67] dataset. We also discuss the impact
of recovery data in §5.5.

Remarks ElastilM’s model elastification generates fine-
grained, high-quality sub-models with both acceptable of-
fline overhead and negligible online overhead.

3.3 Prompt elastification

Dual-head TLM. ElastilM tackles the challenges men-
tioned in §2.2 by a dual-head Tiny Language Model (TLM).
As shown in Figure 11, the TLM is a variant of mobile-
friendly pre-trained language model MobileBert [63], a com-
pact model with only 20% parameters of BERT_base [24]
yet just 0.7% accuracy loss on GLUE benchmark [71]. We
make the following modifications. Firstly, the SLO of the
current request is marked in natural language and inserted
into the embedding layer of MobileBert as special tokens.
For instance, “[05]” represents the prefill SLO is 50% TTFT;
“<08>" is 80% TPOT. These special tokens are initialized to
word vectors that orthogonal to each other. Secondly, the
TLM is designed with two separate heads, named score-head
and decision-head. The score-head treats each token of the
prompt as a two-class classification problem, where each to-
ken can be classified into “discard” or “retain”. The decision-
head treats the entire sequence of prompt with SLO as two
multi-class classification problems. Each possible model elas-
tification level (i.e., the sub-model size, discussed in §3.2) is
a class of one problem; possible prompt elastification levels
are classes of the other problem. Akin to model elastification,
the prompt is also pre-defined to multiple fine-grained levels
{level?, - - - ,levelllz} by the developers. By default, we set it
in alignment with model elastification levels. Besides, the

ACM MOBICOM ’25, November 4-8, 2025, Hong Kong, China

T Prompt

sLo1 SLO2 SLO3

T 0TI LTI
Level 1 Level 1 Level 2 Level 1 Level 2
OO oo OO0 cord e O 0o
Level1 Levell Level2 Levell Levell Level2 Levell Level2

v X X X X v X v
Training sample Prompt+SLO1 Prompt+SLO2 Prompt+SLO3

Prompt level 1
Model level 1

Prompt level 1
Model level 2

Prompt level 1

Label Model level 1

Figure 12: Illustration of the self-induced labelling pro-
cess of decision-head training data collection.

two heads share the same bottom layers (12 out of 24 lay-
ers by default) based on the rationale that bottom layers of
DNNs are mainly responsible for capturing basic instead of
task-specific information. In doing so, the overhead of TLM
inference/training is further minimized.

TLM inference. At decision-head, ElastilM takes the class
with the max probability as its decision. For example, in
Figure 11, the decision-head selects a 60% prompt and 80%
model. At score-head, ElastilM ranks the prompt tokens by
the probability of “retain”, then selects top ones according
to decision-head. For example, in Figure 11, the scores are
ranked by the green probabilities. Notably, if the TLM out-
puts a decision that cannot meet the SLO (which is nearly
yet not impossible due to the black-box property of DNNs),
ElastilM will execute a runtime check and the decision will
fall back to a random one that stringently meet the SLO.
After inference, we get a compressed prompt and a selected
sub-model.

The inference overhead is acceptable. Its total parameters
are about 40M, which means 2 orders of magnitude less
memory footprint than the LLM service. Regarding to latency,
the TLM can still perform an on-device inference within 5%
of the original LLM’s TTFT even if the LLM’s prompt is
compressed while TLM’s not.

TLM training. The TLM is initialized from the pre-trained
weights of MobileBert; each head is further fine-tuned in-
dividually. We keep the pre-trained embedding layer and
bottom layers frozen. When training one head, the other
head is also frozen.

e Score-head. We first use MeetingBank [10] dataset to fine-
tune the score-head. The dataset contains about 50M tokens
of corpus that each token is labelled “discard” or “retain” by
GPT-4 [17]. Note that the training of score-head is indepen-
dent to the decision-head and the LLM. Figure 13a shows
the effectiveness of score-head with LLaMA-7B and Octopus
dataset. Our method achieves on-par prompt refining ability
compared to LLMLingua?2.

Wangsong Yin et al.

=
o
o

=
o
o

ﬂﬂﬂﬂEm

EEE LLMLingua2
EA Ours '

0.20.30.40.50.60.70.80.91.0
Prompt Compression Ratio SLOs (<TTFT, TOPT>, %)

(a) Score-head. (b) Decision-head.
Figure 13: Effectiveness of dual-head TLM.

EER Oracle
Ours
EEE Random

Acc. (5-shot)
w
o

Acc. (5-shot)
w
o

Top5 API Selection
Top5 API Selection

o

0
<60%, 90%3250%, 80%>

® Decision-head. After training score-head, we train decision-
head with the assistance of both the elasticized LLM and the
score-head. The intuition is that we can traverse the decision
space and learn the optimal one offline. Specifically, the train-
ing data is collected by a self-induced labelling process. In Fig-
ure 12, we provide an illustrative example. For each prompt
and SLO (pre-defined by developer, see §3.1), we enumerate
all its possible6 decisions, and label it with the most light-
weight one under which the LLM can output correct answer. If
all possible decisions fail, the decision is assigned to a default
one (e.g., random). By default, ElastilM collects training
samples from a comprehensive benchmark MMLU-Pro [72],
which contains 17 domains of question-answer pairs. In Fig-
ure 13b, the decision head demonstrates significantly higher
quality than random decision, and approaches oracle. We
also discuss the impact of TLM training data in §5.5.
Remarks ElastilM’s prompt elastification efficiently and
effectively elasticizes prompt and orchestrates model- and
prompt-dimension of elastic LLM service.

4 Implementation

Offline stage. We build the elasticized LLM and the TLM on
top of Pytorch [57]. We modify the modeling. py of Huggingface
Transformers’ [76] library to identify the permutation con-
sistent units and profile their importance. In doing so, ElastilLM
can easily be made forward-compatible with LLMs released
in the future. The offline elastification is performed on a
cloud server equipped with 8 NVIDIA A40 GPUs.

On-device stage. We build an LLM service on top of m11m® [11],
which is a lightweight yet powerful on-device LLM infer-
ence library written in pure C++ and assembly language.
We pack the LLM inference program as a standalone binary
file and run it as an independent process. The apps inter-
act with it through interfaces like bindLLMService() and
callLLM(). To facilitate the upgrade/downgrade of elasti-
cized sub-models without incurring inference-time perfor-
mance degradation, the Linear isreplaced by ElasticLinear.

®The developers pre-execute a one-shot profiling on a testing device within
1 hour under the guidance of Formula 1 and leverage the profiled data to
judge whether a decision can meet a SLO.

7Commit hash ¢31473ed4492fdf26aec417345131590021862f

8Commit hash ed766fae54d9f1bf2b6b25018e6cca34ce223303

Elastic On-Device LLM Service

Name SoC RAM

Redmi K60 Champion Edition [12] | Snapdragon 8gen2 | 19GB
Mi 14 [16] Snapdragon 8gen3 | 22GB

Redmi K70 Pro [13] Snapdragon 8gen3 | 24GB

Table 2: Devices we use in our experiments.

Specifically, we wrap the original dense kernel with an ad-
ditional memory pointer that specifies the addresses of sub-
model weights. We optimize the low-rank MatMul and MatAdd
of LoRA with ARM NEON [4]. The LLM service runs on Com-
mercial Off-The-Shelf (COTS) smartphones.

5 Evaluation
5.1 Experimental settings

Testbed. We conduct experiments on the following testbeds.
On cloud, we use a server with a 64-core CPU (750GB RAM)
and 8 A40 GPUs (45GB HBM each). On device, we test
ElastilM across COTS smartphones listed in Table 2.
Models. We test the following LLMs. (1) Two base LLMs:
LLaMA-7B [70] and Llama3-8B [26]. (2) Two instruction-tuned
LLMs: Vicuna-V1.5-7B [90] and Llama3-instruct-8B [26]. (3)
One sub-7b LLM: Orca-mini-3B [53].

SLOs. We randomly set 6 SLOs based on a stepwise sen-
sitivity hierarchy as shown in Table 3. We also enumerate
more varying SLOs in Figure 18d for a real-world discussion.
Rewind is a content comprehension app, which requires
relaxed SLO; GMail is a natural language summary and rea-
soning task, which requires relatively relaxed SLO; Octopus
and Shortcuts are on-device agent tasks, which need moder-
ate SLO as they involve interactions with the environment;
Gboard and XiaoAi are Al assistants, which need real-time
response, i.e., a relatively tight SLO.

Workload. We evaluate ElastilMon both standalone datasets
and end-to-end synthesized traces.

e Datasets. We select 6 representative datasets/benchmarks:
ARC_E [23], 0BQA [51], Octopus [22], PIQA [83], SCIQ [40]
and L1lamaTouch [88]. We report option select accuracy of
ARC_E, PIQA, SCIQ and OBQA, top-5 function (without param-
eters) selection accuracy of Octopus, and app invocation
accuracy of LlamaTouch. Each entry is augmented by in-
context learning in 5-shots. ARC_E, PIQA, SCIQ and OBQA are
natural language comprehension and common-sense reason-
ing tasks that are ubiquitous on mobile devices; Octopus is
an on-device API-calling benchmark that follows the natu-
ral language instruction of users and selects the most suit-
able functions; LlamaTouch is a realistic and complicated
on-device Ul-automation agent benchmark that manipulates
mobile apps following user instructions.

e End-to-end traces. We further synthesize end-to-end traces
on top of the above datasets. In Table 3, we list 6 conceived
apps in response to the pre-defined SLOs. The requests and

ACM MOBICOM ’25, November 4-8, 2025, Hong Kong, China

Apps SLO Dataset ‘ Apps SLO Dataset
Rewind <100%, 100%> OBQA Shortcuts <40%, 70%> LTouch
GMail <80%, 90%> ARC_E Gboard <20%, 60%> PIQA

Octopus <60%, 80%> Octopus XiaoAi <20%, 50%> SCIQ

Table 3: Apps, SLOs and datasets for trace synthesis.

groundtruths of an app are synthesized from a dataset in sim-
ilar domain, since there is no public available user data in the
wild. Specifically, we collect 600 entries of requests in total for
a trace. To comprehensively evaluate ElastilLM, we emulate
600x e
Ticy e’
where Num(i) is an app’s # of request, i is the SLO level (the
lower, the tighter), and « is a controlling factor. The larger the
value of a, the greater the proportion of more relaxed SLOs
in the trace. When a = 0, all SLOs are evenly distributed in
the trace. We synthesize multiple traces with various distri-
butions. For each trace, we randomly shuffle the requests
and set the arrival timestamp by a Poisson distribution.
ElastilM configurations. The training/fine-tuning/calibration
data, elastification levels and TLM configuration are the same
as those described in §3.

Baselines. We compare ElastilM to the following alterna-
tives. (1) Directly employing pre-trained from scratch LLMs
(PFS) for diverse SLOs is a strong yet plausible baseline. Due
to the unaffordable GPU resource consumption, we select
the off-the-shelf OPT [89] family. As far as we know, it pro-
vides the richest variants with fewer than 7B parameters (5
models from 125M to 6.7B). (2) LLMPruner [47] (LPruner)
is a State-of-The-Art (SoTA) parameter pruning method for
elastification. (3) Layer-wise elastification [9] (LE) prunes
parameters at layer level. (4) LLMLingua2 [56] + Contextual
sparsity [46] (LG2+CS) compresses prompts at prefill stage,
and dynamically activates MLP neurons for each token at
decode stage. (5) Other strong pruning baselines: LaCo [84],
ShortGPT [49] and AttnDrop [32].

the distribution skewness of requests by Num(i) =

5.2 End-to-end performance

We first evaluate end-to-end performance on traces in §5.1.
Accuracy. We report the request-response accuracy when all
requests’ SLOs are met in a trace. We compare the correctness
of the LLM’s answer to groundtruth. We set three levels of
trace skewness: @ = 0 (even), @ = 0.25 (towards relaxed)
and @ = —0.25 (towards tight). Each trace is executed on
three diverse COTS devices listed in Table 2. The results are
averaged across these three devices and shown in Figure 14.
ElastilMsignificantly outperforms the baselines by 6.60%—
14.83% (10.45% on average) in absolute accuracy. Compared
to PFS, ElastilM further involves prompt elastification and
does not introduce costly switching overhead. Besides, PFS
does not fully make use of the room below a given SLO. An-
other potential reason is that ElastilM derives sub-models

ACM MOBICOM ’25, November 4-8, 2025, Hong Kong, China

E= PFS EE3 LPruner [LG2+CS A LE

HE LaCo

Wangsong Yin et al.

I AttnDrop E= ShortGPT [Ours

Acc.

a=0 a=0.25 a=-0.25
(b) Llama3-Instruct-8B

a=0 a=0.25 a=-0.25

(a) LLaMA-7B

a=0. 25 a=-0.25
(c) Llama3-8B

0.0

a=0 a=0.25 a=-0.25
(e) Vicuna-vV1.5-7B

a=0 «a=0.25 a=-0.25
(d) Orca-mini-3B

Figure 14: End-to-end request-response accuracy on the traces. a controls the SLO distribution.

—s=— LPruner —— LG2+CS —e— LE =s= Ours

LLaMA-7B ARC_E LLaMA-7B OBQA

— PFS
LLaMA-7B PIQA

—— LaCo AttnDrop —+— ShortGPT

LLaMA-7B SCIQ Llama3-8B ARC_E

0.6

1%
P:3 0.4

101%68.0256.0854.0752.0552,057 056025407520

07 0.
203208020602

Llama3-8B SCIQ

67, 0.57 07,
5520 20320805

Llama3-8B Octopus

097608740

Llama3-instruct-8B ARC_E

17,086
20.2:07

>, 057 074 0. i 17, 0.67, 0.57 072 0.97 017,067,057
0.2:0 2101320.89.5.6075.4.0.52.0752.0 1.01558.0256.0554.0752,05 2,0

Llama3-instruct-8B Octopu Llama3-instruct-88 PIQA

0.6

3
0.6
< 06
- v &)
<T o KL oa L oa
n
s
© 0.2 0.2 i

202 %80256055802520582057 1088060 a015208520% 103 %80% 60

Vicuna-vV1.5-7B OBQA Vicuna-V1.5-7B LlamaTouch

254025205

Vicuna-v1.5-7B SCIQ

72057 3 0n 8096080152085, 82 0.9032,08672,05”

Orca-mini-3B ARC_E Orca-mini-3B Octopus

©
kS

(4
N

App Invo. Acc.

o
)

07 074 0.97, 075 0.97
15084 1958055605 1958025695

0. 9763’ 87

17, 0.67, 0.57 017,067, 057
2100 0.8:0.5.2:055.2.0" 1.0, 07629520 .00

200

07520852

0.57 1958.0956.02854.0752.0.52,057 1958.025.6:05540152.9552.057

2103558/ 2.0

Figure 15: Performance under one SLO on an entire standalone dataset without considering sw1tch1ng overhead.

from a bulky one, which may feature stronger emergent
ability than the SLMs pretrained from scratch. Compared to
LPruner, ElastilLM involves prompt elastification, and mini-
mizes switching overhead. Uniqueness to LG2+CS. Firstly, the
heavy SLM of LLMLingua2 must compress the prompt very
aggresively to meet a tight TTFT SLO since contextual spar-
sity shows limited acceleration on prefill stage due to the low
locality. Secondly, the sparsity ratio is also compromised due
to non-relu [18, 70] activation functions, non-elastictizable
attention [46] and degraded performance of sparse kernels. In
contrast, ElastilLM’s model elastification identifies and lever-
ages the permutation consistency in Transformer models and
works for both prefill and decoding, and its prompt elastifi-
cation considers and tackles the unique challenge of prompt-

model orchestration. Compared to LE/LaCo/ShortGPT/AttnDrop,

ElastilM shows steady performance gain. This is due to that
these methods only elasticizes the model in layer level. In con-
trast, ElastilLM’s unit-level fine-grained pruning traverses a
much larger space. Also, LaCo will generate sub-models that
cannot fully share the weights between each other, resulting
in extra switching overhead.

= 20.3GB, OOM
8 25 —~38
= 76.3GB, OOM g 62
E‘ 20 E‘g 6 .
> £ T
2 £ 34
o S <
O 10 " g Within 1%
: >2 _of TTFT
€ 6
o > o 001 031
= || p 2 ?(o“ R 0\(,6 o°
D 09 8,5 &R PEIIN NI
¢ d ’6 W' x OGOV < W g™
(,o\\? c)\\ \1\\’ 7' e o o @
(a) Memory consumption. (b) Switching time.

Figure 16: Online overhead.

Memory consumption. We discuss peak memory con-
sumption in Figure 16a. Without loss of representativeness.
we report LLaMA-7B in the trace with « = 0 on Redmi
K60 Champion. ElastilM consumes on-par memory com-
pared to the baselines (15-17GB). Notably, directly deploying
all the dedicated size LLMs in memory is impractical. As
marked as PFS(Ideal)/LaCo(Ideal) in Figure 16a, it con-
sumes 29.3GB/76.3GB memory in total, which is OOM on all
the COTS devices in Table 2.

Switching overhead. With the same setting, we report the
breakdown latency of switching between different model
elastification levels (i.e., sub-models) in Figure 16b. Switching

Elastic On-Device LLM Service

Source Tokens Hours
Bookcorpus 6.4K 0.03

More than 100,000
GPU hours

1000x '°‘”e’[Corpus # of GPU
68.3

GPU Hours
<
5

50 456 Alpaca- 50M 40.4
cleaned
25
HH 1.58 2 Meetingbank 50M 1.7
O="PFS " LPrunerlG2+C5 LE/AD/ Ours MMLU-Pro 340K 263
LaCo/SG
(a) GPU hours. (b) Breakdown.

Figure 17: Offline overhead of ElastilM.

time is actually part of TTFT, and a too long switching time
will preempt the room of model/prompt capacity, leading to a
lower accuracy. PFS (Swap) and LPruner incur unacceptable
time overhead that up to 8.3/6.2 seconds per request. This is
mainly attributed to the costly swapping and in-memory data
movement. ElastilM only takes 0.31 second to switch to a
new submodel. Such a number is lower than 1% of average
TTFT of LLM service, thus being completely acceptable. The
end-to-end experiments with switching overhead considered
in Figure 14 also show that the switching time of ElastilM
is an acceptable tradeoff for LLM service.

Remarks ElastilM is the most high-quality and feasible
solution for end-to-end on-device elastic LLM service.

5.3 Performance on standalone datasets

With a specific SLO, we further report the performance on
an entire standalone dataset to show ElastilLM’s superiority.
The switching overhead is dismissed as there is no upgrade/-
downgrade. The results are obtained on cloud server with
SLO statistics on Mi 14 smartphone, and are shown in Fig-
ure 15. We have the following observations. ElastilLM signifi-
cantly outperforms all its baselines by up to 40% on accuracy.
Specifically, on all the SLOs, ElastilM always provides a

much higher accuracy than the baselines (LE/LG2+CS/LPruner)

that derive sub-models from the original one. Compared
to PFS, ElastilM provides a higher accuracy on 77.8% of
all SLOs. The reasons are as discussed before. Please also
note that PFS and LaCo are costly in terms of switching and
memory at runtime. Performance gains are minimal in some
high-SLO scenarios, this is due to a slight pruning (i.e., high
SLO) will not significantly differentiate ElastilM from the
pruning baselines. However, only ElastilM can work for
all the varying SLOs for apps, since there will not always
be high-SLO scenarios, and switching overhead (Figure 16b)
will also be considered when serving multiple apps.

5.4 Offline stage overhead

We further analysis the offline overhead in Figure 17. We
measure the elastification of LLaMA-7B for MI14 on our A40
cloud server. Compared to PFS that trains a dedicated LLM
for each SLO, ElastilM derives elasticized LLMs from the
original LLaMA-7B. Thereby, as shown in Figure 17a, the
entire offline stage of ElastilM only consumes 68.3 GPU

ACM MOBICOM ’25, November 4-8, 2025, Hong Kong, China

hours (translates to about $100 GPU renting price [7]), mak-
ing it affordable for most developers. Compared to other
baselines that also derive elasticized LLMs from the original
one, ElastilM takes 21.7-68.2 more GPU hours, which is
acceptable since the offline stage is performed once for all.
Note that in the above sections, we have demonstrated that
ElastilM delivers an elastic LLM service with much higher
quality than these baselines.

In Figure 17b, we provide a detailed breakdown of ElastilM’s
offline stage. The model recovery (§3.2) and self-induced la-
belling (§3.3) dominate the offline stage, taking 40.4/26.3
hours. The reason the latter requires tremendous time is due
to the lower GPU utilization caused by interactions with the
score-head and sub-models.

5.5 Sensitivity analysis

Data sensitivity. As shown in Figure 18a, the data scale of
elastification exhibits a marginal effect. Regarding to model
recovery, we further collect training data from LaMini [77]
dataset that akin to Alpaca-cleaned. The final accuracy
only increases 0.2%/0.4% when the recovery corpus is 10x/20%
larger. Regarding to unit importance profiling and decision
training data, we expand them from Bookcorpus and MMLU [33],
respectively. We also observe the similar marginal effect.
Since Meetingbank is currently the largest corpus for token
importance scoring to the best of our knowledge, we leave
expanding it as a further work. In a nutshell, ElastilM’s
data scale achieves a strong and sweet spot for high-quality
elastification.

Configuration sensitivity. We have the following conclu-
sions in Figure 18b. (1) 40M parameters are already a sweet
configuration of TLM scale. A larger TLM’s gain on scoring
and decision-making accuracy quickly gets eliminated by
the overhead. (2) 12 shared bottom layers are reasonable for
TLM, since more will lead to a smaller capacity of the heads,
and less will incur a higher inference/training overhead. (3)
A step size of 10% for model and prompt elastification is fine-
grained enough for serving the diversified SLOs. Shrinking
it to 5% makes almost no difference.

Ablation study. We show the effectiveness of ElastilM’s
key designs in Figure 18c. We report the accuracy under a
given resource SLO. Specifically, we respectively remove the
key designs from our full system. Each removal of key design
shows a clear performance degradation. The most significant
loss comes from removing the reordering technique, showing
over 10% accuracy loss. The reason is mainly due to that
the reordering preserves the most important permutation
consistent units. The score-head shows the least degradation,
yet it is still obvious (about 5%). In a nutshell, the design of
neuron-reordering, LoRA recovery and each head of the TLM
are all non-trivial.

ACM MOBICOM ’25, November 4-8, 2025, Hong Kong, China

60 60 60

Wangsong Yin et al.

Chatbot (medium TTFT/TPOT)

50 {a6.0 46.2 46.4] S50 ag.0 26.3 46.5| 50 |s6.0 45.9 46.6

40 40 40 6.0 44.
3 30 30 30
<

20 20 20

10 10 10

0 0 0

50M 500M 1B 6.4K 12.8K25.6K 340K 680K 2M
m () (U]) m

(a) I. Model Recovery. II. Importance profil-(b) I. TLM size. II # of shared
layers. III Elasticity stepsize.

ing. III. Decision-head training.

40M150M 12 22 10% 5%

10.0
2
75 ¢ ¢
6.0 45, V=
G3 'é 5.0 :3
2 = =8
25 @
og
0.0

29% 40% 0% g0%0 00
Screen recorder
TTFT (high TTFT/TPOT)
Ul automation agent (low TTFT)

(d) Varying real-world SLOs.

()

(c) Ablation study.

Figure 18: Sensitivity analysis and ablation study. (a)/(b)/(c): LLaMA-7B, on trace with o=0; (d): LLaMA-7B, ARC_E.

N o) et]]

]
[} v}
< 15| =##= Orca3b-mini < 02 O PFS = LE E ShortGPT
. LPruner HEE LaCo [Ours
== Vicuna-V1.5-78 %11 =3 LG2+cs mmm AttnDrop
0.0 - L
16 8 4 2

18 18 338
bits et \“w“,.\nﬁ orea ™™

(a) Quantization. (b) Concise prompts.

Figure 19: Model quantization and prompt conciseness.

LLaMA-7B Octopus

Llama3-instruct-8B LlamaTouch

e o
o ®
o
N

°
IS

Top5 API Acc.
App Invo. Acc.

°
N

100% 90% 80% 70% 60% 100% 90% 80% 70% 60%
(a) E2e inference time. (b) Energy consumption.

Figure 20: Generalization to other kinds of SLOs.

Varying real-world SLOs. In Figure 18d we report the delta
accuracy of ElastilM compared to its strongest baseline PFS
(without considering switching overhead) on ARC_E LLaMA-
7B.ElastilMis close to or much better than PFS on all SLOs,
especially those are more common on mobile LLM tasks (e.g.,
chatbot, Ul automation agent or screen recorder).
Quantization. Quantization is a widely-used technique for
deploying LLMs on mobile devices. Here we employ a linear
and weights only method on the & = 0 trace in Figure 19a.
ElastilM can deliver LLM service with almost lossless accu-
racy under 8bits integers, and acceptable (3% lower absolute
accuracy) under 4bits.

Concise prompts. We further emulate the scenario where
the prompts have been consciously streamlined by the LL-
MaaS callers. We use LLMLingua?2 to filter out about 15%
verbose tokens in the prompt. The results (on trace with
a=0) in Figure 19b show that ElastilM can still significantly
outperform its baselines.

Llama3 OBQA orca3b-mini OBQA
0.4
0.3
0.3
8] U 0.2
Q 0.2 Q
< E= PFS Il AttnDrop < B PFS I AttnDrop
Z33 LPruner MEH ShortGPT 0.1 Z3 LPruner EEH ShortGPT
011 lmma e =3 Ours A LE =3 Ours
N LaCo N LaCo
0.0 1 Dhpmmna vopus iy o 0.0 1 Dpmmens vopumnst Jopus) opm

208097,060876.077,42057 2080°7,060876.8077,42057

(a) On mobile GPU. (b) On mobile NPU.
Figure 21: “What if” experiment on mobile accelerators
that cannot seamlessly run ElastilM and its baselines
currently. LG2+CS is omitted due to its sparse compute.

5.6 Discussion

Generalization to other SLOs. Although in this paper we
identify LLM inference latency as the SLO of requests, the
SLO can also been easily generalized to other metrics with
our proposed method. Here we define another two SLOs: end-
to-end request inference time SLOy;e (i-e., prefill + decode
stage) and inference energy consumption SLO¢pergy, €ach of
which is with a step size of 10%. The results are obtained on
Mi 14 smartphone. As shown in Figure 20, ElastilM con-
sistently outperforms its baselines on these new SLOs. the
rationale is that these SLOs are all a specific kind of resource
requirement and can be break down into prompt- and model-
level elastifications. We believe that ElastilM can serve var-
ious metrics of SLOs for diverse apps’ requirements.

Apps with competing demands. In regular on-device LLM
service model, there is no concurrent requests since the de-
vice only has one user. However, in some extreme scenarios,
other apps might have competing demands. ElastilM will
make it transparent to developers/apps. For instance, the
LLM service may introduce upper-layer scheduling mecha-
nisms like batching [86] to handle concurrency.

On mobile SoC accelerators. To the best of our knowledge
currently (Aug., 2024) none of mobile DSAs can seamlessly
run prefill and decode of ElastilM and all its baselines due
to legacy SDK/hardware issues like dynamic shape, graph
building or non-sparse kernels. Thus, we conduct a “what

Elastic On-Device LLM Service

if” experiment by mapping the theoretical compute/memory
load to the profiled latency on these processors. We use
MNN [39] and m11m-NPU [81] for GPU/NPU profiling on Mi 14,
respectively. The results are shown in Figure 21. ElastilM
can still significantly outperform the baselines. We believe
that ElastilLM will become more friendly and practical to
practitioners with the maturity of accelerators.

6 Related Work

Elastic neuron networks. Elastic neuron networks can
change their capacity at runtime to dynamically adapt to var-
ious resource/accuracy constraints. Early exit networks [66,
69] only perform inference on bottom layers since they are
empirically more critical. Yet, early exit is not suitable for
elastic LLM service. On one hand, due to LLMs’ autoregres-
sive inference nature, a skipped layer’s KV cache may be
accessed later. On the other hand, using layers as the gran-
ularity for trade-offs is not fine-grained enough. Parame-
ter sharing networks [27, 30, 74] generate memory-efficient
sub-models that shares parameters with each other. For in-
stance, NestDNN [27] and LegoDNN [30] create sub-models
of CNN:ss via offline re-pretraining, which is costly for foun-
dation models. Adaptivenet [74] employs a CNN-oriented
supernet, which provides diverse accuracy-latency trade-
offs yet needs extensive pre-training and memory resources.
Activation sparsity [21, 41, 46, 60] elasticitizes DNNs via
sparsifying weights according to the NN inputs. An accuracy-
latency trade-off can be achieved by setting the proportion
of activated weights. However, the prefill stage cannot be
elastictized due to the low locality.

Efficient on-device LLM inference. Tremendous work [11,
39, 68, 82] shed light on resource-efficiently deploying LLMs
on mobile devices. For instance, MLC-LLM [68] is an NN-
compiler with operator- and kernel- level optimizations for
mobile devices. MNN [39] and mllm [11] are on-device in-
ference libraries for LLMs. PowerinferV2 [82] addresses the
memory issue of mobile devices by introducing swapping
and activation sparsity to LLM inference. Targeting at elastic
LLM service, ElastilM is orthogonal to these work.
Foundation models as a service. As a general task solver,
or so-called “AGI”, a single foundation model is deployed
as a service to process heterogeneous tasks [29, 85, 87]. For
instance, AIOS [29] is a system where a single LLM runs as
the “brain” to serve all apps on the device. ElastilLM makes
it more practical on resource-constrained mobile devices.
Model collaboration. ElastilM employs a dual-head tiny
language model to elasticize the prompt of the LLM. Using
a small model to collaborate with the big model is common
in ML systems. For instance, speculative decoding [50, 80]
accelerates the decode stage with a draft SLM. However,
the prefill stage cannot be accelerated since it is typically

ACM MOBICOM ’25, November 4-8, 2025, Hong Kong, China

compute-bound. LLMlingua [37] uses an SLM to refine the
LLM prompt, which has several untackled issues for elastic
LLM service as discussed in this paper.

7 Conclusion

This work has proposed ElastilM, an elastic on-device LLM
service that serves apps with diverse SLOs. ElastilM in-
corporates two novel designs, i.e., one-shot reordering of
permutation consistent units and dual-head tiny language
model to fully unleash the potential of model- and prompt-
elastification. ElastilM significantly outperforms compet-
itive baselines by up to 14.83% and 10.45% on average in
accuracy.

8 Acknowledgment

This work was supported by the National Natural Science
Foundation of China under Grant 6232520. Mengwei Xu was
supported in part by the Shenzhen Science and Technology
Program with Grant No. JCYJ20241202124021028.

References

[1] 2024. AlCore. https://developer.android.com/ml/aicore.

[2] 2024. alpaca cleaned. https://huggingface.co/datasets/yahma/alpaca-
cleaned.

[3] 2024. Apple Intelligence. https://www.apple.com/apple-intelligence/.

[4] 2024. ARM NEON. https://developer.arm.com/Architectures/Neon.

[5] 2024. Gboard Smart Reply. https://developers.google.com/ml-kit/
language/smart-reply.

[6] 2024. Hey Siri: An On-device DNN-powered Voice Trigger for Apple’s
Personal Assistant. https://machinelearning.apple.com/research/hey-
siri.

[7] 2024. Huggingface GPU pricing. https://huggingface.co/pricing.

[8] 2024. Llama.cpp. https://github.com/ggerganov/llama.cpp.

[9] 2024. LLM layer pruning. https://github.com/horseee/LLM-
Pruner/blob/cbe488944ed772f342e99d3d0efbab9df6520c21/hf prune.
py#L219.

[10] 2024. MeetingBank compressed. https://huggingface.co/datasets/
microsoft/MeetingBank-LLMCompressed.

[11] 2024. mllm. https://github.com/UbiquitousLearning/mllm.

[12] 2024. redmi-k60-champion-edition. https://www.giztop.com/redmi-
k60-champion-edition.html.

[13] 2024. Redmi K70 Pro. https://www.mi.com/redmi-k70-pro.

[14] 2024. rewind. https://www.rewind.ai/.

[15] 2024. XiaoAi smart assistant. https://xiaoai.mi.com/.

[16] 2024. xiaomi-14. https://www.mi.com/global/product/xiaomi-14/.

[17] OpenAlI: Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, et al. 2023. GPT-4 Technical Report.
arXiv:2303.08774 [cs.CL]

[18] Abien Fred Agarap. 2019. Deep Learning using Rectified Linear Units
(ReLU). arXiv:1803.08375 [cs.NE] https://arxiv.org/abs/1803.08375

[19] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong
Deng, Yang Fan, et al. 2023. Qwen Technical Report. arXiv preprint
arXiv:2309.16609 (2023).

[20] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han.
2020. Once-for-All: Train One Network and Specialize it for Efficient
Deployment. arXiv:1908.09791 [cs.LG] https://arxiv.org/abs/1908.
09791

https://developer.android.com/ml/aicore
https://huggingface.co/datasets/yahma/alpaca-cleaned
https://huggingface.co/datasets/yahma/alpaca-cleaned
https://www.apple.com/apple-intelligence/
https://developer.arm.com/Architectures/Neon
https://developers.google.com/ml-kit/language/smart-reply
https://developers.google.com/ml-kit/language/smart-reply
https://machinelearning.apple.com/research/hey-siri
https://machinelearning.apple.com/research/hey-siri
https://huggingface.co/pricing
https://github.com/ggerganov/llama.cpp
https://github.com/horseee/LLM-Pruner/blob/cbe488944ed772f342e99d3d0efbab9df6520c21/hf_prune.py#L219
https://github.com/horseee/LLM-Pruner/blob/cbe488944ed772f342e99d3d0efbab9df6520c21/hf_prune.py#L219
https://github.com/horseee/LLM-Pruner/blob/cbe488944ed772f342e99d3d0efbab9df6520c21/hf_prune.py#L219
https://huggingface.co/datasets/microsoft/MeetingBank-LLMCompressed
https://huggingface.co/datasets/microsoft/MeetingBank-LLMCompressed
https://github.com/UbiquitousLearning/mllm
https://www.giztop.com/redmi-k60-champion-edition.html
https://www.giztop.com/redmi-k60-champion-edition.html
https://www.mi.com/redmi-k70-pro
https://www.rewind.ai/
https://xiaoai.mi.com/
https://www.mi.com/global/product/xiaomi-14/
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/1803.08375
https://arxiv.org/abs/1803.08375
https://arxiv.org/abs/1908.09791
https://arxiv.org/abs/1908.09791
https://arxiv.org/abs/1908.09791

ACM MOBICOM ’25, November 4-8, 2025, Hong Kong, China

[21] Shijie Cao, Lingxiao Ma, Wencong Xiao, Chen Zhang, Yunxin Liu,
Lintao Zhang, Lanshun Nie, and Zhi Yang. 2019. SeerNet: Predicting
Convolutional Neural Network Feature-Map Sparsity Through Low-
Bit Quantization. In 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 11208-11217. https://doi.org/10.
1109/CVPR.2019.01147

[22] Wei Chen and Zhiyuan Li. 2024. Octopus v2: On-device language

model for super agent. arXiv:2404.01744 [cs.CL]

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabhar-

wal, Carissa Schoenick, and Oyvind Tafjord. 2018. Think you have

Solved Question Answering? Try ARC, the AI2 Reasoning Challenge.

arXiv:1803.05457v1 (2018).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

2019. BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding. arXiv:1810.04805 [cs.CL] https://arxiv.org/

abs/1810.04805

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li,

Heming Xia, Jingjing Xu, Zhiyong Wu, Baobao Chang, Xu Sun,

Lei Li, and Zhifang Sui. 2024. A Survey on In-context Learning.

arXiv:2301.00234 [cs.CL] https://arxiv.org/abs/2301.00234

Abhimanyu Dubey, Abhinav Jauhri, et al. 2024. The Llama 3 Herd of

Models. arXiv:2407.21783 [cs.AI] https://arxiv.org/abs/2407.21783

Biyi Fang, Xiao Zeng, and Mi Zhang. 2018. NestDNN: Resource-

Aware Multi-Tenant On-Device Deep Learning for Continuous Mobile

Vision. In Proceedings of the 24th Annual International Conference

on Mobile Computing and Networking (MobiCom ’18). ACM. https:

//doi.org/10.1145/3241539.3241559

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xin-

chao Wang. 2023. Depgraph: Towards any structural pruning. In

Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition. 16091-16101.

Yingqiang Ge, Yujie Ren, Wenyue Hua, Shuyuan Xu, Juntao Tan, and

Yongfeng Zhang. 2023. LLM as OS, Agents as Apps: Envisioning AIOS,

Agents and the AIOS-Agent Ecosystem. arXiv:2312.03815 [cs.OS]

https://arxiv.org/abs/2312.03815

Rui Han, Qinglong Zhang, Chi Harold Liu, Guoren Wang, Jian Tang,

and Lydia Y. Chen. 2021. LegoDNN: block-grained scaling of deep neu-

ral networks for mobile vision. In Proceedings of the 27th Annual

International Conference on Mobile Computing and Networking

(ACM MobiCom ’21). ACM. https://doi.org/10.1145/3447993.3483249

Song Han, Jeff Pool, John Tran, and William J. Dally. 2015. Learn-

ing both Weights and Connections for Efficient Neural Networks.

arXiv:1506.02626 [cs.NE] https://arxiv.org/abs/1506.02626

[32] Shwai He, Guoheng Sun, Zheyu Shen, and Ang Li. 2024.

What Matters in Transformers? Not All Attention is Needed.

arXiv:2406.15786 [cs.LG] https://arxiv.org/abs/2406.15786

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas

Mazeika, Dawn Song, and Jacob Steinhardt. 2021. Measuring Massive

Multitask Language Understanding. Proceedings of the International

Conference on Learning Representations (ICLR) (2021).

Edward]J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi

Li, Shean Wang, Lu Wang, and Weizhu Chen. 2021. LoRA: Low-Rank

Adaptation of Large Language Models. arXiv:2106.09685 [cs.CL]

https://arxiv.org/abs/2106.09685

Kai Huang, Boyuan Yang, and Wei Gao. 2023. ElasticTrainer: Speeding

Up On-Device Training with Runtime Elastic Tensor Selection. In

Proceedings of the 21st Annual International Conference on Mobile

Systems, Applications and Services. 56-69.

Steven A. Janowsky. 1989. Pruning versus clipping in neural networks.

Phys. Rev. A 39 (Jun 1989), 6600-6603. Issue 12. https://doi.org/10.

1103/PhysRevA.39.6600

[23

—_

[24

=

[25

=

[26

—

[27

—

[28

[t

[29

[’

(30

[t

(31

—

(33

[t

[34

[l

(35

[

(36

=

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Wangsong Yin et al.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu.
2023. LLMLingua: Compressing Prompts for Accelerated Inference of
Large Language Models. arXiv:2310.05736 [cs.CL] https://arxiv.org/
abs/2310.05736

Huigiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew
Lin, Yuqing Yang, and Lili Qiu. 2024. LongLLMLingua: Accelerat-
ing and Enhancing LLMs in Long Context Scenarios via Prompt
Compression. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers),
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (Eds.). Associa-
tion for Computational Linguistics, Bangkok, Thailand, 1658-1677.
https://aclanthology.org/2024.acl-long.91

Xiaotang Jiang, Huan Wang, Yiliu Chen, Ziqi Wu, Lichuan Wang, Bin
Zou, Yafeng Yang, Zongyang Cui, Yu Cai, Tianhang Yu, Chengfei Lv,
and Zhihua Wu. 2020. MNN: A Universal and Efficient Inference
Engine. In MLSys.

Matt Gardner Johannes Welbl, Nelson F. Liu. 2017. Crowdsourcing
Multiple Choice Science Questions. arXiv:1707.06209v1.

Rui Kong, Yuanchun Li, Yizhen Yuan, and Linghe Kong. 2023. Con-
vReLU++: Reference-based Lossless Acceleration of Conv-ReLU Op-
erations on Mobile CPU (MobiSys *23). Association for Computing
Machinery, New York, NY, USA, 503-515. https://doi.org/10.1145/
3581791.3596831

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin
Zheng, Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, and Ion Sto-
ica. 2023. Efficient Memory Management for Large Language Model
Serving with PagedAttention. arXiv:2309.06180 [cs.LG] https:
//arxiv.org/abs/2309.06180

Ang Li, Jingwei Sun, Pengcheng Li, Yu Pu, Hai Li, and Yiran Chen.
2021. Hermes: an efficient federated learning framework for heteroge-
neous mobile clients. In Proceedings of the 27th Annual International
Conference on Mobile Computing and Networking (New Orleans,
Louisiana) (MobiCom ’21). Association for Computing Machinery,
New York, NY, USA, 420-437. https://doi.org/10.1145/3447993.3483278
Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. 2017. Pruning Filters for Efficient ConvNets.
arXiv:1608.08710 [cs.CV] https://arxiv.org/abs/1608.08710
Yuanchun Li, Hao Wen, Weijun Wang, Xiangyu Li, Yizhen Yuan, Guo-
hong Liu, Jiacheng Liu, Wenxing Xu, Xiang Wang, Yi Sun, Rui Kong,
Yile Wang, Hanfei Geng, Jian Luan, Xuefeng Jin, Zilong Ye, Guanjing
Xiong, Fan Zhang, Xiang Li, Mengwei Xu, Zhijun Li, Peng Li, Yang
Liu, Ya-Qin Zhang, and Yunxin Liu. 2024. Personal LLM Agents: In-
sights and Survey about the Capability, Efficiency and Security. arXiv
preprint arXiv:2401.05459 (2024).

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan,
Zhao Song, Anshumali Shrivastava, Ce Zhang, Yuandong Tian,
Christopher Re, and Beidi Chen. 2023. Deja Vu: Contextual
Sparsity for Efficient LLMs at Inference Time. In Proceedings
of the 40th International Conference on Machine Learning
(Proceedings of Machine Learning Research, Vol. 202), Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett (Eds.). PMLR, 22137-22176.
https://proceedings.mlr.press/v202/liu23am.html

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023. LLM-Pruner:
On the Structural Pruning of Large Language Models. In Advances in
Neural Information Processing Systems.

Kai Mei, Zelong Li, Shuyuan Xu, Ruosong Ye, Yingqiang Ge, and
Yongfeng Zhang. 2024. AIOS: LLM Agent Operating System.
arXiv:2403.16971 [cs.0OS] https://arxiv.org/abs/2403.16971

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin,
Yaojie Lu, Xianpei Han, and Weipeng Chen. 2024. ShortGPT: Layers
in Large Language Models are More Redundant Than You Expect.

https://doi.org/10.1109/CVPR.2019.01147
https://doi.org/10.1109/CVPR.2019.01147
https://arxiv.org/abs/2404.01744
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.1145/3241539.3241559
https://doi.org/10.1145/3241539.3241559
https://arxiv.org/abs/2312.03815
https://arxiv.org/abs/2312.03815
https://doi.org/10.1145/3447993.3483249
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/2406.15786
https://arxiv.org/abs/2406.15786
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://doi.org/10.1103/PhysRevA.39.6600
https://doi.org/10.1103/PhysRevA.39.6600
https://arxiv.org/abs/2310.05736
https://arxiv.org/abs/2310.05736
https://arxiv.org/abs/2310.05736
https://aclanthology.org/2024.acl-long.91
https://doi.org/10.1145/3581791.3596831
https://doi.org/10.1145/3581791.3596831
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://doi.org/10.1145/3447993.3483278
https://arxiv.org/abs/1608.08710
https://arxiv.org/abs/1608.08710
https://proceedings.mlr.press/v202/liu23am.html
https://arxiv.org/abs/2403.16971
https://arxiv.org/abs/2403.16971

Elastic On-Device LLM Service ACM MOBICOM ’25, November 4-8, 2025, Hong Kong, China

arXiv:2403.03853 [cs.CL] https://arxiv.org/abs/2403.03853 [62] Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. 2024. A

[50

=

—

-

=

[’

=

=

—

=

—

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu
Wang, Zhengxin Zhang, Rae Ying Yee Wong, Alan Zhu, Lijie Yang,
Xiaoxiang Shi, Chunan Shi, Zhuoming Chen, Daiyaan Arfeen, Reyna
Abhyankar, and Zhihao Jia. 2024. SpecInfer: Accelerating Large Lan-
guage Model Serving with Tree-based Speculative Inference and Ver-
ification. In Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 3 (ASPLOS ’24). ACM. https://doi.org/10.1145/
3620666.3651335

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal.
2018. Can a Suit of Armor Conduct Electricity? A New Dataset for
Open Book Question Answering. In EMNLP.

Ali Modarressi, Hosein Mohebbi, and Mohammad Taher Pilehvar.
2022. AdapLeR: Speeding up Inference by Adaptive Length Reduc-
tion. In Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), Smaranda
Muresan, Preslav Nakov, and Aline Villavicencio (Eds.). Associa-
tion for Computational Linguistics, Dublin, Ireland, 1-15. https:
//doi.org/10.18653/v1/2022.acl-long.1

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agar-
wal, Hamid Palangi, and Ahmed Awadallah. 2023. Orca: Pro-
gressive Learning from Complex Explanation Traces of GPT-4.
arXiv:2306.02707 [cs.CL]

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright,
Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama,
Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan
Leike, and Ryan Lowe. 2022. Training language models to follow
instructions with human feedback. arXiv:2203.02155 [cs.CL] https:
//arxiv.org/abs/2203.02155

Charles Packer, Sarah Wooders, Kevin Lin, Vivian Fang, Shishir G.
Patil, Ion Stoica, and Joseph E. Gonzalez. 2024. MemGPT: Towards
LLMs as Operating Systems. arXiv:2310.08560 [cs.AI] https://arxiv.
org/abs/2310.08560

Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin Xia, Xufang Luo,
Jue Zhang, Qingwei Lin, Victor Ruhle, Yuqing Yang, Chin-Yew Lin,
H. Vicky Zhao, Lili Qiu, and Dongmei Zhang. 2024. LLMLingua-
2: Data Distillation for Efficient and Faithful Task-Agnostic Prompt
Compression. ArXiv preprint abs/2403.12968 (2024). https://arxiv.
org/abs/2403.12968

Adam Paszke, Sam Gross, Francisco Massa, et al. 2019. PyTorch:
An Imperative Style, High-Performance Deep Learning Library.
arXiv:1912.01703 [cs.LG] https://arxiv.org/abs/1912.01703

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yangi Zhou, Wei Li, and Peter J. Liu. 2023.
Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer. arXiv:1910.10683 [cs.LG] https://arxiv.org/abs/1910.
10683

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakr-
ishna Vedantam, Devi Parikh, and Dhruv Batra. 2019. Grad-CAM:
Visual Explanations from Deep Networks via Gradient-Based Local-
ization. International Journal of Computer Vision 128, 2 (Oct. 2019),
336-359. https://doi.org/10.1007/s11263-019-01228-7

Yixin Song, Zeyu Mi, Haotong Xie, and Haibo Chen. 2023. PowerInfer:
Fast Large Language Model Serving with a Consumer-grade GPU.
arXiv:2312.12456 [cs.LG]

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and
Yunfeng Liu. 2023. RoFormer: Enhanced Transformer with Rotary
Position Embedding. arXiv:2104.09864 [cs.CL] https://arxiv.org/abs/
2104.09864

Simple and Effective Pruning Approach for Large Language Models.
arXiv:2306.11695 [cs.CL] https://arxiv.org/abs/2306.11695

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang,
and Denny Zhou. 2020. MobileBERT: a Compact Task-Agnostic BERT
for Resource-Limited Devices. arXiv:2004.02984 [cs.CL] https://arxiv.
org/abs/2004.02984

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic
Attribution for Deep Networks. arXiv:1703.01365 [cs.LG] https:
//arxiv.org/abs/1703.01365

Earl William Swokowski. 1979. Calculus with analytic geometry. Tay-
lor & Francis.

Thierry Tambe, Coleman Hooper, Lillian Pentecost, Tianyu Jia, En-Yu
Yang, Marco Donato, Victor Sanh, Paul N. Whatmough, Alexander M.
Rush, David Brooks, and Gu-Yeon Wei. 2021. EdgeBERT: Sentence-
Level Energy Optimizations for Latency-Aware Multi-Task NLP Infer-
ence. arXiv:2011.14203 [cs.AR] https://arxiv.org/abs/2011.14203
Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen
Li, Carlos Guestrin, Percy Liang, and Tatsunori B. Hashimoto. 2023.
Stanford Alpaca: An Instruction-following LLaMA model. https://
github.com/tatsu-lab/stanford_alpaca.

MLC team. 2023. MLC-LLM. https://github.com/mlc-ai/mlc-1lm
Surat Teerapittayanon, Bradley McDanel, and H. T. Kung. 2017.
BranchyNet: Fast Inference via Early Exiting from Deep Neural Net-
works. arXiv:1709.01686 [cs.NE] https://arxiv.org/abs/1709.01686
Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-
Anne Lachaux, Timothée Lacroix, Baptiste Roziére, Naman Goyal, Eric
Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. LLaMA: Open and Efficient
Foundation Language Models. arXiv:2302.13971 [cs.CL] https://arxiv.
org/abs/2302.13971

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R. Bowman. 2019. GLUE: A Multi-Task Bench-
mark and Analysis Platform for Natural Language Understanding.
arXiv:1804.07461 [cs.CL] https://arxiv.org/abs/1804.07461

Yubo Wang, Xueguang Ma, et al. 2024. MMLU-Pro: A More Robust
and Challenging Multi-Task Language Understanding Benchmark.
arXiv:2406.01574 [cs.CL] https://arxiv.org/abs/2406.01574

Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-
Jun Li, Shiqi Jiang, Yunhao Liu, Yaqin Zhang, and Yunxin Liu. 2024. Au-
toDroid: LLM-powered Task Automation in Android. In Proceedings
of the 30th Annual International Conference on Mobile Computing
and Networking (Washington D.C., DC, USA) (ACM MobiCom ’24).
Association for Computing Machinery, New York, NY, USA, 543-557.
https://doi.org/10.1145/3636534.3649379

Hao Wen, Yuanchun Li, Zunshuai Zhang, Shiqi Jiang, Xiaozhou Ye,
Ye Ouyang, Ya-Qin Zhang, and Yunxin Liu. 2023. AdaptiveNet: Post-
deployment Neural Architecture Adaptation for Diverse Edge Envi-
ronments. arXiv:2303.07129 [cs.LG] https://arxiv.org/abs/2303.07129
Noam Wies, Yoav Levine, and Amnon Shashua. 2023. The Learnability
of In-Context Learning. arXiv:2303.07895 [cs.CL] https://arxiv.org/
abs/2303.07895

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond,
Clement Delangue, et al. 2020. Transformers: State-of-the-Art Nat-
ural Language Processing. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing: System
Demonstrations. Association for Computational Linguistics, Online,
38-45. https://www.aclweb.org/anthology/2020.emnlp-demos.6
Minghao Wu, Abdul Waheed, Chiyu Zhang, Muhammad Abdul-
Mageed, and Alham Fikri Aji. 2023. LaMini-LM: A Diverse Herd of
Distilled Models from Large-Scale Instructions. CoRR abs/2304.14402
(2023). arXiv:2304.14402 https://arxiv.org/abs/2304.14402

https://arxiv.org/abs/2403.03853
https://arxiv.org/abs/2403.03853
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.18653/v1/2022.acl-long.1
https://doi.org/10.18653/v1/2022.acl-long.1
https://arxiv.org/abs/2306.02707
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2310.08560
https://arxiv.org/abs/2310.08560
https://arxiv.org/abs/2310.08560
https://arxiv.org/abs/2403.12968
https://arxiv.org/abs/2403.12968
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://doi.org/10.1007/s11263-019-01228-7
https://arxiv.org/abs/2312.12456
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2306.11695
https://arxiv.org/abs/2306.11695
https://arxiv.org/abs/2004.02984
https://arxiv.org/abs/2004.02984
https://arxiv.org/abs/2004.02984
https://arxiv.org/abs/1703.01365
https://arxiv.org/abs/1703.01365
https://arxiv.org/abs/1703.01365
https://arxiv.org/abs/2011.14203
https://arxiv.org/abs/2011.14203
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/mlc-ai/mlc-llm
https://arxiv.org/abs/1709.01686
https://arxiv.org/abs/1709.01686
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/2406.01574
https://arxiv.org/abs/2406.01574
https://doi.org/10.1145/3636534.3649379
https://arxiv.org/abs/2303.07129
https://arxiv.org/abs/2303.07129
https://arxiv.org/abs/2303.07895
https://arxiv.org/abs/2303.07895
https://arxiv.org/abs/2303.07895
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://arxiv.org/abs/2304.14402
https://arxiv.org/abs/2304.14402

ACM MOBICOM ’25, November 4-8, 2025, Hong Kong, China

[78] Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Dangi Chen. 2024.
Sheared LLaMA: Accelerating Language Model Pre-training via Struc-
tured Pruning. arXiv:2310.06694 [cs.CL] https://arxiv.org/abs/2310.
06694
Weikai Xie, Li Zhang, Shihe Wang, Rongjie Yi, and Mengwei Xu. 2024.
DroidCall: A Dataset for LLM-powered Android Intent Invocation.
arXiv preprint arXiv:2412.00402 (2024).
Daliang Xu, Wangsong Yin, Xin Jin, Ying Zhang, Shiyun Wei, Mengwei
Xu, and Xuanzhe Liu. 2023. LLMCad: Fast and Scalable On-device
Large Language Model Inference. arXiv:2309.04255 [cs.NI] https:
//arxiv.org/abs/2309.04255
Daliang Xu, Hao Zhang, Liming Yang, Ruigi Liu, Gang Huang, Meng-
wei Xu, and Xuanzhe Liu. 2024. Empowering 1000 tokens/second
on-device LLM prefilling with mllm-NPU. arXiv:2407.05858 [cs.Al]
https://arxiv.org/abs/2407.05858
Zhenliang Xue, Yixin Song, Zeyu Mi, Le Chen, Yubin Xia, and Haibo
Chen. 2024. PowerInfer-2: Fast Large Language Model Inference on
a Smartphone. arXiv:2406.06282 [cs.LG] https://arxiv.org/abs/2406.
06282
Sohee Yang, Jonghyeon Kim, Joel Jang, Seonghyeon Ye, Hyunji Lee,
and Minjoon Seo. 2024. Improving Probability-based Prompt Selection
Through Unified Evaluation and Analysis. arXiv:2305.14877 [cs.CL]
https://arxiv.org/abs/2305.14877
Yifei Yang, Zouying Cao, and Hai Zhao. 2024. Laco: Large language
model pruning via layer collapse. arXiv preprint arXiv:2402.11187
(2024).
Wangsong Yin, Mengwei Xu, Yuanchun Li, and Xuanzhe Liu. 2024.
LLM as a System Service on Mobile Devices. arXiv:2403.11805 [cs.OS]
https://arxiv.org/abs/2403.11805
Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim,
and Byung-Gon Chun. 2022. Orca: A Distributed Serving Sys-
tem for Transformer-Based Generative Models. In 16th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
22). USENIX Association, Carlsbad, CA, 521-538. https://www.usenix.
org/conference/osdi22/presentation/yu
Jinliang Yuan, Chen Yang, Donggi Cai, Shihe Wang, Xin Yuan, Zeling
Zhang, Xiang Li, Dingge Zhang, Hanzi Mei, Xianqing Jia, Shangguang
Wang, and Mengwei Xu. 2024. Mobile Foundation Model as Firmware.
In Proceedings of the 30th Annual International Conference on
Mobile Computing and Networking (Washington D.C., DC, USA)
(ACM MobiCom ’24). Association for Computing Machinery, New
York, NY, USA, 279-295. https://doi.org/10.1145/3636534.3649361
Li Zhang, Shihe Wang, Xianqing Jia, Zhihan Zheng, Yunhe Yan,
Longxi Gao, Yuanchun Li, and Mengwei Xu. 2024. LlamaTouch:
A Faithful and Scalable Testbed for Mobile UI Task Automation.
arXiv:2404.16054 [cs.HC] https://arxiv.org/abs/2404.16054
Susan Zhang, Stephen Roller, et al. 2022. OPT: Open Pre-trained
Transformer Language Models. arXiv:2205.01068 [cs.CL] https://arxiv.
org/abs/2205.01068
Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhang-
hao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric. P Xing,
Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. 2023. Judging LLM-as-
a-judge with MT-Bench and Chatbot Arena. arXiv:2306.05685 [cs.CL]
Ningxin Zheng, Huiqiang Jiang, Quanlu Zhang, Zhenhua Han, Lingx-
iao Ma, Yuging Yang, Fan Yang, Chengruidong Zhang, Lili Qiu, Mao
Yang, and Lidong Zhou. 2023. PIT: Optimization of Dynamic Sparse
Deep Learning Models via Permutation Invariant Transformation. In
Proceedings of the 29th Symposium on Operating Systems Principles
(Koblenz, Germany) (SOSP ’23). Association for Computing Machinery,
New York, NY, USA, 331-347. https://doi.org/10.1145/3600006.3613139
[92] Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy
Basu, Yi Luan, Denny Zhou, and Le Hou. 2023. Instruction-Following

(79

—

(80

=

(81

—

(82

—

(83

=

(84

[l

(85

[’

(86

[l

[87

—

(88

=

(89

-

[90

=

[91

—

[93]

Wangsong Yin et al.

Evaluation for Large Language Models. arXiv:2311.07911 [cs.CL]
https://arxiv.org/abs/2311.07911

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel
Urtasun, Antonio Torralba, and Sanja Fidler. 2015. Aligning Books
and Movies: Towards Story-Like Visual Explanations by Watching
Movies and Reading Books. In The IEEE International Conference on
Computer Vision (ICCV).

https://arxiv.org/abs/2310.06694
https://arxiv.org/abs/2310.06694
https://arxiv.org/abs/2310.06694
https://arxiv.org/abs/2309.04255
https://arxiv.org/abs/2309.04255
https://arxiv.org/abs/2309.04255
https://arxiv.org/abs/2407.05858
https://arxiv.org/abs/2407.05858
https://arxiv.org/abs/2406.06282
https://arxiv.org/abs/2406.06282
https://arxiv.org/abs/2406.06282
https://arxiv.org/abs/2305.14877
https://arxiv.org/abs/2305.14877
https://arxiv.org/abs/2403.11805
https://arxiv.org/abs/2403.11805
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://doi.org/10.1145/3636534.3649361
https://arxiv.org/abs/2404.16054
https://arxiv.org/abs/2404.16054
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2306.05685
https://doi.org/10.1145/3600006.3613139
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911

	Abstract
	1 Introduction
	2 Background and Motivations
	2.1 Elastic on-device LLM service
	2.2 Opportunities and challenges

	3 ElastiLM Design
	3.1 Overview
	3.2 Model elastification
	3.3 Prompt elastification

	4 Implementation
	5 Evaluation
	5.1 Experimental settings
	5.2 End-to-end performance
	5.3 Performance on standalone datasets
	5.4 Offline stage overhead
	5.5 Sensitivity analysis
	5.6 Discussion

	6 Related Work
	7 Conclusion
	8 Acknowledgment
	References

