
Melon: Breaking the Memory Wall for Resource-Efficient
On-Device Machine Learning

Qipeng Wang1*, Mengwei Xu2*#, Chao Jin1, Xinran Dong1, Jinliang Yuan2, Xin Jin1,
Gang Huang1, Yunxin Liu3, Xuanzhe Liu1#

1Key Lab of High Confidence Software Technologies (Peking University), Beijing, China
2State Key Laboratory of Networking and Switching Technology (BUPT), Beijing, China

3Institute for AI Industry Research (AIR), Tsinghua University, Beijing, China
wangqipeng@stu.pku.edu.cn,{chaojin,dongxinran0805,xinjinpku,hg,xzl}@pku.edu.cn

{mwx,yuanjinliang}@bupt.edu.cn
liuyunxin@air.tsinghua.edu.cn

ABSTRACT
On-device learning is a promising technique for emerging privacy-
preserving machine learning paradigms. However, through quanti-
tative experiments, we find that commodity mobile devices cannot
well support state-of-the-art DNN training with a large enough
batch size, due to the limited local memory capacity. To fill the gap,
we propose Melon, a memory-friendly on-device learning frame-
work that enables the training tasks with large batch size beyond
the physical memory capacity. Melon judiciously retrofits existing
memory saving techniques to fit into resource-constrained mobile
devices, i.e., recomputation and micro-batch. Melon further incorpo-
rates novel techniques to deal with the high memory fragmentation
and memory adaptation. We implement and evaluate Melon with
various typical DNN models on commodity mobile devices. The
results show that Melon can achieve up to 4.33× larger batch size
under the same memory budget. Given the same batch size, Melon
achieves 1.89× on average (up to 4.01×) higher training throughput,
and saves up to 49.43% energy compared to competitive alterna-
tives. Furthermore, Melon reduces 78.59% computation on average
in terms of memory budget adaptation.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; • Software and its engineering→Memory manage-
ment.

KEYWORDS
Mobile device, deep learning, memory optimization
ACM Reference Format:
Qipeng Wang1*, Mengwei Xu2*#, Chao Jin1, Xinran Dong1, Jinliang Yuan2,
Xin Jin1,, Gang Huang1, Yunxin Liu3, Xuanzhe Liu1#. 2022. Melon: Breaking
the Memory Wall for Resource-Efficient On-Device Machine Learning. In

*Equal contributions; #Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiSys’22, June 2022, TBD
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Proceedings of ACM Conference (MobiSys’22). ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Deep Neural Networks (DNNs) have been the key component for
today’s mobile apps, e.g., voice assistant, augmented reality, etc.
Extensive work explores how to bring the inference stage of DNN
to mobile devices by leveraging powerful hardware and various
optimizations [15, 31, 32, 62, 66, 68–70, 73, 76]. As a step forward,
on-device learning is emerging as a new paradigm to directly per-
form model training on mobile devices, especially achieving strong
privacy preservation and personalization. It has become the basis of
advanced learning techniques (e.g., federated learning, split learn-
ing, etc [41, 60, 67]) and applications (e.g., input method, virtual
assistant, etc [1, 2, 44]). However, due to the constrained local hard-
ware resources, it is intuitive to ask whether the training of modern
DNN is affordable on mobile devices.

Unfortunately, as we will quantitatively show in §2, even a high-
end mobile device with 8GB memory cannot support DNN training
with a large enough batch size, which is critical to achieve high ac-
curacy and stable convergence [16, 54]. In other words, the memory
wall hinders the training performance. In federated learning, such
memory deficiency will be amplified as the low-end devices will be
the bottleneck of end-to-end convergence. To this end,we aim to
break the memory wall through memory optimization techniques.
Prior wisdom.We note that memory optimization for model train-
ing has been extensively studied in cloud computing for years,
but seldom discussed in mobile devices. As a result, our first in-
tuition is to investigate whether the most established cloud-side
memory optimization techniques can be leveraged to mobile devices.
To our surprise, our quantitative experiments in §3 reveal that
cloud-side techniques can hardly apply to mobile devices: (1) Swap-
ping [33, 42, 52, 74] introduces severe synchronization overheads
because mobile SoCs lack high-speed I/O links like server GPUs do
(e.g., PCIe). (2) Compression at the training time substantially com-
promises model accuracy, especially in the federated setting [63, 78].
Our design.Wepropose Melon, the first-of-its-kindmemory-optim-
ized DNN training framework that can be practically deployed on
mobile devices. Melon caps the peak memory usage under a mem-
ory budget, the size of available memory for the training process
specified by app or OS. Melon does not incur any accuracy drop and
achieves comparable performance (e.g., training throughput [49]

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

MobiSys’22, June 2022, TBD Qipeng Wang et al.

and energy consumption) as the ideal case when the memory bud-
get is unlimited.

Melon is judiciously built based on our insight of leveraging two
potential techniques that are not well explored on the cloud: micro-
batch [24] and recomputation [11]. Micro-batch is originally pro-
posed for cross-GPU parallelism in distributed learning, yet rarely
used to reduce memory usage in datacenters because it compro-
mises hardware parallelism. This drawback can be well mitigated
due to the limited hardware capacity of mobile devices. Another
drawback is that micro-batch cannot guarantee the mathematical
equivalence if the model includes BatchNormalization (BN) layers
that introduce cross-sample dependency in a batch. BN layer has
become a de-facto in modern DNN, e.g., ResNet [19] and Trans-
former [59]. Therefore, for models with BN layers, Melon leverages
recomputation [11, 17, 47] as complement. Recomputation can help
save memory by discarding and recomputing the intermediate ten-
sors, but is generally regarded as less-efficient on the cloud due to
the computation overhead, compared to memory swapping [23, 52].
As demonstrated later in this paper, through our novel design and
techniques, the cost of recomputation is practically acceptable for
on-device training.
Challenges and techniques. With a given DNN, Melon automat-
ically generates execution plans that guide the training behavior
under different memory budgets. Each execution plan elaborates
the in-memory tensor allocation, micro-batch size, and recomputa-
tion scheduling policy that achieves the optimal performance under
a specified memory budget. It should be noted that Melon is not
simply built upon the combination of micro-batch and recomputa-
tion. Instead, we encounter the following unique challenges and
solve them through our novel techniques.
• Lifetime-aware memory pool. First, we observe heavy mem-

ory fragmentation during model training. On-device training frame-
works often maintain a large memory pool to manage the weights
and intermediate activation. However, because of different allo-
cation policies and various memory access patterns [6, 26, 45],
memory space of the pool becomes incontinuous, broken into small
pieces. According to our measurements, the wasted memory of
those existing memory pools can reach up to 42% during DNN train-
ing. To deal with the memory fragmentation, Melon uses a model-
specific user-space memory pool that incorporates the knowledge
of static memory access patterns (i.e., when a tensor is needed and
how much memory it takes, or called lifetime) during model train-
ing. It is based on a simple yet critical observation that the tens of
thousands of tensors generated during the training have diversified
lifetime. The longer a tensor remains in memory, the more “interfer-
ence” it is likely to cause with other tensors. Therefore, Melon uses
a greedy algorithm to place long-lifetime tensors at low memory
addresses to better consolidate the memory pool.
•Memory-calibrated progressive recomputation. To incorpo-

rate the proposed lifetime-aware memory pool with recomputation
technique, Melon faces a “chicken or the egg” dilemma. The mem-
ory pool takes the lifetime of all tensors as input and generates
a tensor allocation plan as well as the total size of memory pool
required. However, recomputation takes the pool size as input to
make decision, which can affect the pool’s strategy. Separately op-
timizing for each of them and simply applying one atop the other

leads to suboptimal performance. Therefore, Melon proposes a pro-
gressive recomputation algorithmwith calibrating the memory pool.
Following the execution order, when the memory used is larger
than the budget, Melon discards an allocated tensor and calibrates
the locations of the tensors whose lifetime has “interference" with
the discarded tensor. When a tensor needed by current operator
is not present in memory, Melon searches all of source tensors to
be recomputed and allocates memory for them. The allocating per-
forms by extending the “time-axis", adding the tensors to the pool
according to their lifetime. Then Melon calibrates the pool in the
same way as aforementioned.
• On-the-fly memory budget adapting. The preceding two

techniques are adequate to only static memory budget. However,
mobile devices are multi-app or multi-task environments. Hence,
Melon should support dynamic memory budgets. Simply aborting
the current batch training leads to a substantial waste of compu-
tational resources, e.g., tens of seconds. To quickly respond to a
new memory budget with low overhead, Melon uses an on-the-fly
memory adapting mechanism. Once a new budget comes, Melon
first loads the new execution plan and expands/shrinks the memory
pool to meet the memory budget. It then recomputes the tensors
that shall be kept in memory according to the new plan yet are not
presented (due to the difference of new/old plans or the discarded
memory space). Melon then adjusts the tensor locations to fit the
new plan and resumes the training. In such a way, Melon reduces
the switching overhead by reusing parts of previous computation
results, instead of re-executes the DNN from the very beginning.
Implementation and evaluation. We have fully implemented
Melon and 4 baselines atop MNN [26], the state-of-the-art on-device
training library as we will demonstrate in §5. The decision stage
runs on clients for one shot, e.g., when the app is installed, therefore
incurs almost zero programming efforts to developers. We then
conducted extensive experiments on four typical DNN models and
four commodity Android devices. Experimental results demonstrate
that Melon is adequate to support on-device training with much
larger batch size (4.33×) compared to the vanilla MNN, which is much
more significant than all baselines. Such a larger batch size enables
Melon to accelerate the convergence progress of training job by up
to 3.48× and increase the convergence accuracy by 2.2% in an end-
to-end learning task. To support the same large batch size, Melon
reduces up to 49.43% energy consumption compared to baselines.
Furthermore, Melon saves up to 95.73% memory budget switching
overhead compared to a reboot mechanism.

Contributions are summarized as following.
• We thoroughly measure and explore the insightful implications
of promising memory optimizations for on-device training.
• We design and implement the first memory-optimized on-device
training framework, Melon, with three novel techniques, i.e.,
lifetime-aware memory pool, memory-calibrated progressive re-
computation, and on-the-fly memory adapting. The prototype of
Melon have been fully open-sourced1.
• We evaluate Melon with representative DNN models and com-
modity mobile devices. The results demonstrate its effectiveness.

1https://github.com/qipengwang/Melon

Melon: Breaking the Memory Wall for Resource-Efficient On-Device Machine Learning MobiSys’22, June 2022, TBD

W O

W WO OA (= 99%)

A (= 98%)

A (=99%)

A (=99%)W O

W: weights memory O: optimizer memory A: activation memory

(a) MobileNetV2 (b) SqueezeNet
Peak memory breakdown Peak memory breakdown

Figure 1: The peak memory usage breakdown during DNN
training using library MNN [26].

Settings
convergence accuracy and round

Original (BS=32) Optimal (BS=128)
Accuracy Round Accuracy Round

M-Net-centralized 67.58% 171 69.56% 123
M-Net-federated 58.22% 239 62.16% 164
S-Net-centralized 66.24% 211 68.28% 155
S-Net-federated 59.18% 191 62.96% 168

Table 1: The convergence result that can be achieved on
devices with different memory capacities. “M-Net": Mo-
bileNetV2; “S-Net": SqueezeNet.

2 MOTIVATION AND PRELIMINARIES
In this section, we briefly introduce on-device training and conduct
preliminary experiments to motivate the memory wall.

2.1 On-Device Training
The ability of on-device training is the foundation of many ad-
vanced learning scenarios like federated learning [41] and on-device
transfer learning [67] under the edge settings [65]. Such a need is
ever-growing with the increasing public concerns over data privacy
and the promulgation of related laws like GDPR [4].

On-device training typically employs the Stochastic Gradient
Descent (SGD) [9], where an epoch of training can be divided into
somemini-batches. The training of every single batch should experi-
ence a complete data flow: forward pass to calculate loss, backward
pass to obtain the gradients, and parameter update based on gra-
dients. Unlike the model inference (i.e., prediction) stage where
the intermediate tensors can be released once they have already
been used by the following layer, the training stage requires the
outputs generated during forward pass to be kept until they have
been used during the backward pass. Consequently, training is far
more memory-hungry than inference.

Breakdown. We conduct a breakdown analysis of the peak
memory footprint during the DNN training with state-of-the-art
on-device training library MNN [26]. The results are demonstrated in
Figure 1.We classify thememory usage into 3 categories, i.e., weight
memory (storing parameters), activation memory (storing inter-
mediate outputs), and optimizer memory (storing gradients) [55].
It shows that the activation memory often dominates the overall
memory consumption and linearly scales with the batch size. It
implies us to optimize this part of memory during the on-device
learning process.

0 100 200 300 400
Round

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Te
st

 a
cc

ur
ac

y

M-Net-BS128
M-Net-BS32
S-Net-BS128
S-Net-BS32

(a) Centralized learning

0 100 200 300 400
Round

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Te
st

 a
cc

ur
ac

y

M-Net-BS128
M-Net-BS32
S-Net-BS128
S-Net-BS32

(b) Federated learning

Figure 2: The convergence process with different batch
sizes in both centralized and federated settings. Model: Mo-
bileNetV2/SqueezeNet; Dataset: CIFAR-100.

0 500 1000 1500 2000
Round

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Te
st

 a
cc

ur
ac

y

FL-Float32
FL-INT8
Centralized-Float32
Centralized-INT8

Figure 3: The accuracy loss of training-time compression
is amplified in federated learning compared to centralized
setting, with MobileNetV2 and CIFAR-10.

2.2 The Memory Wall
Here, an intuitive yet unexplored question is: can commodity mobile
devices support the training of typical DNN models towards good ac-
curacy? In practice, the machine learning community has reached a
consensus that a large batch size can help stabilize the convergence
direction [16, 54]. We also conduct a measurement study on how
the batch size affects the model convergence in both centralized
(i.e., data in a single GPU machine) and federated settings (i.e., data
is assumed to be distributed on many clients in a non-IID manner).
The experiment results are shown in Figure 2. We are confirmed
that the large size is a need to ensure good accuracy and conver-
gence speed. Specifically, for MobileNetV2 with the batch size of
128 in federated settings, the training process converges at round
164, which is 45.73% faster than that with the batch size of 32. Addi-
tionally, the testing accuracy is 3.94% higher. The same observation
can be found in centralized settings, where using larger batch size
leads to 2% higher accuracy or 39.02% faster convergence time.

However, it is not surprising that training models with larger
batch size requires much more memory capacity. In practice, com-
modity mobile devices cannot adequately support large-batch train-
ing, i.e., memory wall. Table 1 summarizes how the memory wall
affects the on-device training. Even with a flagship high-end com-
modity device (Samsung Note 10, 8GB RAM), only the batch size of
32 can be supported on the MNN library, while resulting in lower ac-
curacy and more training rounds in both centralized and federated
settings.

3 EXPLORING EXISTING TECHNIQUES
In this section, we first examine the existing memory saving tech-
niques that are originally designed for the cloud, and quantitatively
analyze why these techniques are not sufficient for mobile devices.

MobiSys’22, June 2022, TBD Qipeng Wang et al.

2 4 8 16 32 64 128
Batch size

101

102

103

Th
ro

ug
hp

ut
 (f

ps
)

M-Net on CPU
S-Net on CPU
M-Net on GPU
S-Net on GPU

(a) Training throughput

2 4 8 16 32 64 128
Batch size

40

60

80

100

No
rm

al
ize

d
ut

il
(%

)

M-Net on CPU
S-Net on CPU
M-Net on GPU
S-Net on GPU

(b) Hardware utilization

Figure 4: A relatively small batch size is enough
to fully exploit mobile CPU capacity. “M/S-Net”:
MobileNetV2/SqueezeNet-50; “CPU”: Samsung Note10
CPU; “GPU”: Nvidia P100.

Then we explore new design space that can probably contribute to
saving training memory consumption.
•Model& gradients compression.Quantization [48, 64] is widely
adopted to compress DNNs by reducing the number of bits required
to represent each weight. For example, 8-bit and 16-bit quantization
are the most common solutions to compress DNNs with negligible
accuracy loss [18, 58]. In the extreme case, using 1-bit representa-
tion has been demonstrated to be effective [12, 13, 51]. However,
to reduce the memory footprint, training model in low-precision
representation is more challenging than the inference, and often
decays the model accuracy unacceptably.

We realize that such an accuracy gap between FP32-based and
INT8-based training can not be closed through advanced learning
algorithms. A recent effort [78] proposes a loss-aware compensa-
tion for backward quantization, yet experienced up to 7.9% accuracy
drop on CIFAR-10 dataset. Another state-of-the-art integer-based
training algorithm, NITI [63], which uses a discrete parameter up-
date scheme also drops DNN accuracy significantly. What’s even
worse, such an accuracy gap could be amplified in emerging learn-
ing paradigms like FL. This phenomenon is observed in our pre-
liminary experiments shown in Figure 3, where we compare the
convergence process of NITI in both centralized and federated set-
tings. It shows that the accuracy degradation of NITI as compared
to FP32-based training is much more evident in federated settings.
•Host-devicememory swapping.CloudGPUs are usually equipped
with dedicated memory cards and the data movement between
those memory cards is very fast, e.g., 128GB/s for PCIe 5.0. Given
that the main memory is typically more abundant than GPU mem-
ory, prior efforts [42, 50, 52, 61] have explored using the main
memory as the external data backup during DNN training. A smart
swapping mechanism can reduce the on-GPU memory footprint
with marginal throughput loss, because the I/O between CPU/GPU
memory can overlap with the training and the overhead can be
totally covered.

However, compared to the cloud, swapping does not apply to
mobile devices, which commonly use the integrated memory chip
for all processors. Consequently, swapping can be performed only
between the main memory and the disk on devices, where the
bandwidth is very limited, e.g., 100–300MB/s as tested on the de-
vices listed in Table 3 for the write operation. We will also experi-
mentally show that swapping-based mechanisms exhibit inferior
performance on devices in §6.

•Activation recomputation. The activation generated during for-
ward pass dominates the memory usage as aforementioned. There-
fore, a little literature has explored discarding the intermediate acti-
vation during forward pass and recomputing them when needed at
the backward stage. Instead of discarding all of the activation, Chen
et.al [11] proposed to store a subset of them, a.k.a checkpoints, and
the recomputation can start from the corresponding checkpoint
instead of the very beginning of a model training. A key theme of
recomputation literature is to select checkpoints, atop which many
algorithms have been proposed [46, 47].

We argue that recomputation is potentially useful for on-device
learning, as it does not decay model accuracy and does not rely on
weak characteristics between device hardware. However, current
algorithms are based on a naive assumption that the sum of reserved
tensor size is equal to the total memory footprint, which will be
inaccurate when a user-space memory pool is used. To our best
knowledge, none of them considers the effect of memory pool.
• Splittingmini-batch tomicro-batch.With the mini-batch SGD
algorithm, the weight gradients are averaged across all samples in
a batch. Therefore, a mini-batch can be further split into various
smaller batches, i.e. micro-batch [24, 55], and its gradients are the
average of all micro-batch gradients. Our measurement in Figure 1
shows that the activation memory size is proportional to the batch
size, and thus splittingmini-batch intomicro-batch can significantly
reduce required memory.

Micro-batch is originally designed for pipeline parallelism to
achieve efficiently distributed machine learning. This technique is
rarely used in the cloud to reduce the memory footprint, mainly
because a small micro-batch size cannot fully utilize the high par-
allelism of cloud GPUs as demonstrated in Figure 4. On mobile
devices, however, a relatively small batch size is sufficient to reach
the maximal hardware resource utilization.

In addition, the computation correctness of micro-batch can-
not be guaranteed for DNN models with BatchNormalization (BN)
layer2, which involves the inter-sample data dependency. Even
though algorithms like GhostBN [21] are proposed to solve this
problem, the statistic change is still inevitable. Therefore, we treat
micro-batch as an opportunity for on-device memory saving tech-
niques only for the models without BN layer.

Summarized Implications. Through preceding measurement
of existing techniques, we find that there exists a gap between
mobile and cloud scenarios. On the one hand, swapping and com-
pression, which are extensively studied in the cloud, do not suit
mobile devices well. On the other hand, micro-batch brings a new
opportunity whose drawback is mitigated due to limited hardware
capacity of mobile device, and recomputation technique is generic
enough to support various hardware and models. These findings
indicate that on-device memory optimization is quite different from
the cloud, leading us to build Melon as a mobile-specific framework.
Especially, Melon needs to retrofit the proper techniques (micro-
batch and recomputation) and, for the first time, integrate them to
get the most benefit in memory saving.

2Note that there are many variants of BN such as BatchRenormalization, AdaBN, etc.
In this work, we treat them equally in memory optimization.

Melon: Breaking the Memory Wall for Resource-Efficient On-Device Machine Learning MobiSys’22, June 2022, TBD

Execution
profiler

Kernel-level
Characteristics

…

…

Execution plan generator

Op reserving
&recomputing

Batch
splitting

Memory layout

Optimal
execution
plans

App or OS

Memory
budge

Deployed
DNN

Decision
stage

Execution stage

Dataset

Execution engine

Training
engine

Adapting
engine

Hardware
profile

Figure 5: An overview of Melon.

4 THE DESIGN
In this section, we will first give an overview of Melon, then elabo-
rate its each novel technique.

4.1 Overview
Design goal. Melon aims to maximize the model training perfor-
mance under given batch size and memory budget. Within a train-
ing task, the batch size is usually fixed by the algorithm developer,
while the memory budget can be dynamically adjusted by the app
or OS at runtime.

Melon retrofits the micro-batch and recomputation techniques
for memory saving, incorporated with a novel memory pool to
reduce the memory fragmentation (§4.2). When training models
without BN layers that introduce the cross-sample dependency,
Melon adopts the micro-batch technique. Melon uses the largest
micro-batch size possible that satisfies the memory budget. The
overhead of micro-batch comes from two parts. First, aggregating
the buffered gradients from each micro-batch takes time, but the
overhead is trivial compared to the training time (≤1%). The second
overhead is that small batch size reduces the parallelism of intra-
op execution. This overhead is also negligible due to the limited
hardware capacity of mobile devices as discussed in §3. Therefore,
we deem that the memory wall issue of certain DNNs is well solved
by Melon with micro-batch technique.

However, BN layer becomes the de-facto standard in DNN train-
ing (e.g., ResNet [19] and Transformers [59]). Thus, Melon takes a
step further and focuses on supporting generic DNN models that
include BN layers through recomputation. The key design of Melon
is to minimize the recomputation overhead by determining when
and what tensors should be discarded or recomputed. However,
directly applying pool and recomputation will face a dilemma that
both need global knowledge of each other. To tackle this problem,
we propose a novel recomputation mechanism as to be shown in
§4.3.

Workflow. As shown in Figure 5, Melonworks in two stages: (1)
At the decision stage, Melon generates execution plans that achieve
the best performance under diverse memory budgets; (2) At the
execution stage, Melon performs DNN training based on the plans.
Such a two-stage design is based on the opportunity of regular ten-
sor access patterns during DNN training, which has been adopted
in existing effort [46]. Note that both stages run on devices, and the
decision stage is automatically triggered before the execution stage.

1

2

3

4

Timeline

M
em

or
y
ad
dr
es
s Reduced memory usage

1

2

3

4

Timeline

M
em

or
y
ad
dr
es
s

(a) On-demand memory pool (b) Improved memory pool

Figure 6: An example allocation strategy via using on-
demand strategy and our improved strategy. Each rectan-
gle in the figure represents a tensor generated, of which the
width/height indicate its lifetime/size, and its y-axis coordi-
nate is the allocated memory address.

Hence, such a design does not introduce any additional program-
ming efforts to the developers (e.g., only one line of shell command
in our implementation).
• Decision stage. Before training a DNN model, Melon first

runs a profiling iteration to obtain the runtime information via
Execution Profiler. The profiled information contains NN operators
and tensors being generated during training process, including the
data flow dependency, the size of each tensor, the computation
time of each operator, the lifetime of every single tensor, etc. The
profiled information is then fed to the Execution plan generator,
which generates execution plans to elaborate the memory saving
details like: (1) where each tensor is placed in a large memory
pool; (2) which operators need to be recomputed. Additionally, the
execution plan also contains the batch splitting strategy, which
specifies the split batch size for the models without BN layers.
Because this technique has no impact on the statistic characteristics
of training process, we simply use the largest micro-batch size that
the device supports to minimize the additional overhead introduced
by aggregating the buffered gradients. The following subsections
describe how Melon searches for the optimal execution plan.

Each execution plan corresponds to one memory budget, there-
fore Melon pre-defines a set of memory budgets and generates
an optimal execution plan for each of them. These plans will be
stored locally with the model for execution stage. Adapting to a
set of pre-defined budgets rather than arbitrary budgets simplifies
Melon’s design of memory optimizations. The cost is trivial as each
execution plan takes only a few KBs in our implementation.
• Execution stage. Once a training task starts, the training

engine of Melon loads a proper execution plan according to the
current memory budget and performs the training guided by the
plan. When the memory budget changes, Melon checks if a new
plan needs to be loaded. If needed, Melon quickly switches to a new
plan based on the technique discussed in §4.4.

To minimize the manual efforts from developers, the decision
stage of Melon runs on devices to automatically generate the exe-
cution plans. The plans can be stored on local storage so they need
to be generated for only once, e.g., when the app is installed or a
new model is fetched from servers.

MobiSys’22, June 2022, TBD Qipeng Wang et al.

4.2 Lifetime-Aware Memory Pool
User-space memory pool [77] is a common approach used by train-
ing frameworks [6, 26, 45] to manage memory. It avoids the high
overhead for frequently interacting with the OS to allocate/release
memory blocks. Nowadays memory pools used by those frame-
works allocate memory for tensors sequentially, and update the
pool information after each allocation. However, such designs ig-
nore the unique characteristic that DNN training repeats iteratively
and can lead to severe memory fragmentation , e.g., up to 42%
memory space is wasted in the same setting as §6.1 using MNN.

4.2.1 Opportunity andHeuristics. An opportunity to improvemem-
ory layout is the consistent memory operations across the training
at batch granularity. Based on the profiled memory operating infor-
mation, it is possible to architect an optimal layout with minimal
memory size. Figure 6 shows an example of how the memory can be
saved through a better layout. With the on-demand strategy shown
in Figure 6(a), the 𝑇2 is assigned to an address aside 𝑇1. After 𝑇1 is
released, 𝑇4 cannot fit into the memory space below 𝑇2, therefore
it should be located in the address above 𝑇2. Consequently, the
total memory footprint is the sum of𝑇1,𝑇2 and𝑇4. In the optimized
allocation strategy shown in Figure 6(b), the memory footprint size
can be reduced to the sum of 𝑇2 and 𝑇4.

However, solving the preceding memory saving problem is simi-
lar to 2DSP problem [8] – a classical NP-Hard problem. The input of
this problem consists of thousands of tensors, making it impossible
to exhaust the optimal solution. To obtain a near-optimal solution,
very few efforts have been invested [27, 75]. These approaches usu-
ally perform the memory allocation in a greedy way of “large tensor
first”. Instead, we find that tensors’ lifetime (longitude) can impose
a huge influence on the layout effectiveness. Intuitively, the longer
a tensor remains in the memory pool, the more “interference” it
can introduce with other tensors as it splits the memory pool into
two disjunct segments given by a timestamp. Indeed, such lifetime
diversification is prevalent in DNN training, and can be classified
into two main categories. (1) The activation spans a long lifetime,
i.e., produced at the forward pass and released at the backward
pass. Similar to the stack data structure, it follows a “First Produce
Last Release (FPLR)” order, i.e., the earlier an activation is produced,
the later it is released. (2) The lifetime of other temporary tensors
is much shorter than activation, spanning only a few or even one
operator. Such observations guide us to allocate each tensor accord-
ing to their lifetime in a greedy way to approximate the optimal
solution to this 2DSP-like problem.

4.2.2 Our Approach. Based on the preceding observations, Melon
employs a tensor-lifetime-aware algorithm for memory layout
optimization. The key idea is to place those long-lifetime tensors be-
neath short-lifetime ones to consolidate the overall memory layout.
Melon iteratively places the tensor with the longest lifetime over
the lowest memory address possible. The memory pool expands
when a tensor’s tail exceeds the current pool size. This process is
performed in a greedy fashion. With the profiled information of
each tensor, Melon abstracts the memory pool and tensors into a
2D axis and rectangles as shown in Figure 6. The memory address
can be represented as relative offset to the bottom of pool. During
the execution stage, Melon requests all memory space at one time

F1 F4F3F2

B1 B4B3B2

F5

B5

TPS=2 TPS=3 TPS=1
F1

F4

F3

F2

F2

Trigger discarding
Real data flow
Trigger recomputation

Original data flow

Ops producing
activation

Ops producing
temp tensors

Figure 7: The recomputation workflow of Melon.

through the malloc function. When allocating the memory for each
tensor, Melon just assigns each tensor with the certain address in
the pool according to the execution plan.

4.3 Memory-Calibrated Progressive
Recomputation

4.3.1 Problems of Existing Techniques. First, prior recomputation
strategies [11, 46] consider only the activation generated in forward
propagation. However, we observe that a lot of fragmented and
temporary tensors are generated during both forward and backward
stages, e.g., block 𝐹3 and 𝐵3 in Figure 7. Second, previous work
makes the recomputation policy only based on the naive peak
memory, i.e., the sum of all activation tensors. Indeed, among over
1,800 tensors generated during the MobileNetV2’s training forward
pass with MNN, only about 200 of them are activation that needs
to be persisted for long-term use. While other tensors exist for
only a short lifespan, they can occupy non-trivial memory space
and cause the overflow of memory usage. To our best knowledge,
none of them considers the influence of memory pool, and the
recomputation policy can lead to inaccurate results.

4.3.2 Our Approach. To this end, Melon introduces a different re-
computation mechanism that comprehensively considers the influ-
ence of the memory pool. However, as is mentioned in §4.2, the
pool needs the global knowledge of all tensors to make the allo-
cation decision, i.e., lifetime of all tensors which can be affected
by recomputation. The recomputation strategy can be made only
when the information of pool is accessible, i.e., whether the tail of
current tensors exceed the memory budget. In other words, both
the memory pool and recomputation need the complete knowledge
from each other to make a good decision. To tackle this dilemma, we
introduce ourmemory-calibrated progressive recomputation,
as shown in Algorithm 1.

Melon takes the whole operator graph as input and treats each
tensor equally for recomputation. When determining which tensor
to be discarded for recomputation, Melon introduces the metric
Triangle Per Second (TPS) (Eq 1) to estimate the benefit of recom-
puting each tensor, i.e., the tensor with the larger size, longer freed
lifetime, and less recomputation time has a higher priority to be
discarded and recomputed later. The freed lifetime is defined as the
lifetime span between discarding and recomputing. Larger size and
longer freed lifetime indicate that discarding the tensor can bring
more available space in the memory pool as shown in Figure 6.

Melon: Breaking the Memory Wall for Resource-Efficient On-Device Machine Learning MobiSys’22, June 2022, TBD

Algorithm 1: Recomputation mechanism
Input: profiling, memory_bydget
Output: execution plan

1 Initialize comp_seq and pool w/o recomputation;
2 allocated ← Set(); // in-memory tensors set

3 timestamp← 0; // logical timestamp

4 Function compute(𝑜𝑝𝑖𝑡ℎ , skipRelease):
5 allocated.add(𝑜𝑝𝑖𝑡ℎ .output);
6 while pool.size(timestamp+1) ≥ memory_budget do
7 T ←MaxTPS(skip=skipRelease);
8 pool.Evict(T, timestamp+1);
9 allocated.add(T);

10 end while
11 timestamp← timestamp + 1;
12 foreach 𝑜𝑝𝑖 in comp_seq do
13 if 𝑜𝑝𝑖 .outputs not in allocated then
14 rp_ops← getRecomputeOpsRecursively(𝑜𝑝𝑖 , allocated);
15 pool.Add(rp_ops.outputs, timestamp);
16 foreach 𝑜𝑝 𝑗 in recomp_ops do
17 compute(𝑜𝑝 𝑗 , rp_ops.inputs);
18 end foreach
19 end if
20 compute(𝑜𝑝𝑖 , 𝑜𝑝𝑖+1.inputs);
21 end foreach

𝑇𝑃𝑆 =
𝑇𝑒𝑛𝑠𝑜𝑟𝑆𝑖𝑧𝑒 ∗ 𝐹𝑟𝑒𝑒𝑑𝐿𝑖 𝑓 𝑒𝑡𝑖𝑚𝑒

𝑅𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒
(1)

Melon’s recomputation mechanism is carried out in a progres-
sive manner. It first initializes the memory pool via original the
execution flow (line 1), then it simulates executing operators one by
one following the original execution flow (line 12). During the sim-
ulation execution, each tensor is assigned with the address exactly
where it is in the pool.

When a tensor’s tail exceeds the memory budget, the recom-
putation mechanism is triggered (line 6-10). The recomputation
mechanism continuously discards the tensor with maximal TPS
value and calibrates the memory pool until the pool size is not larger
than the budget. The input tensors of next operator are considered
to be not discarded (line 7). During the discarding process, the pool
releases tensor at current step (removes part of the rectangle as vi-
sualization in Figure 6). Once a tensor is discarded, Melon calibrates
the memory address of all the tensors generated afterwards whose
lifetime has “interference” with it (line 8). Here the interference is
defined as the overlap of two tensors’ lifetime. As a visualization in
Figure 6, the tensors on the right at this point will “sink" to lower
address. Such discarding process is repeated on the in-memory
tensors until the pool size does not overflow the memory budget.

When a tensor needed by the current operator is not presented in
memory, the algorithm allocates memory and recomputes it along
with its source tensors (line 13-19). The source tensors are collected
recursively until the input tensors are presented in memory (line
14). Through such mechanism (line 7 and 14), the input dependency
between operator is guaranteed. Recomputing the tensors causes
nontrivial time overhead because it can produce some tensors that
should be added to the pool. Therefore, Melon needs to expand the

lifetime of already-in-memory tensors (time-axis in Figure 6). First,
the pool extends lifetime from current step by exact the length of
these tensors’ lifetime, and all of the “rectangles" right to current
time will move rightward, indicating that they will be generated
later. Then the tensors are added to the pool, and the pool calibrates
tensors whose lifetime has interference with them in the same way.

Figure 7 illustrates an example of how Melon’s recomputation
works. Assume that the operator graph in topology order is 𝐹1 → 𝐹5
and 𝐵5 → 𝐵1 where 𝐹 denotes the forward pass, and 𝐵 denotes the
backward one. The black arrows in the figure denote the dataflow in
operator graph. The activation is produced by 𝐹1, 𝐹2 and 𝐹4, while
𝐹3 and 𝐹5 are operators producing temporary tensors. Assume that
the memory budget is exhausted after 𝐹3, the output of 𝐹2 with
maximal TPS will be discarded, even though the output of 𝐹3 is not
an activation. In this case the in-place memory allocation cannot
work because the outputs of 𝐹1 and 𝐹2 should be kept until they
are not used in the backward pass. During the backward pass, 𝐵3
acts as an intermediate operator to support the computation of 𝐵2.
Even in the backward pass, the memory footprint size can exceed
the budget, and then the algorithm chooses a tensor to be evicted
in the same way as forward pass. The TPS of each tensor will be
updated when a tensor is evicted.

4.4 Memory Budget Adaptation
Mobile devices typically support multi-app execution environments,
where the hardware resources allocated to each app/service can be
highly dynamic. Such signal of memory adaptation may come from
OS or the app itself. In adapting to the new memory budget, Melon
needs to (i) quickly respond to the change, e.g., releasing memory if
needed, and (ii) minimize the overhead of switching the execution
plan.

For the case of expanded memory budget, Melon simply employs
a lazy switch strategy, i.e., waiting till the training end of the current
batch and switching to the new execution plan. However, for the
case of shrunk memory budget, such a lazy strategy is not feasi-
ble as the memory needs to be immediately released to the app
or OS. Another intuitive method is stop-restart, which means the
whole memory pool will be reallocated and all the intermediate
results at current batch will be discarded. While it can release mem-
ory instantly, it also causes very high overhead to re-execute the
operators.

To this end, we propose an on-the-fly memory adapting mech-
anism that can quickly respond to the memory budge change and
resume the execution based on the preserved (partial) results. Once
a new budget comes, Melon first shrinks the pool size to meet the
memory budget. Melon preserves the size of new memory budget
from the beginning of the current memory pool and dumps the rest
through realloc function. It then loads the new execution plan and
jumps to the execution point of the current operator.

The next key step is to recover the memory layout for the new
plan. We use 𝐴, 𝐵, and 𝐶 to denote the in-memory tensor set of
the old execution plan, the tensor set that ought to be presented in
memory in the new execution plan, and the discarded tensor set,
respectively. Melon keeps only the tensors in (𝐴−𝐶)∩𝐵 in memory
and dumps others. Note that the dumping action does not need any
memory operation physically but marks only the corresponding

MobiSys’22, June 2022, TBD Qipeng Wang et al.

Batch size MobileNetV2 SqueezeNet
TFLite MNN TFLite MNN

4 Peak Mem. (MB) 2,257 1,112 1,028 849
Latency (ms) 1,757 1,474 1,156 1,108

8 Peak Mem. (MB) 2,257 1,112 1,028 849
Latency (ms) 3,377 2,675 2,239 1,981

12 Peak Mem. (MB) 3,242 1,629 1,430 1,303
Latency (ms) 4,572 3,826 3,342 2,998

Table 2: Experiments show MNN is the state-of-the-art library
that supports on-device learning.

memory blocks as free. Melon then adjusts the memory address
of the remaining tensors from the old execution plan to the new
one. Finally, Melon recomputes the tensor in 𝐶 − (𝐴 − 𝐵) based on
the execution order of the model. With the preceding steps done,
Melon can successfully recover the memory layout and resume the
training with the new execution plan, instead of re-executing the
previous operators from scratch.

5 IMPLEMENTATION
Wehave fully implemented a prototype of Melon atop MNN (v1.1.0) [26].
To the best of our knowledge, MNN, TFLite [5], and DL4J [3] are
the only three libraries that support training modern DNNs on An-
droid devices. We use MNN because it outperforms the other two in
consideration of speed and memory usage, as demonstrated in our
measurement (Table 2) and prior work [10]. Note that the design
of Melon is general enough to be incorporated into other libraries
as well.

Our prototype mainly includes two modules (6.4k LoC in C++
in total): (1) the execution engine for offline profiling and online
memory-optimized execution; (2) the execution plan generator
generates the optimal execution plans under different memory
budgets. Note that both of them run on devices in an automated
manner, imposing no additional efforts for developers.

While MNN is conceptually compatible with both Android and
iOS devices, our prototype currently targets Android devices as
there are many OS-specific memory operations. Currently, the
prototype mainly supports training on mobile CPU, because MNN
has very limited supports for training-related operators on GPUs,
and even the supported models exhibit poor performance compared
to CPU [10]. It is worth mentioning that the design of Melon is
mostly compatible with mobile GPU yet unique challenges need
to be addressed such as the memory copy overhead during the
memory adaptation. To our best knowledge, MNN is currently the
only on-device training library that supports mobile GPU as of the
publication of this work. The evaluation in §6.7 will demonstrate
Melon’s compatibility and generality.
Baselines.We also implemented four baselines by learning lessons
from prior literature. Note that the source code of some prior work
is not available, so we try our best to reproduce them according to
corresponding papers. For fair comparison, we re-implement each
of them atop MNN.
• Ideal: the ideal case where we assume the devices are equipped
with infinite memory capacity, implemented by directly reusing the
device memory (thus compromising computation correctness). This

Device SoC Memory Model Params
SN10 SD 855 8 GB MobileNetV1 [22] 3.3M
VIN3 SD 865 6 GB MobileNetV2 [53] 2.4M
RN9P SD 720 6 GB SqueezeNet [25] 0.8M
RN8 SD 655 4 GB ResNet50 [19] 23.8M

Table 3:Mobile devices andmodels used in experiments. “SD”:
Qualcomm snapdragon. “SN10": Samsung Note10; “VIN3":
Vivo IQOO Neo3. “RN9P": Redmi Note9 Pro. “RN8": Redmi
Note8.

3.42 3.07 2.73 2.39
Throughput (fps)

40
80

120
160
200

M
ax

im
al

 b
at

ch
 si

ze Sublinear
Capuchin
vDNN
Melon

(a) MobileNetV2

4.47 4.02 3.57 3.13 2.68
Throughput (fps)

40
80

120
160
200

M
ax

im
al

 b
at

ch
 si

ze Sublinear
Capuchin
vDNN
Melon

(b) SqueezeNet

Figure 8: Maximal batch size that can be trained with differ-
ent throughput. The x-axis shows decreased throughput, as
trade-off for large batch size. The leftmost throughput is the
training throughput of Ideal approach.

baseline provides the strict upper-bound performance achievable
by Melon or other baselines.
• vDNN [52]: a runtime memory management solution that virtual-
izes the memory usage of DNNs based on swapping. Here we swap
data between memory and disk (internal storage on devices).
• Sublinear [11]: a layer-wise recomputation algorithm that evicts
a tensor when the current memory usage exceeds a threshold de-
termined by heuristics.
• Capuchin [46]: an efficient tensor-based optimization algorithm
that combines swapping and recomputation.

6 EVALUATION
In this section, we evaluate Melon and baselines in various aspects
to demonstrate the efficiency of Melon.

6.1 Experiment Settings
Models and datasets. We evaluate Melon with 4 typical CNN
models listed in Table 3, which are widely used on mobile devices,
including MobileNetV1 [22], MobileNetV2 [53], SqueezeNet [25],
and ResNet-50 [19]. For each model, we implement two versions:
with and without BN layer (added after each convolution layer). We
did not include language models because MNN lacks such support.
We use CIFAR-100 dataset with input resized to 224×224×3 [25, 53].
Hardware setup. We conduct the experiments on 4 Android de-
vices with diverse SoCs and memory capacity (Table 3). We always
run Melon and other baselines on the big cores to achieve fair com-
parison.
Metrics. We measure the memory usage, energy consumption,
and throughput during training. The memory usage is monitored
by procrank. The energy consumption is calculated through An-
droid’s vFS (/sys/class/power_supply) [10]. The training through-
put is defined as the number of data samples trained per second
(𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = 𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒

𝑃𝑒𝑟𝐵𝑎𝑡𝑐ℎ𝐿𝑎𝑡𝑒𝑛𝑐𝑦
).

Melon: Breaking the Memory Wall for Resource-Efficient On-Device Machine Learning MobiSys’22, June 2022, TBD

0 20 40 60 80 100 120
Wall clock time (hrs)

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Te
st

 a
cc

ur
ac

y

M-128-Melon
M-32-MNN
S-128-Melon
S-32-MNN

(a) Centralized learning

0 2 4 6 8 10 12
Wall clock time (hrs)

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Te
st

 a
cc

ur
ac

y

M-128-Melon
M-32-MNN
S-128-Melon
S-32-MNN

(b) Federated learning

Figure 9: The end-to-end convergence performance with dif-
ferent batch size in centralized and federated settings. Model:
MobileNetV2/SqueezeNet; Dataset: CIFAR-100.

6.2 Overall Performance
We first measure Melon’s overall performance in 3 main aspects, i.e.,
maximal batch size supported when achieving the same throughput,
training convergence performance, and training throughput with
larger batch.

Maximal batch size supported.We first measure the maximal
batch size that can be achieved with different throughputs. We
perform the experiments with MobileNetV2 and SqueezeNet (both
with BN layers) on Samsung Note 10. The results are illustrated
in Figure 8. It shows that Melon’s memory optimization scales
quite well with different throughputs, and always outperforms
the alternative approaches significantly. For example, when the
throughput is 2.39fps, Melon can train MobileNetV2 with batch size
208, while other baselines achieve batch size smaller than 96.

End-to-end convergence performance.We also evaluate how
Melon performs in an end-to-end learning task in both centralized
and federated settings. The dataset we used is CIFAR-100. For fed-
erated settings, we initialize the training process with 10 devices,
and the distribution of data across all devices is non-IID [29]. The
data on each device covers only a subset of classes. Since the exper-
iment is to illustrate Melon’s effectiveness in trading batch size and
training speed, we do not consider the device heterogeneity [72] in
federated learning, but take into account only the training speed
on Samsung Note10. Other settings are the same for both federated
and centralized scenarios.

As demonstrated in Figure 9, by supporting a larger batch size,
Melon achieves higher convergence accuracy than original MNN, i.e.,
3.94% and 3.20% with MobileNet-V2 and SqueezeNet respectively in
federated settings. The convergence accuracy of Melon is 1.98% and
2.04% higher in centralized settings, respectively. On the other side,
Melon significantly reduces the training time towards the same
accuracy. For example, it takes 2.80× and 3.48× less time for Melon
to the convergence accuracy (58.22% and 59.18%) for MobileNetV2
and Squeeze-Net compared to original MNN, respectively.

Throughput with the same batch size. We then comprehen-
sively investigate the training performance of Melon by varying
different (upscaled) batch sizes that cannot be trained without us-
ing memory saving techniques. The experiments are performed on
4 devices, 2 for models with BN layers and 2 for models without
BN layers. For each combination, we select 2–3 batch sizes, e.g.,
if the original maximal batch size is 32, we use 64, 96, and 128 as
the testing batch sizes. The results are illustrated in Figure 11 and
Figure 12, respectively.

(a) M-Net, BS128, 6GBà5GB (b) M-Net, BS64, 4GBà3GB

(c) S-Net, BS128, 6GBà5GB (d) S-Net, BS64, 4GBà3GB

Stop-restart Melon(RL) Melon (RC)

Figure 10: The memory budge adaptation overhead. “M-Net":
MobileNetV2; “S-Net”: SqueezeNet. “RL": relayout; “RC": re-
computation. The adapting overhead is defined as the com-
putation of current batch being wasted (to be recomputed)
and memory relayout due to the execution plan switching.

Our key observation is that Melon consistently and remarkably
outperforms other alternative optimizing baselines, and often achieves
similar performance compared to the Ideal baseline. For instance,
on models with BN layers (Figure 11), Melon achieves 1.51× – 3.49×
higher throughput than vDNN, 1.13× – 3.86× higher throughput than
Sublinear, and 1.01× – 4.01× higher throughput than Capuchin.
Melon demonstrates that its advantage is more significant on larger
batch sizes, e.g., 3.25× and 3.34× improvement over Capuchinwhen
training MobileNetV2 on Redmi Note9 Pro with batch size 64 and
128, respectively. Nevertheless, the performance gap between Melon
and the Ideal baseline always increases with a larger batch size
(e.g., from 10.67% to 21.21% for training MobileNetV2 on Redmi
Note9 Pro), because Melon needs to more aggressively discard and
recompute tensors that incur computation overhead. Among the
baselines, vDNN exhibits the worst performance in most cases be-
cause of the limited data swapping speed on mobile devices as
aforementioned in §3. Note that Capuchin’s improvement almost
benefits from recomputation because swapping introduces severe
synchronization overhead. It also ignores the impact of memory
pool, which means that it will waste more space and recompute
more tensors to support larger batch size, leading to the throughput
loss.

For models without BN layer (Figure 12), Melon can almost catch
up with the performance Ideal baseline in arbitrary batch sizes
(only less than 1% loss). Accordingly, the performance improvement
over other optimizing baselines is profound as well, e.g., 1.77× on
average (up to 2.66×) on Meizu 16t and 1.57× on average (up to
2.15×) on RedmiNote8. This is because, formodels without BN layer,
Melon leverages the micro-batch technique, which introduces little
performance drop as discussed in §3. Note that when the batch size
is relatively small, other baselines can also achieve relatively high
performance. This is because all of the BN layers are removed, the
number of which is close to the convolutional layer. In such cases,

MobiSys’22, June 2022, TBD Qipeng Wang et al.

(a) MobileNetV1, SN10 (b) MobileNetV2, SN10 (c) SqueezeNet, SN10 (d) ResNet50, SN10

(e) MobileNetV1, RN9Pro (f) MobileNetV2, RN9Pro (g) SqueezeNet, RN9Pro (h) ResNet50, RN9Pro

vDNN Sublinear Capuchin Melon Ideal

Figure 11: Training throughput (Y-axis) under various batch sizes (X-axis) for different models/devices with batch normalization.
“X” means the approach cannot support the training of that batch size. “SN10": Samsung Note10; “RN9Pro": Redmi Note9 Pro.

(a) MobileNetV1, M16t (b) MobileNetV2, M16t (c) SqueezeNet, M16t (d) ResNet50, M16t

(e) MobileNetV1, RN8 (f) MobileNetV2, RN8 (g) SqueezeNet, RN8 (h) ResNet50, RN8

vDNN Sublinear Capuchin Melon Ideal

Figure 12: Training throughput (Y-axis) under various batch sizes (X-axis) for different models/devices without batch normal-
ization. “X” means the approach cannot support the training of that batch size. “M16t": Meizu 16t; “RN8": Redmi Note8.

there will be less activation and less computation, leading to high
performance of baselines. However, unlike Melon, the performance
of those baselines decays with a large batch size.

6.3 Memory Budget Adaptation
We then evaluate the memory budget adapting design of Melon
presented in §4.4.We focus on the case of decreasedmemory budget
as it is more challenging in practice. The experiments are performed
with 2 models (MobileNetV2 and SqueezeNet) on Samsung Note 10.
We select 2 different adaptation scenarios: switching from 6GB to
5GB for the batch size of 128 and from 4GB to 3GB for the batch
size of 64. Note that in each case the memory budget is not enough
to train the batch size without memory optimization. We also select
3 adaptive points, i.e. when the execution progress has reached 25%,

50% and 75% of the total. The baseline compared in this experiment
is stop-restart as previously discussed in §4.4.

The results are shown in Figure 10. The adapting overhead is the
time cost in new plan to reach the same operator as old plan when
adapting happens, normalized to the stop-restart approach that sim-
ply discards all tensors when adapting. In comparison, Melon incurs
much less adapting overhead, i.e., 4.27%–54.50%. The overhead of
Melon increases at the posterior execution point, mainly because
the number of tensors to be recomputed for recovering the memory
layout of the new execution plan increases.

To further understand the adapting performance, we also break-
down the overhead into 2 main categories: in-memory tensor relay-
out and recomputation of the missed tensors according to the new
execution plan. Figure 10 shows that the recomputation overhead
dominates the overall adapting overhead in most cases, especially

Melon: Breaking the Memory Wall for Resource-Efficient On-Device Machine Learning MobiSys’22, June 2022, TBD

(a) MobileNetV2 (b) SqueezeNet

vDNN Sublinear Capuchin Melon Ideal

Figure 13: The energy consumption of Melon.

(a) MobileNetV2 (b) SqueezeNet

MNN Pool-only Recompute-only Melon

Figure 14: Ablation study of Melon.

at posterior execution point. This is because the memory movement
speed is much faster than computation on mobile devices.

6.4 Energy Consumption
Energy consumption is another key metric to be optimized due
to the constrained battery capacity on mobile devices. Although
Melon is mainly optimized for high training throughput instead of
reducing energy consumption, we still evaluate it along with other
baselines in this aspect. Here we test two models (MobileNetV2
and SqueezeNet with BN layer) on Meizu 16t device. The results
are illustrated in Figure 13 with numbers normalized to the Ideal
baseline.

It shows that Melon significantly reduces the energy consump-
tion against the baselines, i.e., 22.00% – 49.43%. Compared to the
Ideal baseline, the increased energy consumption of Melon is only
11.4% on average and as low as 2.1% for the best case. Melon’s
improvement mainly comes from the reduced training time. The
performance of vDNN is much improved compared to the train-
ing throughput, because the read/write operation is less energy-
intensive than computation (about 2.5× gap). Yet it still consumes
much more energy than Melon because of its lengthened training
time.

6.5 Ablation Study
We further conduct a breakdown analysis of the benefit brought
by each technique, i.e., lifetime-aware memory pool or memory-
calibrated progressive recomputation, respectively. We evaluate the
maximal batch size that each method can achieve with different
throughput. We perform the experiments with MobileNetV2 and
SqueezeNet on Samsung Note10. The results are illustrated in Fig-
ure 14.

0.42 0.38 0.34 0.29
Throughput (fps)

40
80

120
160
200

M
ax

im
al

 b
at

ch
 si

ze Sublinear
Capuchin
vDNN
Melon

(a) MobileNetV2

0.5 0.45 0.4 0.35 0.3
Throughput (fps)

40
80

120
160
200

M
ax

im
al

 b
at

ch
 si

ze Sublinear
Capuchin
vDNN
Melon

(b) SqueezeNet

Figure 15: Maximal batch size with GPU support.

We observe that both techniques have non-trivial contribution
to the improvement. For example, when the throughput is 3.07fps
for MobileNetV2, the maximal batch size that our lifetime-aware
memory pool and recomputation techniques can reach is 40 and
80, respectively. Combining them, the batch size can be boosted to
112, which is almost linearly proportional. Because the memory
access pattern keeps the same for one model and one batch size, the
improvement brought by the pool keeps the same across different
throughputs. We also find that for both models with lower through-
put, the improvement brought by Melon is larger than the sum
of improvement brought by pool and recomputation. The reason
is that as the batch size increasing, there are fewer tensors with
long lifetime, which can introduce more opportunities to perform
lifetime-aware allocation as illustrated in Figure 6.

6.6 Complexity Analysis
We measure the cost of our algorithm, i.e., the time to generate
execution plans. First, the time of profiling is equal to that of training
a batch, which can be almost negligible compared with the whole
training process illustrated in Figure 9. Note that we overlap all
tensors during this process, i.e., all tensors share the same piece
of memory, because the statistic value has no impact on profiling.
For example, it takes about 10.3s and 147MB for profiling training
MobileNetV2 with the batch size of 32 using Samsung Note10. The
additional time to log the per-operator latency is also negligible.

The major source of Melon’s offline time comes from the gen-
eration of execution plans. We measure this overhead in training
SqueezeNet on Samsung Note10 as an example to analyze the algo-
rithm complexity. Our used batch size spans from 64 to 172 with
the step of 16. The experiment result shows that it takes 10.9s on
average to generate a plan. Such latency incurs for only one shot
because the generated plan can be stored permanently, so the cost
of our algorithm is also acceptable in practice.

6.7 GPU support
We conduct an experiment to explore Melon’s performance on
mobile GPU. We measure the maximal batch size supported. The
setting is the same as §6.2. The results are illustrated in Figure 15.
It shows that Melon can also achieve the largest batch size with
different throughputs. The result is less impressive than on CPU,
though, because Melon is mainly optimized for CPUs.

7 RELATEDWORK
Reducing memory footprint of on-device learning. In addi-
tion to the four typical memory saving techniques discussed in §3,
Split-CNN [28] proposed to split the weights of a single layer into

MobiSys’22, June 2022, TBD Qipeng Wang et al.

multiple sub-windows, on which memory offloading and prefetch-
ing are applied to reduce not only activation memory but also the
weight memory. However, according to our measurement (Figure 1),
activation often dominates the total memory footprint for mobile-
oriented DNNs, therefore the benefit to apply such window-based
offloading can be quite limited. A fewmemory saving techniques [7]
are also proposed for hardware accelerators, but they are not com-
patible with commodity mobile devices.
Cross-model memory management. In the vision of co-running
multiple DNNs simultaneously on devices, prior literature has
explored the multi-task learning [20, 38], DNN packing [40, 57],
weight sharing [14, 39], and weight virtualization [36] to better fit
those models into the limited memory. Melon is designed to reduce
the memory footprint of single model training, which is orthogonal
and compatible with those methods.
FittingDNNs intoTEEmemory.A few pieces of existingwork [37,
43] explored using Trusted Execution Environment (TEE), a hardware-
level security mechanism, to guarantee the integrity and safety of
DNN execution on devices. Given the very limited memory capac-
ity available on TEE (typically tens of MBs for ARM TrustZone),
those work ports only part of a DNN (critical layers) to TEE while
leaving the rest on main memory (assumed to be enough). Instead,
Melon is designed for the case even main memory cannot support
learning DNN and proposes effective techniques that trade very
little performance and no accuracy drop.
General memory management of mobile OSes. Given that
memory is a crucial and scarce resource of mobile devices, memory
saving has long been a concerned research direction of mobile
community. Existing studies mostly focus on app-level memory
management [30, 34, 35, 71]. For instance, ASAP [56] used the
prepaging technique to achieve fast context switch of multiple
apps on mobile devices. In comparison, Melon targets on-device
DNN training, and is seamlessly compatible with OS-level memory
management mechanisms.

8 DISCUSSION
Extending to more model types. Melon is evaluated on CNNs
because MNN lacks the support for other model types like RNN
and Transformer. Though, we believe Melon can be easily applied
to other types of models as long as they can be represented as a
series of operators and tensors, and the training process can be
represented as dataflow among operators. Indeed, the design of
Melon is model-independent.

Extending to other backends. Melon is built atop MNN for
its superior performance on mobile processors. Yet, Melon’s key
techniques are not bound to MNN and are compatible with other
backends like Tensorflow. This is because the underlying principle
is similar to those backends that perform computation on tensors
via various operators and maintain a self-defined memory pool.

Other memory saving techniques. There may be other mem-
ory saving techniques like operator fusion, NEON and TVM. NEON
and operator fusion are integrated with MNN, and to our best
knowledge, TVM is designed for inference, making a mismatch
with our design goal. Melon presents optimization on operator- and

tensor-level, which are the underlying representation of computa-
tion graph, so Melon is compatible with other graph-level optimiz-
ing methods.

9 CONCLUSION
In this paper, we have designed and implemented Melon, a memory-
optimized DNN training framework for on-device learning. Melon
retrofits existing memory saving techniques and integrates them
harmoniously to enable mobile devices to train larger batch with
minimal performance loss. Our experiments have demonstrated
that Melon can adequately train the same large batch with the
highest throughput compared to baselines, and achieve significant
convergence speedup in end-to-end federated learning tasks.

10 ACKNOWLEDGEMENT
This work was supported by the National Key Research and Devel-
opment Program of China under the grant number 2020YFB2104100,
the National Natural Science Foundation of China under the grant
number 61725201, 62172008, and 62102045, the Beijing Outstanding
Young Scientist Program under the grant number BJJWZYJH012019
10001004, and PKU-Baidu Fund Project under the grant number
2020BD007. Mengwei Xu was partly supported by Beijing Nova
Program under the grant number Z211100002121118.

REFERENCES
[1] Federated learning: Collaborative machine learning without centralized training

data. https://ai.googleblog.com/2017/04/federated-learning-collaborative.html,
2017.

[2] How apple personalizes siri without hoovering up your data. https:
//www.technologyreview.com/2019/12/11/131629/apple-ai-personalizes-siri-
federated-learning/, 2019.

[3] Deep learning for java. https://deeplearning4j.org/, 2021.
[4] General data protection regulation. https://gdpr-info.eu/, 2021. Accessed Dec 5,

2021.
[5] On-device training with tensorflow lite. https://www.tensorflow.org/lite/

examples/on_device_training/overview, 2021.
[6] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning. In OSDI, pages 265–283,
2016.

[7] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. Fused-layer
cnn accelerators. In 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 1–12. IEEE, 2016.

[8] Andreas Bortfeldt. A genetic algorithm for the two-dimensional strip packing
problem with rectangular pieces. European Journal of Operational Research,
172(3):814–837, 2006.

[9] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In
Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[10] Dongqi Cai, Qipeng Wang, Yuanqiang Liu, Yunxin Liu, Shangguang Wang, and
Mengwei Xu. Towards ubiquitous learning: A first measurement of on-device
training performance. In Proceedings of the 5th International Workshop on
Embedded and Mobile Deep Learning, pages 31–36, 2021.

[11] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets
with sublinear memory cost. arXiv preprint arXiv:1604.06174, 2016.

[12] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect:
Training deep neural networks with binary weights during propagations. In
Advances in neural information processing systems, pages 3123–3131, 2015.

[13] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. Binarized neural networks: Training deep neural networks with weights
and activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

[14] Long Duong, Trevor Cohn, Steven Bird, and Paul Cook. Low resource depen-
dency parsing: Cross-lingual parameter sharing in a neural network parser. In
Proceedings of the 53rd annual meeting of the Association for Computational
Linguistics and the 7th international joint conference on natural language
processing (volume 2: short papers), pages 845–850, 2015.

[15] Biyi Fang, Xiao Zeng, and Mi Zhang. Nestdnn: Resource-aware multi-tenant
on-device deep learning for continuous mobile vision. In Proceedings of the 24th

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://www.technologyreview.com/2019/12/11/131629/apple-ai-personalizes-siri-federated-learning/
https://www.technologyreview.com/2019/12/11/131629/apple-ai-personalizes-siri-federated-learning/
https://www.technologyreview.com/2019/12/11/131629/apple-ai-personalizes-siri-federated-learning/
https://deeplearning4j.org/
https://gdpr-info.eu/
https://www.tensorflow.org/lite/examples/on_device_training/overview
https://www.tensorflow.org/lite/examples/on_device_training/overview

Melon: Breaking the Memory Wall for Resource-Efficient On-Device Machine Learning MobiSys’22, June 2022, TBD

Annual International Conference on Mobile Computing and Networking, pages
115–127, 2018.

[16] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large
minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677,
2017.

[17] Audrunas Gruslys, Rémi Munos, Ivo Danihelka, Marc Lanctot, and Alex
Graves. Memory-efficient backpropagation through time. Advances in Neural
Information Processing Systems, 29:4125–4133, 2016.

[18] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.
Deep learning with limited numerical precision. In International conference on
machine learning, pages 1737–1746. PMLR, 2015.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[20] Xiaoxi HE, Zimu ZHOU, and Lothar THIELE. Multi-task zipping via layer-
wise neuron sharing.(2018). In Proceedings of the 32nd Annual Conference on
Advances in Neural Information Processing Systems, Montréal, Canada, pages
2–8, 2018.

[21] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better:
closing the generalization gap in large batch training of neural networks. arXiv
preprint arXiv:1705.08741, 2017.

[22] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Ef-
ficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017.

[23] Chien-Chin Huang, Gu Jin, and Jinyang Li. Swapadvisor: Pushing deep learning
beyond the gpu memory limit via smart swapping. In ASPLOS, pages 1341–1355,
2020.

[24] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe:
Efficient training of giant neural networks using pipeline parallelism. Advances
in neural information processing systems, 32:103–112, 2019.

[25] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J
Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and< 0.5 mb model size. arXiv preprint arXiv:1602.07360, 2016.

[26] Xiaotang Jiang, HuanWang, Yiliu Chen, Ziqi Wu, LichuanWang, Bin Zou, Yafeng
Yang, Zongyang Cui, Yu Cai, Tianhang Yu, et al. Mnn: A universal and efficient
inference engine. arXiv preprint arXiv:2002.12418, 2020.

[27] Hai Jin, Bo Liu, Wenbin Jiang, Yang Ma, Xuanhua Shi, Bingsheng He, and
Shaofeng Zhao. Layer-centric memory reuse and datamigration for extreme-scale
deep learning on many-core architectures. ACM Transactions on Architecture
and Code Optimization (TACO), 15(3):1–26, 2018.

[28] Tian Jin and Seokin Hong. Split-cnn: Splitting window-based operations in
convolutional neural networks for memory system optimization. In Proceedings
of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 835–847, 2019.

[29] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi
Bennis, Arjun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, et al. Advances and open problems in federated learning.
arXiv preprint arXiv:1912.04977, 2019.

[30] Sang-Hoon Kim, Jinkyu Jeong, Jin-Soo Kim, and Seungryoul Maeng. Smartlmk:
A memory reclamation scheme for improving user-perceived app launch time.
ACM Transactions on Embedded Computing Systems (TECS), 15(3):1–25, 2016.

[31] Youngsok Kim, Joonsung Kim, Dongju Chae, Daehyun Kim, and Jangwoo Kim.
𝜇layer: Low latency on-device inference using cooperative single-layer accel-
eration and processor-friendly quantization. In Proceedings of the Fourteenth
EuroSys Conference 2019, pages 1–15, 2019.

[32] Stefanos Laskaridis, Stylianos I Venieris, Mario Almeida, Ilias Leontiadis, and
Nicholas D Lane. Spinn: synergistic progressive inference of neural networks over
device and cloud. In Proceedings of the 26th Annual International Conference
on Mobile Computing and Networking, pages 1–15, 2020.

[33] Tung D Le, Haruki Imai, Yasushi Negishi, and Kiyokuni Kawachiya. Tflms: Large
model support in tensorflow by graph rewriting. arXiv preprint arXiv:1807.02037,
2018.

[34] Niel Lebeck, Arvind Krishnamurthy, Henry M Levy, and Irene Zhang. End the
senseless killing: Improving memory management for mobile operating systems.
In 2020 {USENIX} Annual Technical Conference ({USENIX}{ATC} 20), pages
873–887, 2020.

[35] Joohyun Lee, Kyunghan Lee, Euijin Jeong, Jaemin Jo, and Ness B Shroff. Context-
aware application scheduling in mobile systems: What will users do and not
do next? In Proceedings of the 2016 ACM International Joint Conference on
Pervasive and Ubiquitous Computing, pages 1235–1246, 2016.

[36] Seulki Lee and Shahriar Nirjon. Fast and scalable in-memory deep multitask
learning via neural weight virtualization. In Proceedings of the 18th International
Conference on Mobile Systems, Applications, and Services, pages 175–190, 2020.

[37] Taegyeong Lee, Zhiqi Lin, Saumay Pushp, Caihua Li, Yunxin Liu, Youngki Lee,
Fengyuan Xu, Chenren Xu, Lintao Zhang, and Junehwa Song. Occlumency:

Privacy-preserving remote deep-learning inference using sgx. In The 25thAnnual
International Conference on Mobile Computing and Networking, pages 1–17,
2019.

[38] Sijin Li, Zhi-Qiang Liu, andAntoni B Chan. Heterogeneousmulti-task learning for
human pose estimation with deep convolutional neural network. In Proceedings
of the IEEE conference on computer vision and pattern recognition workshops,
pages 482–489, 2014.

[39] Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H Chi. Modeling
task relationships in multi-task learning with multi-gate mixture-of-experts. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1930–1939, 2018.

[40] Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a sin-
gle network by iterative pruning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pages 7765–7773, 2018.

[41] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-efficient learning of deep networks
from decentralized data. In Artificial Intelligence and Statistics, pages 1273–1282.
PMLR, 2017.

[42] Chen Meng, Minmin Sun, Jun Yang, Minghui Qiu, and Yang Gu. Training deeper
models by gpu memory optimization on tensorflow. In Proc. of ML Systems
Workshop in NIPS, 2017.

[43] Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego Perino, and
Nicolas Kourtellis. Ppfl: privacy-preserving federated learning with trusted
execution environments. The 19th Annual International Conference on Mobile
Systems, Applications, and Services (MobiSys’21), 2021.

[44] Chaoyue Niu, Fan Wu, Shaojie Tang, Lifeng Hua, Rongfei Jia, Chengfei Lv, Zhi-
hua Wu, and Guihai Chen. Billion-scale federated learning on mobile clients:
A submodel design with tunable privacy. In Proceedings of the 26th Annual
International Conference on Mobile Computing and Networking, pages 1–14,
2020.

[45] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
Pytorch: An imperative style, high-performance deep learning library. arXiv
preprint arXiv:1912.01703, 2019.

[46] Xuan Peng, Xuanhua Shi, Hulin Dai, Hai Jin, Weiliang Ma, Qian Xiong, Fan
Yang, and Xuehai Qian. Capuchin: Tensor-based gpu memory management
for deep learning. In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating Systems,
pages 891–905, 2020.

[47] Geoff Pleiss, Danlu Chen, Gao Huang, Tongcheng Li, Laurens van der Maaten,
and Kilian Q Weinberger. Memory-efficient implementation of densenets. arXiv
preprint arXiv:1707.06990, 2017.

[48] Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model compression via
distillation and quantization. arXiv preprint arXiv:1802.05668, 2018.

[49] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subramanya, Willie Neiswanger,
Qirong Ho, Hao Zhang, Gregory R. Ganger, and Eric P. Xing. Pollux: Co-
adaptive cluster scheduling for goodput-optimized deep learning. In 15th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 21), pages
1–18. USENIX Association, July 2021.

[50] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong
He. Zero-infinity: Breaking the gpu memory wall for extreme scale deep learning.
arXiv preprint arXiv:2104.07857, 2021.

[51] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-
net: Imagenet classification using binary convolutional neural networks. In
European conference on computer vision, pages 525–542. Springer, 2016.

[52] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and Stephen W
Keckler. vdnn: Virtualized deep neural networks for scalable, memory-
efficient neural network design. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 1–13. IEEE, 2016.

[53] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 4510–4520, 2018.

[54] Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. Don’t decay
the learning rate, increase the batch size. arXiv preprint arXiv:1711.00489, 2017.

[55] Nimit Sharad Sohoni, Christopher Richard Aberger, Megan Leszczynski, Jian
Zhang, and Christopher Ré. Low-memory neural network training: A technical
report. arXiv preprint arXiv:1904.10631, 2019.

[56] Sam Son, Seung Yul Lee, Yunho Jin, Jonghyun Bae, Jinkyu Jeong, Tae Jun Ham,
JaeW Lee, and Hongil Yoon. {ASAP}: Fast mobile application switch via adaptive
prepaging. In 2021 {USENIX} Annual Technical Conference ({USENIX}{ATC}
21), pages 365–380, 2021.

[57] Dasaratha V Sridhar, Eric B Bartlett, and Richard C Seagrave. An information the-
oretic approach for combining neural network process models. Neural Networks,
12(6):915–926, 1999.

[58] Vincent Vanhoucke, Andrew Senior, and Mark Z Mao. Improving the speed of
neural networks on cpus. In Deep Learning and Unsupervised Feature Learning
Workshop, NIPS 2011, 2011.

MobiSys’22, June 2022, TBD Qipeng Wang et al.

[59] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Advances in neural information processing systems, pages 5998–6008, 2017.

[60] Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. Split
learning for health: Distributed deep learning without sharing raw patient data.
arXiv preprint arXiv:1812.00564, 2018.

[61] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuaiwen Leon Song,
Zenglin Xu, and Tim Kraska. Superneurons: Dynamic gpu memory management
for training deep neural networks. In Proceedings of the 23rd ACM SIGPLAN
symposium on principles and practice of parallel programming, pages 41–53,
2018.

[62] Manni Wang, Shaohua Ding, Ting Cao, Yunxin Liu, and Fengyuan Xu. Asymo:
scalable and efficient deep-learning inference on asymmetric mobile cpus. In
MobiCom, pages 215–228, 2021.

[63] Maolin Wang, Seyedramin Rasoulinezhad, Philip HW Leong, and Hayden KH
So. Niti: Training integer neural networks using integer-only arithmetic. arXiv
preprint arXiv:2009.13108, 2020.

[64] Bernard Widrow, Istvan Kollar, and Ming-Chang Liu. Statistical theory of quanti-
zation. IEEE Transactions on instrumentation and measurement, 45(2):353–361,
1996.

[65] Mengwei Xu, Zhe Fu, Xiao Ma, Li Zhang, Yanan Li, Feng Qian, Shangguang
Wang, Ke Li, Jingyu Yang, and Xuanzhe Liu. From cloud to edge: a first look at
public edge platforms. In Proceedings of the 21st ACM Internet Measurement
Conference, pages 37–53, 2021.

[66] Mengwei Xu, Jiawei Liu, Yuanqiang Liu, Felix Xiaozhu Lin, Yunxin Liu, and
Xuanzhe Liu. A first look at deep learning apps on smartphones. In The World
Wide Web Conference, pages 2125–2136, 2019.

[67] Mengwei Xu, Feng Qian, Qiaozhu Mei, Kang Huang, and Xuanzhe Liu. Deeptype:
On-device deep learning for input personalization service with minimal privacy
concern. IMWUT, 2(4):1–26, 2018.

[68] Mengwei Xu, FengQian,Mengze Zhu, FeifanHuang, Saumay Pushp, andXuanzhe
Liu. Deepwear: Adaptive local offloading for on-wearable deep learning. IEEE
Transactions on Mobile Computing, 19(2):314–330, 2019.

[69] Mengwei Xu, Xiwen Zhang, Yunxin Liu, Gang Huang, Xuanzhe Liu, and
Felix Xiaozhu Lin. Approximate query service on autonomous iot cam-
eras. In Proceedings of the 18th International Conference on Mobile Systems,

Applications, and Services, pages 191–205, 2020.
[70] Mengwei Xu, Mengze Zhu, Yunxin Liu, Felix Xiaozhu Lin, and Xuanzhe Liu.

Deepcache: Principled cache for mobile deep vision. In Proceedings of the 24th
Annual International Conference on Mobile Computing and Networking, pages
129–144, 2018.

[71] Tingxin Yan, David Chu, Deepak Ganesan, Aman Kansal, and Jie Liu. Fast app
launching for mobile devices using predictive user context. In Proceedings of
the 10th international conference on Mobile systems, applications, and services,
pages 113–126, 2012.

[72] Chengxu Yang, QiPeng Wang, Mengwei Xu, Shangguang Wang, Kaigui Bian,
and Xuanzhe Liu. Heterogeneity-aware federated learning. arXiv preprint
arXiv:2006.06983, 2020.

[73] Hyunho Yeo, Chan Ju Chong, Youngmok Jung, Juncheol Ye, and Dongsu Han.
Nemo: enabling neural-enhanced video streaming on commodity mobile de-
vices. In Proceedings of the 26th Annual International Conference on Mobile
Computing and Networking, pages 1–14, 2020.

[74] Yuan Yu, Martín Abadi, Paul Barham, Eugene Brevdo, Mike Burrows, Andy Davis,
Jeff Dean, Sanjay Ghemawat, Tim Harley, Peter Hawkins, et al. Dynamic control
flow in large-scale machine learning. In Proceedings of the Thirteenth EuroSys
Conference, pages 1–15, 2018.

[75] Junzhe Zhang, Sai Ho Yeung, Yao Shu, Bingsheng He, and Wei Wang. Efficient
memory management for gpu-based deep learning systems. arXiv preprint
arXiv:1903.06631, 2019.

[76] Qiyang Zhang, Xiang Li, Xiangying Che, Xiao Ma, Ao Zhou, Mengwei Xu, Shang-
guang Wang, Yun Ma, and Xuanzhe Liu. A comprehensive benchmark of deep
learning libraries on mobile devices. In Proceedings of the ACMWeb Conference
2022, pages 3298–3307, 2022.

[77] Qin Zhao, Rodric Rabbah, and Weng-Fai Wong. Dynamic memory optimization
using pool allocation and prefetching. ACM SIGARCH Computer Architecture
News, 33(5):27–32, 2005.

[78] Qihua Zhou, Song Guo, Zhihao Qu, Jingcai Guo, Zhenda Xu, Jiewei Zhang,
Tao Guo, Boyuan Luo, and Jingren Zhou. Octo: Int8 training with loss-aware
compensation and backward quantization for tiny on-device learning. In 2021
{USENIX} Annual Technical Conference ({USENIX}{ATC} 21), pages 177–191,
2021.

	Abstract
	1 Introduction
	2 Motivation and Preliminaries
	2.1 On-Device Training
	2.2 The Memory Wall

	3 Exploring Existing Techniques
	4 The Design
	4.1 Overview
	4.2 Lifetime-Aware Memory Pool
	4.3 Memory-Calibrated Progressive Recomputation
	4.4 Memory Budget Adaptation

	5 Implementation
	6 Evaluation
	6.1 Experiment Settings
	6.2 Overall Performance
	6.3 Memory Budget Adaptation
	6.4 Energy Consumption
	6.5 Ablation Study
	6.6 Complexity Analysis
	6.7 GPU support

	7 Related Work
	8 Discussion
	9 Conclusion
	10 Acknowledgement
	References

