
Position Paper: Renovating Edge Servers with
ARM SoCs

Mengwei Xu, Li Zhang, Shangguang Wang
Beijing University of Posts and Telecommunications, Beijing, China

Abstract—Edge servers are key to the success of edge com-
puting. Compared to cloud servers, edge servers suffer from
more constrained and costly electricity supply due to their dense,
near-population deployment. Towards higher energy efficiency,
we propose an extreme design of edge servers – SoC-Cluster
that consists of massive, inter-connected ARM SoCs. Indeed,
such SoC-Clusters have already been adopted to serve the
cloud gaming application in the wild. In this paper, we present
a concrete implementation of a COTS SoC-Cluster and its
hardware specifications. We then discuss the potential killer
applications that such SoC-Cluster can well serve and the major
challenges to be solved. We also dive deep into two of such
applications (live video transcoding and deep learning serving)
and carry out a measurement study to demystify the application
performance of SoC-Cluster. The results reveal that, compared
to traditional servers, SoC-Cluster not only can reduce energy
consumption but even deliver higher workload throughput in
certain scenarios. Finally, we conclude the paper and discuss
the primary research directions that can be explored by our
community from applications, software, and hardware aspects.

Index Terms—Edge computing, Mobile SoC, Energy efficiency

I. INTRODUCTION

By sinking hardware resources in proximity to end users and
devices, edge computing is regarded as a promising paradigm
for many killer apps like AR/VR, auto-driving, and smart
cities [1]–[3]. Such a concept has been landed in markets on
large scale recently [4], [5], and is explosively growing to be
a critical infrastructure of our digital world. It is estimated
that over $700 billion in cumulative capital expenditure will
be spent within the next decade on edge IT infrastructure [6].
Meanwhile, according to Gartner, around 75% of enterprise-
generated data will be processed at the edge by 2025 [7].

Like cloud data centers, an edge site consists of multiple
inter-connected edge servers. An edge server can be placed
in micro-datacenters per city/town, server rooms per building,
base station, or anywhere else that need local computation.
What does a typical edge server look like? The answer is that
they are alike, if not exactly the same as, the servers adopted in
cloud data centers, i.e., many-core CPUs plus domain-specific
accelerators (DSAs) as shown in Figure 1(a). Given that
the major edge providers nowadays are those commercially
successful in cloud computing as well such as AWS, Azure,
and Alibaba [8]–[10], it is unblamable to extend their well-
established cloud infrastructure to edges.

However, edge is a different context from cloud, making
us suspicious of whether the traditional form of cloud server
can still fit to edge scenarios. Specifically, we argue that

DSA (GPU, TPU, FPGA, etc)

Many-core CPUs

Motherboard bus

(a) Conventional Edge Servers (b) SoC-Cluster as Edge Servers

Mobile SoCs

M
ot
he
rb
oa
rd

Network Switch

Fig. 1. A high-level comparison of conventional edge servers and the proposed
SoC-Cluster in this work.

power consumption will be a crucial, limiting factor for large-
scale, high-density edge server deployment in the future.
First, the power supply to the edge is more constrained and
costly, as the edge servers tend to be deployed closer to the
population. Instead, the cloud data centers are known to be
power-hungry [11]–[13], and their locations are often cherry-
picked, e.g., closer to hydropower. Meanwhile, the global
power footprint of edges is forecast to explode in the near
future, e.g., 102 thousand megawatts in 2028 [6]. Second,
the edge workloads are more variational than clouds, possi-
bly because of the application characteristics they serve [1].
The traditional edge servers rely on increasingly powerful
and monolithic processors whose energy consumption cannot
proportionally scale with the workloads [14]. Furthermore,
edge servers are also space-restricted and have one magnitude
higher power density, putting enormous pressure on their
cooling mechanism [15].

We therefore advocate for renovating edge servers to better
serve the emerging edge workloads. In this position work, we
explore a fundamentally new form of edge servers, namely
SoC-Cluster, which consists of tens or hundreds of mobile
SoCs like Qualcomm Snapdragon as shown in Figure 1(b).
The underlying rationale is that mobile SoCs are designed
to be energy-efficient by using a reduced instruction set and
smaller transistors than traditional high-end processors. For
instance, the Qualcomm Snapdragon 888 SoC, released in
2021, uses 5nm technology, whereas Intel Xeon CPU is still
using ≥10nm. Moreover, each SoC can be independently
turned on/off, or adjusted in frequency to adapt to the dynamic
workloads, which is much more flexible than a monolithic
powerful processor like NVIDIA GPU.

In addition to the energy efficiency advantage, we are
driven by a few more rationales for exploring SoC-Cluster

1

at the edge. (i) Except for the general purpose computing
unit, mobile SoCs incorporate heterogeneous co-processors to
accelerate domain-specific workloads (e.g., GPU for image
rendering, DSP for digital signal processing, and NPU for
neural network inference). We will study the potential of some
of these co-processors in §IV. (ii) A variety of leading chip
firms are contributing their wisdom to the field of mobile
SoCs, making them fast-evolving [16]. Building an edge server
atop those mobile SoCs would be a free lunch. (iii) There
have been a lot of efforts to optimize the software stack on
mobile SoCs and OSes. A few examples include deep learning
frameworks [17], [18], multimedia processing [19], and virtu-
alization solutions [20], [21]. (iv) Mobile SoCs run mobile
OSes and apps seamlessly, which allows mobile devices to
offload computations and code execution to them directly.

More importantly, we observe that such SoC-Cluster servers
have been already manufactured and deployed on edges.
Alibaba ENS [10], which is one of the major edge service
providers worldwide, has already deployed thousands of such
servers in their edge sites. Currently, those SoC-Clusters
are mainly serving cloud gaming services [22]–[26], which
enables wimpy or low-battery smartphones to run resource-
consuming games anytime and anywhere. Using SoC-Cluster,
developers do not need to adapt their games to other platforms
(e.g., x86) and directly deploy the server-side games. Further
enhanced by the 5G technology, the users can obtain the same
game experience as if the games run locally but with much
less energy consumption.

But is SoC-Cluster capable to serve more general edge
workloads? We give a positive answer by examining the
potential killer applications on SoC-Cluster in §III. Those
applications can enjoy the inherent vantages of SoC-Cluster
as discussed above, yet also face unique challenges to be
addressed. In §IV, we perform preliminary experiments using
two applications (live video transcoding and deep learning
serving) on an SoC-Cluster as case studies, with a head-to-
head comparison with conventional servers. The experiment
results quantitatively reveal that SoC-Cluster can significantly
reduce the energy consumption in serving those edge-typical
workloads and even deliver higher workloads throughput in
certain scenarios. We also discuss the future work to be done
to turn SoC-Cluster into general-purpose edge servers in §V.

II. BACKGROUND AND RELATED WORK

Edge clouds are commonly regarded as critical infrastruc-
ture to achieve the vision of near-data processing. Major cloud
providers like AWS, Microsoft, and Alibaba are expanding
their clouds to edge sites [8]–[10]. Given their huge success
in cloud computing, it is unblamable for them to reuse the
cloud servers on edges, i.e., many-core CPUs plus domain-
specific accelerators like GPU and TPU.

On cloud, energy efficiency has been recently recognized
as a crucial criterion for building a data centers [11]–[13]; on
edges, the energy issue will likely be aggregated as the edge
servers tend to be deployed closer to the population, where

the power supply is more constrained and costly than cherry-
picked locations for data centers. Speaking of energy effi-
ciency, people could think of smartphones and mobile SoCs,
which are designed for low-power use cases. A straightforward
idea is: can we turn tens or even hundreds of mobile SoCs into
one single edge server, and use that server to handle typical
edge workloads?

We are not the first trying to conceptualize a server consist-
ing of tiny SoCs. There are attempts [27], [28] to investigate
whether mobile SoCs can provide sufficient performance and
reduce costs for HPC workloads. To reduce e-waste, Shahrad
et al. [29] build computation nodes with used smartphones and
gave an analysis of server design, but didn’t evaluate the real
workloads. Switzer et al. use only five smartphones to build
a junkyard data center [30] with carbon concerns. Some work
uses IoT/mobile SoCs to support specific applications, like
video transcoding [31], key-value storage [14], and parallel
computing [32].

Those prior work have taken the very early but important
attempts, mostly in a pure research manner, to harvest wimpy
processors into a strong and general cloud server. Until re-
cently, however, we are aware of their value in edges and
the evolution has already began in the industry. The concept
of SoC-Cluster has been turned into commercial products to
serve an important application: cloud gaming. According to
our investigation, major Edge Service Providers (ESPs) in
China such as Alibaba ENS have deployed tens of thousands
of SoC-Cluster servers on their edge sites to enable users
to play mobile-native games anywhere with guaranteed QoE.
However, according to the runtime traces collected in the wild,
we conclude that those servers experience workloads with
relatively low utilization (≤20%) and high dynamic.

To take a closer look, we bought one representative SoC-
Cluster from a leading manufacturer. Figure 2 shows its overall
architecture and specification. Physically, SoC-Cluster occu-
pies 2U space in a standard rack. SoC-Cluster mainly consists
of 12 PCB boards, each of them integrating 5 mobile SoCs
and providing both power supply and network capabilities.
There are 60 SoCs inside SoC-Cluster in total, and we list the
specification of each SoC in Figure 2(d). Each PCB board is
hot-pluggable, therefore providing more flexibility at the server
design phase and operation phase. The Ethernet Switch Board
is responsible for connecting all pluggable PCB boards (thus
SoCs), and exposing them through its network interface (i.e.,
SPF+ ports or GE port). In addition, SoC-Cluster contains a
Baseboard Management Controller (BMC) that provides a list
of programming interfaces. Operators leverage these APIs to
monitor the power consumption and temperature, manage the
power supply, or adjust the policy of cooling devices.

Given its representativeness, in §IV, we will perform a pre-
liminary measurement to reveal the application performance
using this particular SoC-Cluster.

III. APPLICATIONS AND CHALLENGES

In this section, we discuss (potential) killer applications
on SoC-Cluster and the major challenges to realize those

2

Baseboard
Management

Controller (BMC)

Board/SoC
Manager

Thermal
Manager

Linux OS

PCB 3

SATA
Interface

SoC 1

SoC 2

SoC 3

SoC 4

SoC 5

PCB 2

SATA
Interface

SoC 1

SoC 2

SoC 3

SoC 4

SoC 5

PCB 1

SATA
Interface

SoC 1

SoC 2

SoC 3

SoC 4

SoC 5

Cooling
Devices

SATA
Adaptors

SATA
Adaptors

SATA
Adaptors

Ethernet Switch Board
SPF+ Port SPF+ Port GE Port

Network & Power
supply

1Gbps 1Gbps 1Gbps

Ethernet Switch

Manager
APIs

Network
Interface SoC-Cluster

Web
Backend

Power
Manager

10Gbps 10Gbps1Gbps

External Machines

(b) The overview of a physical server.

(a) The conceptual architecture. (c) The internal PCB board with 5 SoCs.

CPU
Octa-core (1x 2.84 GHz Kryo
585 + 3x 2.42 GHz Kryo 585

+ 4x 1.8 GHz Kryo 585)

GPU Qualcomm Adreno 650

DSP Hexagon 698

Memory 12GB LPDDR5

Disk SK Hynix
UFS 3.1 256GB

Network 1x 1GE RJ45 Port +
2x 10GE SPF+ Port

OS Android 10 (Kernel 4.19.81)

Size 2U (size of the whole server)

(d) Hardware spec. of a single SoC.

Fig. 2. A look at a COTS SoC-Cluster.

potentials. Theoretically, mobile SoC can support any kind
of application. Yet, as a new form of servers, we need strong
incentives to move an application from conventional servers to
SoC-Cluster. Such incentives come from the inherent vantages
of SoC-Cluster: mobile-native support; heterogeneous and
low-power processors (GPU, DSP, etc.); the large number of
CPU cores and total I/O bandwidth, and so on.

A. Cloud Gaming

Cloud gaming [22]–[26] is the de-facto and perhaps the
only existing application that SoC-Clusters are now serving
in the wild, according to our communication with a few
ESPs in China. Such commercial success comes from the
recent flourish of mobile games like Genshin Impact which
brings billions of dollars to the game providers. Through cloud
gaming, a wimpy mobile device is capable of running high-end
games anywhere and anytime. For the tight latency constraint,
cloud gaming services are better to be placed on edges.

SoC-Cluster seamlessly supports mobile games, naturally.
Without using SoC-Cluster, the game providers need to make
tremendous efforts to adapt their game to different hardware
platforms, even on an ARM server that has the same ISA
as mobile SoC but with different hardware specifications.
Android virtualization on x86/ARM servers is emerging [33]–
[35], but they are far from being mature in the aspects of
generality and performance. Even if the game providers have
cross-platform support, the subtle differences in UI often lead
game users to choose the mobile version – after all, the game
experience means everything.

The major challenge of deploying cloud gaming on SoC-
Cluster is the granularity. On one hand, we observe that the
Adreno GPU on high-end Qualcomm SoC like Snapdragon
865 is powerful enough to simultaneously serve multiple
streams of medium-end games, e.g., around 4 for Honor
of Kings. It requires a container-like isolation technique on
mobile SoCs. Unfortunately, the current Android OS is not
designed for multi-app parallelism, especially when it comes
to UI rendering. Second, emerging resource-intensive games
might overwhelm the out-of-date mobile SoCs. Shall we

retire those SoC-Clusters, or we can build a framework that
allows multiple SoCs to serve one game stream collectively.
To this end, automatically decomposing the game logic and
distributing them across SoCs will be an interesting topic.

B. Mobile-native Offloading
Beyond cloud gaming, SoC-Cluster can run any software

that runs on mobile devices. It leads us to an enchanting vision
that, in an oblivious manner, the “hot spots” code regions on
mobile devices can be offloaded to nearby edge servers so their
battery life can be significantly lengthened. The offloading can
be done by the OS, therefore requesting no assistance from
users or app developers.

The mobile and edge research communities have invested
tremendous efforts to realize such vision in last ten years [36]–
[39]. Unfortunately, we do not see it totally come true. We
deem the primary reason to be the huge gap of mobile SoC
and conventional servers at both software and hardware levels.
Therefore, we take the emergence of SoC-Clusters in edges as
an once-in-a-lifetime opportunity to realize such vision.

The critical challenge in building such a ubiquitous and
oblivious offloading system is the state synchronization. Mo-
bile devices operate under physical context, which affects the
data sources of many sensors such as GPS and accelerators;
they are mobile and the context changes frequently. To ensure
the offloaded code obtain the correct results, state synchro-
nization is inevitable and can incur high latency overhead.

C. Live Video Transcoding
Video transcoding, i.e., the process of converting the video

format such as resolution and FPS from one to another, is
the key building block to many edge workloads like live
video conferencing and live streaming. A recent empirical
study shows that video transcoding is the dominating use case
of public edge platforms [1]. SoC-Cluster is adept at video
transcoding with its low-power CPUs and hardware codec as
will be demonstrated in following preliminary experiments.

The major obstacle to in-the-field deployment of video
transcoding on SoC-Clusters seems to be the immature soft-
ware stacks. For example, current video transcoding services

3

heavily rely on FFmpeg, a library that provides comprehensive
video operations and configurations. There lacks a FFmpeg-
like software on ARM SoC, especially for its hardware-
accelerated codec. Existing toolkits like LinkedIn LiTr [40]
are designed for single-video transcoding but not many. Fur-
thermore, a unified scheduling framework is needed as each
SoC-Cluster server could handle hundreds of video streams so
the network congestion or SoC performance variation need to
be carefully handled. Nevertheless, we deem video transcoding
to be very likely the next deployed domain for SoC-Clusters
in the near future after cloud gaming.

D. Deep Learning Serving

Deep learning serving (or prediction) at the edge is an active
research field in recent years. Numerous applications such as
AR, autonomous driving, and object detectors have been built
atop on-edge DL serving services [2], [41]. DL serving is
known to be energy-intensive, for which reason SoC-Cluster
could be good fit. Moreover, SoC-Cluster is equipped with
heterogeneous processors like GPU, DSP, or even NPU that
can highly accelerate DL workloads. The software stack of on-
mobile DL is blossoming as well [18], [42]–[44]. As we will
show, SoC-Cluster delivers impressive energy efficiency and
even throughput in DL serving as compared to conventional
servers.

The major challenge of deploying DL serving on SoC-
Cluster is the inference latency. Large DNN models like
YOLOv5x or ResNet-152 take hundreds of milliseconds to
process per sample, which can not meet the end-to-end QoS
requirement of the aforementioned applications. It urgently
calls for collaborative inference across many SoCs – an
unexplored topic as far as we know. Building such a system
is not easy, as suggested by our ongoing efforts, because the
network latency across SoCs (typically at the sub-millisecond
level) could easily overturn the benefits of SoC parallelism. A
sophisticated design is needed to overlap the communication
and computation to achieve scaled inference speed with more
SoCs.

E. Deep Learning Training

Unlike DL serving, DL training is not a typical workload at
the edge. A single DL training task could take hours or even
days to accomplish even with many datacenter-level GPUs.
The incentives for moving DL training to SoC-Clusters are
mainly twofold. First, the edge workloads experience high
temporal variation so there is a huge amount of idle time
in edge servers [1]. By placing time-insensitive DL training
tasks on SoC-Clusters at the correct time, we can harvest such
free cycles of ARM SoCs. Second, DL training is notoriously
known to be energy-hungry. Shifting DL training tasks to low-
power ARM SoCs could potentially save a significant amount
of carbon emissions for our environment.

There are two major challenges in landing DL training to
SoC-Clusters. First, like DL serving, multiple SoCs in one
SoC-Cluster or even multiple SoC-Clusters need to collaborate
to train a DNN model, as constrained by the memory size

and computing capacity per SoC [45], [46]. While distributed
training has been common sense in data centers, there have
been very few practices in orchestrating such a large amount
of processors. For instance, we estimate that many hundreds
of SoCs are needed to collectively provide the computing
capacity as 8 high-end NVIDIA GPUs. The training scalability
is difficult to achieve as the network throughput can easily
become the bottleneck. Moreover, each SoC is heterogeneous
with GPU and DSP, each of which can train a DNN (portion)
individually; to fully unleash their power, a novel, perhaps
hierarchical network topology needs to be constructed. The
second challenge is to avoid compromising delay-sensitive
workloads such as cloud gaming on SoC-Cluster and minimize
the switching overhead. Luckily, Microsoft has made an early
effort in multiplexing low-power devices with cloud gaming
and DL training [47]. The checkpoint technique for DL is
also well explored on data center GPUs [48] but needs to be
adapted to mobile SoCs.

F. Database Systems

Data-intensive applications, such as key-value storage sys-
tems, play key roles in cloud and edge as well. They are the
key building blocks of major Internet services such as Amazon
Dynamo and Facebook memcached. Those applications are
I/O, not computation, intensive; they require massive paral-
lelism with huge amount of independent concurrent operations.
Those applications are known to be ill-served by conventional
servers – they are either slow with repeated, continuous
random-access to clumsy external disks; or expensive by using
large DRAM arrays.

SoC-Cluster is fast and cost-effective in serving such data-
intensive applications. In the SoC-Cluster we use, each SoC
is equipped with a 256GB Sk-Hynix Flash storage (UFS 3.1).
Each SoC provides around 1,733/328 MB/s for sequential
read/write and 23.6/34.0 MB/s for random read/write as tested
by fio [49], similar to an enterprise Samsung SSD and an order
of magnitude faster than one Seagate HDD. Collectively, such
an SoC-Cluster server provides 15.36TB disk storage with
more than 1 GB/s I/O random-access throughput.

The major challenge to realize the I/O advantage of SoC-
Cluster is to advisably distribute the data across SoCs so the
read/write operations can be concurrently handled by different
SoCs without encountering congestion. Back to 2009, a key-
value system named FAWN-KV [14] has been designed to
deal with this challenge. To expand the benefits to more data-
intensive applications, the inherent characteristics of those
applications must be incorporated.

G. Streaming Processing

Billions of IoT devices are deployed in field and generating
massive data streams; processing those data often requires
edge servers so as not to stress the wide-area network (WAN).
The code logic of streaming processing is often as simple as a
pipeline of a few operations like windowing, groupby, reducer,
and aggregation. Yet, optimizing the processing speed could
be complicated as the data records come in at high speed

4

Hardware Live video transcoding DL Serving

SoC-Cluster FFmpeg (with libx264 support) [51];
LiTr (with MediaCodec support) [40]. TFLite [18]

Intel CPU FFmpeg [52] (with libx264 support) [51] TVM [53]
NVIDIA GPU FFmpeg (with NVDEC/ENC support) [54] TensorRT [55]

TABLE I
SOFTWARE USED IN OUR CASE STUDIES.

and are possibly out of order. To achieve high processing
throughput in realtime, a server must have a large number of
cores for massive in-parallel processing and enough memory
bandwidth to avoid I/O bottleneck. SoC-Cluster satisfies these
requirements: the server shown in Figure 2 has 480 CPU cores
in total; its 60x LPDDR5 DRAM can be accessed at the same
time and thus exhibit superior I/O bandwidth collectively.

The challenges to achieve high-speed streaming processing
in SoC-Cluster are mainly twofold. First, the mobile CPUs are
asymmetric (ARM big.LITTLE architecture [50]) and might
cause significant straggler effects. Second, the data operation
dependencies could lead to high synchronization overhead. It
requires a heterogeneity-aware core-level workload scheduler
that judiciously dispatches data to different SoC cores.

IV. CASE STUDIES

In this section, we quantitatively investigate two applica-
tions, live video transcoding and deep learning inference, that
are most likely to gain commercial success in the near future
on SoC-Cluster beyond cloud gaming. Using them as case
studies, we want to answer the critical question about how
efficiently SoC-Cluster can serve more general edge workloads
as compared to conventional servers. Specifically, we use an
edge-typical server with a 40-core (80-thread) Intel Xeon Gold
5218R processor and 8 NVIDIA A40 GPUs (released in the
same year as Snapdragon 865) for comparison.
Software. We list the software we used in case studies
in Table I. The software are chosen for their state-of-the-
art performance and outstanding popularity. For live video
transcoding, we randomly pick 3 videos from the cloud video
transcoding benchmark–vbench [56]. For DL serving, we use
ResNet-50 [57], a medium-sized DNN model for CV tasks.
Setup. The application throughput is measured by how many
frames/streams each hardware can process per second, which
is explicitly reported by the software or implicitly calculated
using latency. Power consumption is measured using the
software-level APIs, e.g., turbostat for Intel CPU, nvidia-smi
for NVIDIA GPU and pmbus exposed by SoC-Cluster’s BMC.
During the major experiments of energy efficiency, we always
fully load the hardware (e.g., many processes of live video
streams), to eliminate the impacts of resource under-utilization
on NVIDIA GPU. We report the energy consumption by
subtracting the idle power consumption of server. To mitigate
the power fluctuation during experiments: for DL serving, we
use 1,000 frames in each test and then get the average power
consumption for each frame; for live video transcoding, we
simultaneously transcode the maximum number of live video
streams supported on each hardware.

Video Hardware Throughput
(# of streams)

Energy
(frames/J)

PSNR
(db)

V1-desktop
Bitrate:

180 Kbps

Intel CPU
(4-core container) 31 23 31.08

NVIDIA A40 37 13 34.11
SoC CPU 15 59 31.21

SoC Codec 16 125 29.27

V2-game3
Bitrate:

5.6 Mbps

Intel CPU
(4-core container) 8 11 39.69

NVIDIA A40 18 12 40.73
SoC CPU 4 32 40.37

SoC Codec 12 167 34.72

V3-chicken
Bitrate:

49 Mbps

Intel CPU
(4-core container) 2 2 38.71

NVIDIA A40 6 2 42.54
SoC CPU 1 5 38.80

SoC Codec 2 26 38.28
TABLE II

THE LIVE VIDEO TRANSCODING PERFORMANCE OF SOC-CLUSTER AND
CONVENTIONAL SERVERS. VIDEOS ARE PICKED FROM A CLOUD VIDEO

TRANSCODING BENCHMARK [56].

A. Live Video Transcoding

Table II summarizes the measurement results of live video
transcoding on different videos and hardware.

Throughput. A single SoC CPU can transcode 1–15 video
streams simultaneously. Utilizing the hardware codec improves
the throughput by up to 3× (4 to 12 on V2). Collectively,
an SoC-Cluster can provide a video transcoding service of
180–1,860 streams (using all 60 SoC CPUs and 60 SoC
Codecs). Such a throughput is significantly higher than the 40-
core CPU server that delivers only 20–310 streams capacity.
Furthermore, the throughput of SoC-Cluster equals 30–53
NVIDIA A40 GPUs. Such a number of NVIDIA GPUs usually
requires around 8–27 rack units to meet the deployment needs,
considering the fact that the 2U rack size occupied by the SoC-
Cluster can typically hold 4–8 GPUs. During the experiments,
we observed that the throughput of NVIDIA GPU is always
bounded by its hardware encoder, leaving most of its general-
purpose computing units under-utilized. Indeed, improving
video transcoding performance is not a primary design goal
of mainstream GPUs.

Energy efficiency. SoC-Cluster’s advantage in energy ef-
ficiency is even more significant compared to conventional
servers. SoC CPU delivers higher energy efficiency than the
conventional server using Intel CPU and NVIDIA GPU. Del-
egating video transcoding to hardware codec in SoC-Cluster
achieves significant improvement in energy efficiency. SoC-
Cluster’s hardware codec can transcode 26–167 frames per
Joule for diverse videos, which is up to 15.18× higher than
the Intel CPU and up to 13.92× higher than NVIDIA A40
GPU. Our additional experiment shows that the fine-grained
computation unit (per SoC) makes the power consumption
of SoC-Cluster can proportionally scale with the workloads,
which is hard for conventional edge servers comprised of
monolithic CPUs or GPUs.

Video quality indicates the quality of the output video
perceived by consumers. Our experiments were performed
with a fixed bitrate target. However, the output video quality
could differ observably due to the nuance at both software

5

Model Hardware Latency
(ms)

Throughput
(frames/s)

Energy
(samples/J)

ResNet-50
(FP32)

Intel CPU
(4 cores) 12.47 80 2.6

NVIDIA A40
(BS=1) 2.18 459 2.8

NVIDIA A40
(BS=64) 23.45 2,729 10.2

SoC CPU
(4 big cores) 77.60 13 2.1

SoC GPU 32.70 31 18.2

ResNet-50
(INT8)

NVIDIA A40
(BS=1) 0.45 2,202 18.6

NVIDIA A40
(BS=64) 7.51 8,526 31.3

SoC DSP 8.80 114 71.4
TABLE III

THE DL SERVING PERFORMANCE OF SOC-CLUSTER AND CONVENTIONAL
EDGE SERVERS. DEFAULT BATCH SIZE (BS) IS 1.

encoders and hardware levels. To understand the difference, we
saved the live video transcoding outputs to files and use Peak
Signal-to-Noise Ratio (PSNR) to quantify the video quality.
The results show that the software encoder using SoC CPUs
can preserve almost the same video quality as Intel CPU
and NVIDIA GPU, while videos generated by SoC-Cluster
’s hardware codec have sightly poorer quality than others,
i.e., 1.12%–14.76% lower PSNR. This is caused by the loose
quality and bitrate requirements of mobile encoders inherently.
Through our additional experiments, we find that simply
loosing the target bitrate constraint using hardware codec still
fails to meet the same video quality as the software codec
on SoC CPUs. As such, for quality-sensitive applications, it’s
better to choose SoC CPUs for video transcoding.

B. Deep Learning Inference

Table III summarizes the measurement results of deep
learning serving on different videos and hardware.

Throughput. With ResNet-50 (FP32) model, SoC CPU
and SoC GPU can process 13 and 31 frames per second,
respectively. Collectively, our SoC-Cluster delivers a maximal
throughput at 2,640 FPS, which equals to 3.3× 40-core Intel
CPU servers; or ∼1 NVIDIA A40 GPU when fully loaded
with a relatively large batch size. Since a 2U rack can
typically hold 4–8 GPUs, the throughput of SoC-Cluster is
a few times smaller than a GPU server. Similarly, SoC Digital
Signal Processor (DSP) is often used for integer-operation
acceleration. With ResNet-50 (INT8 quantized), SoC-Cluster
can provide a maximal throughput as high as 6,840 FPS, which
is close to a NVIDIA A40 GPU.

Energy efficiency. Notably, SoC-Cluster’s accelerators
(GPU and DSP) provide observably higher energy efficiency
than conventional servers. Concretely, SoC GPU can process
18.2 samples per Joule on ResNet-50 (FP32), which is 7× and
1.8× higher than Intel CPU and NVIDIA GPU, respectively.
SoC DSP even shows higher energy efficiency compared
with SoC GPU, i.e., 2.3× higher than NVIDIA A40 GPU
when batch size is 64. NVIDIA GPUs operate more efficient
with larger batch sizes. Thus, its energy efficiency drops
significantly when workload is lighter, e.g., 10.2 to 2.8 frames
per Joule when batch size drops from 64 to 1 on FP32 model.

It shows that the monolithic design of datacenter-level GPU
cannot proportionally scale its energy with workloads – a
critical feature in edges as the workloads are highly variational.
Instead, SoC-Cluster’s each single SoC can efficiently process
each sample with batch size 1 and some of them can be turned
off to eliminate the energy waste without workloads.

Latency. We observe that SoC-Cluster’s GPUs and DSPs
deliver much lower latency than its CPUs. Especially, on a
quantized ResNet-50 model, inference using the SoC DSP
takes 8.8ms, which is almost eligible for most edge appli-
cations. Nevertheless, NVIDIA GPU delivers much lower
latency than SoC-Cluster due to its high hardware-level paral-
lelism and the well-optimized software (TensorRT). However,
if a larger batch size is used, the latency on NVIDIA GPU
increases significantly. In other words, NVIDIA GPU cannot
achieve the best at both energy efficiency and inference speed;
a trade-off needs to be made. To serve larger DNNs like
YOLOv5x and BERT, a single SoC is not likely to achieve
a satisfactory latency, and software that can orchestrate many
SoCs is urgently demanded.

V. CONCLUSION AND FUTURE WORK

In this work, we explore the possibility of massively as-
sembling mobile SoCs into an edge server. Such SoC-Cluster
has advantages of high power efficiency, native support for
mobile apps, and high memory/disk I/O bandwidth as com-
pared to conventional edge servers. We discuss the potential
killer applications for such a new form of hardware and
the corresponding challenges to turn them into reality. We
also present preliminary measurements that demonstrate the
impressive performance of SoC-Cluster on two representative
edge applications.

We believe the emergence of SoC-Cluster in industry will
soon open a new research domain; we as the edge computing
preachers are now at the perfect timing to embrace it. Here,
we share the possible directions that can be explored to
fully harness SoC-Cluster for the edge. (i) At application
level, there is no doubt that tremendous efforts should be
invested to migrate typical edge applications to SoC-Cluster. It
sometimes requires a fundamental redesign of the application
structure to fit the new hardware paradigm. An automatic or
semi-automatic tool that facilitates such transformation could
greatly catalyze this process. (ii) At system or middleware
level, the infrastructure of traditional edge clouds needs to be
renovated as well. It includes the mobile operating systems
(e.g., Android) that are designed for interactive scenarios but
not server workloads; the resource management and scheduler
that often ignore the hardware heterogeneity; the virtualization
techniques (e.g., Docker) that can barely run on resource-
constrained SoCs; and so on. (iii) At hardware level, the
SoC-Cluster we experimented with is designed for cloud
gaming, but not more complicated workloads, especially those
need cross-SoC collaboration. To scale the processing speed
of applications like DL inference/training, SoC-Cluster must
incorporate more enhanced network technique and topology.

6

REFERENCES

[1] M. Xu, Z. Fu, X. Ma, L. Zhang, Y. Li, F. Qian, S. Wang, K. Li, J. Yang,
and X. Liu, “From cloud to edge: a first look at public edge platforms,” in
Proceedings of the 21st ACM Internet Measurement Conference, 2021,
pp. 37–53.

[2] X. Zhang, A. Zhang, J. Sun, X. Zhu, Y. E. Guo, F. Qian, and Z. M.
Mao, “Emp: edge-assisted multi-vehicle perception,” in Proceedings of
the 27th Annual International Conference on Mobile Computing and
Networking, 2021, pp. 545–558.

[3] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE internet of things journal, vol. 3, no. 5, pp. 637–646,
2016.

[4] “Aws iot for the connected home,”
https://aws.amazon.com/iot/solutions/connected-home/, 2020.

[5] “Remote rendering,” https://azure.microsoft.com/en-us/services/remote-
rendering/, 2022.

[6] “A market and ecosystem report for edge computing,”
https://www.lfedge.org/wp-content/uploads/2020/04/SOTE2020.pdf,
2020.

[7] “What edge computing means for infrastructure and operations lead-
ers,” https://www.gartner.com/smarterwithgartner/what-edge-computing-
means-for-infrastructure-and-operations-leaders, 2021.

[8] “Azure edge zone,” https://docs.microsoft.com/en-
us/azure/networking/edge-zones-overview, 2020.

[9] “Aws local zones,” https://aws.amazon.com/about-aws/global-
infrastructure/localzones/, 2020.

[10] “Extending the boundaries of the cloud with edge computing,”
https://www.alibabacloud.com/blog/extending-the-boundaries-of-the-
cloud-with-edge-computing 594214, 2020.

[11] S. Li, X. Wang, X. Zhang, V. Kontorinis, S. Kodakara, D. Lo,
and P. Ranganathan, “Thunderbolt: Throughput-Optimized, Quality-of-
Service-Aware power capping at scale,” in 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20).
USENIX Association, Nov. 2020, pp. 1241–1255. [Online]. Available:
https://www.usenix.org/conference/osdi20/presentation/li-shaohong

[12] S. Govindan, D. Wang, L. Chen, A. Sivasubramaniam, and B. Urgaonkar,
“Towards realizing a low cost and highly available datacenter power
infrastructure,” in Proceedings of the 4th Workshop on Power-Aware
Computing and Systems, ser. HotPower ’11. New York, NY, USA:
Association for Computing Machinery, 2011. [Online]. Available:
https://doi.org/10.1145/2039252.2039259

[13] L. Liu, C. Li, H. Sun, Y. Hu, J. Gu, T. Li, J. Xin, and N. Zheng,
“Heb: Deploying and managing hybrid energy buffers for improving
datacenter efficiency and economy,” in Proceedings of the 42nd Annual
International Symposium on Computer Architecture, ser. ISCA ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p.
463–475. [Online]. Available: https://doi.org/10.1145/2749469.2750384

[14] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and
V. Vasudevan, “Fawn: A fast array of wimpy nodes,” in Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles,
2009, pp. 1–14.

[15] Q. Pei, S. Chen, Q. Zhang, X. Zhu, F. Liu, Z. Jia, Y. Wang,
and Y. Yuan, “Cooledge: Hotspot-relievable warm water cooling for
energy-efficient edge datacenters,” in Proceedings of the 27th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS 2022. New York,
NY, USA: Association for Computing Machinery, 2022, p. 814–829.
[Online]. Available: https://doi.org/10.1145/3503222.3507713

[16] “Qualcomm showcases future technology roadmap to drive the con-
nected intelligent edge and lead the world to 5g advanced and beyond,”
https://www.qualcomm.com/news/releases/2022/02/28/qualcomm-
showcases-future-technology-roadmap-drive-connected-intelligent,
2022.

[17] X. Jiang, H. Wang, Y. Chen, Z. Wu, L. Wang, B. Zou, Y. Yang, Z. Cui,
Y. Cai, T. Yu et al., “Mnn: A universal and efficient inference engine,”
arXiv preprint arXiv:2002.12418, 2020.

[18] “Tensorflow Lite,” https://www.tensorflow.org/lite, 2022.
[19] “Mediacodec,” https://developer.android.com/reference/android/media/MediaCodec,

2022.
[20] W. Song, J. Ming, L. Jiang, Y. Xiang, X. Pan, J. Fu, and

G. Peng, “Towards transparent and stealthy android os sandboxing
via customizable container-based virtualization,” in Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications

Security, ser. CCS ’21. New York, NY, USA: Association for
Computing Machinery, 2021, p. 2858–2874. [Online]. Available:
https://doi.org/10.1145/3460120.3484544

[21] W. Chen, L. Xu, G. Li, and Y. Xiang, “A lightweight virtualization
solution for android devices,” IEEE Transactions on Computers, vol. 64,
no. 10, pp. 2741–2751, 2015.

[22] “Amazon Luna,” https://www.amazon.com/luna/landing-page, 2022.
[23] “Geforce Now,” https://www.nvidia.com/en-us/geforce-now/, 2022.
[24] “Google Stadia,” https://stadia.google.com/, 2022.
[25] “X-cloud Game Pass,” https://www.xbox.com/en-US/xbox-game-

pass/cloud-gaming?xr=shellnav, 2022.
[26] “Cloud Gaming, Meet Facebook Gaming,”

https://www.facebook.com/fbgaminghome/blog/cloud-gaming-
meetfacebook-gaming, 2022.

[27] N. Rajovic, P. M. Carpenter, I. Gelado, N. Puzovic, A. Ramirez, and
M. Valero, “Supercomputing with commodity cpus: Are mobile socs
ready for hpc?” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, 2013, pp.
1–12.

[28] N. Rajovic, A. Rico, N. Puzovic, C. Adeniyi-Jones, and A. Ramirez,
“Tibidabo: Making the case for an arm-based hpc system,” Future
Generation Computer Systems, vol. 36, pp. 322–334, 2014.

[29] M. Shahrad and D. Wentzlaff, “Towards deploying decommissioned mo-
bile devices as cheap Energy-Efficient compute nodes,” in 9th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 17), 2017.

[30] J. Switzer, R. Kastner, and P. Pannuto, “Architecture of a junkyard
datacenter,” arXiv preprint arXiv:2110.06870, 2021.

[31] P. Liu, J. Yoon, L. Johnson, and S. Banerjee, “Greening the video
transcoding service with Low-Cost hardware transcoders,” in 2016
USENIX Annual Technical Conference (USENIX ATC 16), 2016, pp.
407–419.

[32] F. Büsching, S. Schildt, and L. Wolf, “Droidcluster: Towards smartphone
cluster computing–the streets are paved with potential computer clus-
ters,” in 2012 32nd International Conference on Distributed Computing
Systems Workshops. IEEE, 2012, pp. 114–117.

[33] K. Barr, P. Bungale, S. Deasy, V. Gyuris, P. Hung, C. Newell, H. Tuch,
and B. Zoppis, “The vmware mobile virtualization platform: is that a
hypervisor in your pocket?” ACM SIGOPS Operating Systems Review,
vol. 44, no. 4, pp. 124–135, 2010.

[34] C. Dall and J. Nieh, “Kvm/arm: the design and implementation of the
linux arm hypervisor,” Acm Sigplan Notices, vol. 49, no. 4, pp. 333–348,
2014.

[35] J. Shuja, A. Gani, K. Bilal, A. U. R. Khan, S. A. Madani, S. U. Khan,
and A. Y. Zomaya, “A survey of mobile device virtualization: Taxonomy
and state of the art,” ACM Computing Surveys (CSUR), vol. 49, no. 1,
pp. 1–36, 2016.

[36] I. Zhang, A. Szekeres, D. Van Aken, I. Ackerman, S. D. Gribble,
A. Krishnamurthy, and H. M. Levy, “Customizable and extensible
deployment for Mobile/Cloud applications,” in 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14), 2014, pp.
97–112.

[37] C. Xie, X. Li, Y. Hu, H. Peng, M. Taylor, and S. L. Song, “Q-vr:
system-level design for future mobile collaborative virtual reality,” in
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2021, pp.
587–599.

[38] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” ACM SIGARCH Computer Architecture News, vol. 45,
no. 1, pp. 615–629, 2017.

[39] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen,
“COMET: Code offload by migrating execution transparently,” in 10th
USENIX symposium on operating systems design and implementation
(OSDI 12), 2012, pp. 93–106.

[40] “linkedin/litr: Lightweight hardware accelerated video/audio transcoder
for Android.” https://github.com/linkedin/LiTr, 2022.

[41] L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object detec-
tion for mobile augmented reality,” in The 25th annual international
conference on mobile computing and networking, 2019, pp. 1–16.

[42] Q. Zhang, X. Li, X. Che, X. Ma, A. Zhou, M. Xu, S. Wang, Y. Ma,
and X. Liu, “A comprehensive benchmark of deep learning libraries
on mobile devices,” in Proceedings of the ACM Web Conference 2022,
2022, pp. 3298–3307.

7

[43] M. Xu, J. Liu, Y. Liu, F. X. Lin, Y. Liu, and X. Liu, “A first look at
deep learning apps on smartphones,” in The World Wide Web Conference,
2019, pp. 2125–2136.

[44] M. Xu, M. Zhu, Y. Liu, F. X. Lin, and X. Liu, “Deepcache: Principled
cache for mobile deep vision,” in Proceedings of the 24th Annual
International Conference on Mobile Computing and Networking, 2018,
pp. 129–144.

[45] D. Xu, M. Xu, Q. Wang, S. Wang, Y. Ma, K. Huang, G. Huang, X. Jin,
and X. Liu, “Mandheling: Mixed-precision on-device dnn training with
dsp offloading,” arXiv preprint arXiv:2206.07509, 2022.

[46] Q. Wang, M. Xu, C. Jin, X. Dong, J. Yuan, X. Jin, G. Huang, Y. Liu,
and X. Liu, “Melon: Breaking the memory wall for resource-efficient
on-device machine learning,” 2022.

[47] “PilotFish: Harvesting free cycles of cloud gaming with deep learning
training,” in 2022 USENIX Annual Technical Conference (USENIX
ATC 22). Carlsbad, CA: USENIX Association, Jul. 2022. [Online].
Available: https://www.usenix.org/conference/atc22/presentation/zhang-
wei

[48] T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training deep nets with
sublinear memory cost,” CoRR, vol. abs/1604.06174, 2016. [Online].
Available: http://arxiv.org/abs/1604.06174

[49] “axboe/fio: Flexible i/o tester,” https://github.com/axboe/fio, 2022.
[50] “big.little - Arm,” https://www.arm.com/technologies/big-little, 2022.
[51] “H.264 video encoding guide,” https://trac.ffmpeg.org/wiki/Encode/H.264,

2022.
[52] “Ffmpeg,” https://ffmpeg.org/, 2022.
[53] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen,

M. Cowan, L. Wang, Y. Hu, L. Ceze, C. Guestrin, and
A. Krishnamurthy, “TVM: An automated End-to-End optimizing
compiler for deep learning,” in 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). Carlsbad, CA:
USENIX Association, Oct. 2018, pp. 578–594. [Online]. Available:
https://www.usenix.org/conference/osdi18/presentation/chen

[54] “Using ffmpeg with nvidia gpu hardware acceleration,”
https://docs.nvidia.com/video-technologies/video-codec-sdk/ffmpeg-
with-nvidia-gpu/, 2022.

[55] “Nvidia TensorRT,” https://developer.nvidia.com/tensorrt, 2022.
[56] A. Lottarini, A. Ramı́rez, J. Coburn, M. A. Kim, P. Ranganathan,

D. Stodolsky, and M. Wachsler, “vbench: Benchmarking video
transcoding in the cloud,” in Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2018, Williamsburg, VA,
USA, March 24-28, 2018, X. Shen, J. Tuck, R. Bianchini, and
V. Sarkar, Eds. ACM, 2018, pp. 797–809. [Online]. Available:
https://doi.org/10.1145/3173162.3173207

[57] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” arXiv preprint arXiv:1512.03385, 2015.

8

