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Video streaming applications (VSAs) are increasingly being deployed on large-scale edge platforms, which have

the potential to significantly improve the quality of service (QoS) and end-user experience (QoE), ultimately

maximizing business outcomes. However, there is currently very little understanding of how QoS, QoE, and

the impact of QoS on QoE for VSAs on edge platforms in the wild and at scale. To close the knowledge gap,

we collect SNESet, an active measurement dataset comprising QoS and QoE telemetry metrics of 8 VSAs
over four months, covering end-users from 798 edge sites, 30 cities, and 3 ISPs in one country. We characterize

and compare the QoS and QoE metrics in SNESet with existing publicly available datasets, highlighting that

SNESet includes a significantly greater number of metrics (horizontal diversity and vertical hierarchy) and

provides more comprehensive coverage of specific metrics. Moreover, we qualitatively and quantitatively

analyze the impact of QoS on QoE in both domain-general and domain-specific scenarios. Our findings can

inform the system design decisions that different entities in the video ecosystem (content providers, video

player designers, third-party optimizers, edge vendors) make to maximize end-users experience and ultimately

maximize the business outcomes. We hope SNESet can attract more research efforts in the data management

community, computer network community, and beyond.
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1 INTRODUCTION

Video streaming applications (VSAs) such as TikTok [99], Zoom [125], and YouTube Live [67] have

experienced unprecedented popularity during the post-COVID-19 pandemic period. According to

[15], video streaming traffic increased by asmuch as three-fold during an eight-month period in 2020.

Moreover, with ever-stringent user performance expectations (low latency and high bandwidth),

traditional centralized cloud are struggling to provide a one-size-fits-all solution, leading more

video content providers to deploy their services in a decentralized manner on large-scale public

edge platforms like Azure Edge Zone [123] and AWS Local Zones [124].

Ideally, the adoption of public edge platforms has the potential to improve the overall quality

of service (QoS) for VSAs, which can ultimately affect the end-user experience (QoE), and impact

business outcomes such as viewership and revenues. However, the lack of large-scale, realistic

measurements, analyses, and publicly available datasets has limited exploration of QoS, QoE, and

the impact of QoS on QoE for VSAs on edge platforms in the wild. QoS and QoE are crucial metrics

for VSAs, with QoS referring to the service quality of each component within end-to-end video

delivery system, including content origin sites, edge platforms, and ISPs involved in last-mile

delivery to end-users [3]. The International Telecommunication Union (ITU) defines QoE as the

measure of user satisfaction using the Mean Opinion Score (MOS), a subjective metric ranging

from 1 to 5 [50]. However, subjective metrics can be expensive and complicated to collect [23]. In

this study, we focus primarily on objective QoE metrics that are easily measurable and comparable,

such as the stall ratio, which is widely used to summarize VSA performance [60, 117].

Table 1. Comparison with existing publicly available cloud/edge datasets.

Dataset
QoS

(server-side)
QoE Platform Year Duration # of Sites

# of Network
Protocol Stacks

Alibaba Dataset [38] � � Alibaba ECS 2018 8 days 1 1

Google Dataset [100] � � Google Borg 2019 1 month 1 1

Azure Dataset [27] � � Azure Cloud 2019 30 days 1 1

Edge Dataset [112] � � Alibaba ENS 2020 3 months 139 2

LiSSi lab Dataset [7] � � Testbed 2015 1 week 1 1

Puffer [114] � � Testbed* Since Jan 2019 Keep updating 1 2

Huawei Dataset [102] � � Testbed 2018 1 month 1 3

SNESet (Ours) � � NEP 2022 4 months 789 4
* While we classify the Puffer [114] as a testbed, it falls somewhere between a traditional testbed and a real-world commercial system.

While several publicly available datasets provide QoS and QoE metrics, only a few of them

include both metrics and are collected from large-scale edge platforms in the wild. As is shown in

Table 1, most open-source datasets collected from traditional centralized clouds primarily focus on

sever-side QoS metrics and provide limited client-side QoE metrics (e.g., Alibaba Dataset [38], Azure

Dataset [27], and Google Dataset [100]). Existing open-source datasets for VSAs mainly focus on

client-side QoE metrics, with little inclusion of server-side QoS metrics such as the inner network

lossrate and average first-byte time. Most importantly, few of these datasets fully characterize the

QoS and QoE of VSAs on large-scale edge platforms in the wild, as most are collected from simulated

testbeds that may not accurately represent real-world scenarios. Although some prior works have

implemented passive measurement in the wild [18, 74], their methodologies are designed for specific

applications and may not generalize to others.
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To close the knowledge gap, we share our experiences in running a leading public edge platform,

NEP (Next-generation Edge Platform1), which comprises 2800+ edge sites globally, with a peak
query rate of more than 100 million per second (§ 2.1). Leveraging the NEP, we have conducted
a large-scale, in-depth study and collected SNESet, an active measurement of 8 VSAs spanning
four months in 2022, covering end-users from 798 edge sites, 30 cities, and 3 ISPs in one country

(§ 2.2). To the best of our knowledge, SNESet is the first publicly available dataset 2 for VSAs

on large-scale edge platforms, which includes a significantly greater number of metrics and more

comprehensive coverage of specific metrics (§ 2.3). Moreover, we also include data-centric problems
and challenges from the perspective of data collection (§ 2.4), data processing (§ 3.4), and data
management (§ 5).
We first characterize and compare the QoS and QoE metrics in SNESet with existing publicly

available datasets, which enabling us to gain valuable experiences and insights of VSAs’ perfor-

mance on large-scale edge platform. Then, we qualitatively investigate the impact of QoS on QoE

using Kendall correlation and relative information gain (§ 3). The Kendall correlation is useful
for investigating the interaction between variables when the relationship is roughly monotone.

The information gain can corroborate or augment the correlation when the relationship is not

monotone and extends to the multivariate case. Our main observations are as follows:

• Given the intricate nature of the underlying network and the variability in traffic volume, the

average stall ratio observed in SNESet is about 4× higher than that of the simulated testbed

dataset. Moreover, the stall ratio exhibits significant spatio-temporal variations across applications,

cities, and ISPs, with maximum differences reaching up to 3× (§ 3.1).
• SNESet collects a wider range of QoS and QoE metrics, encompassing various network protocol

stacks. Most importantly, it includes a greater number of server-side inner network metrics, such

as average first byte time, inner network RTT, and inner network packet loss rate. Moreover,

SNESet offers a more comprehensive coverage of specific metrics (§ 3.1 - § 3.2).
• Regarding the Kendall correlation, the results indicate that CPU utilization and the day of the

month have the strongest monotonic relationships with stall ratio, with values of 0.83 and 0.82,

respectively. The former can be attributed to the fact that both metrics have similar peak values

during the same hour of the day and the latter is due to ISPs intentionally throttling bandwidth

for end-users at the end of the month (§ 3.3).
• Regarding relative information gain, we observed that network-related metrics have higher

values, while other QoS metrics are mostly around 1% (§ 3.3).
QoE metrics are commonly located in the upper application layer, while QoS metrics typically re-

side in the lower system layer. Directly obtaining QoEmetrics can be challenging due to permissions

or framework limitations. Consequently, QoS-based prediction serves as a non-intrusive approach

to assess QoE. To further quantitatively analyze the impact of different QoS metrics, we employ

seven mainstream regression methods (§ 4). Considering the timeliness of real-world deployment,
we benchmark the prediction accuracy and the time efficiency in both domain-general (for all the

applications) and domain-specific scenarios (for specific applications). We find that the most influ-

ential features differ significantly between these two scenarios. Specifically, domain_name, isp, and
reset_ratio are the most influential feature in domain-general scenarios, while in domain-specific
scenarios, features such as date, hour, and I/O-related features take precedence.
Qualitative analytics can be seen as a preprocessing stage for quantitative analytics, which aims to

reduce the feature complexity (feature size and sample size). By selecting the most relevant features

and reducing interference (irrelevant) features, it helps to improve not only the interpretability but

1NEP is commercially known as Alibaba ENS [6].
2We publish our code and SNESet on https://github.com/YananLi18/SNESet.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 236. Publication date: December 2023.



236:4 Yanan Li et al.

also the robustness of the quantitative model. It’s worth noting that the combination of qualitative

analytics and quantitative analytics extends beyond the scope of demystifying the QoS and QoE

of VSAs and can serve as a general mechanism to study similar topics. For instance, adaptive

bitrate selection (ABR) [96, 114, 117] requires studying the impact of different factors on network

throughput or transmission time to determine the optimal chunk bitrate.

Finally, we point out future research directions with promising research opportunities (§ 5). In
particular, with the increasing diversity of underlying data types (structured data, semi-structured,

and graph data) and concurrent upper-layer query requests (batch processing, OLTP, and OLAP), a

cloud-edge collaborative distributed data management system might be a promising alternative for

these large-scale (hundreds and thousands of) WAN-connected edge sites rather than the current

centralized approach. We hope our work can attract more research efforts in these directions and be

used to inform the system design decisions of the data management community, computer network

community, and beyond.

In summary, we make the following contributions in this paper:

• We have collected SNESet, which contains both QoS and QoE metrics for eight VSAs on a

large-scale edge platform using active measurements. Additionally, to facilitate future research

studies, we make the raw data of SNESet and our code publicly available.

• We characterize and compare the QoS andQoEmetrics inSNESetwith existing publicly available

datasets, highlighting that SNESet includes a significantly greater number of metrics and more

comprehensive coverage of specific metrics (vertical hierarchy and horizontal diversity).

• We qualitatively and quantitatively analyze the impact of QoS on QoE in both domain-general

and domain-specific scenarios, which can be used to inform the system design decisions.

2 DATASET

In this section, we first introduce the public edge platform, NEP, which serves as the foundation

platform for our data collection. Next, we present the specific system architecture of our data

collection process and highlight the unique properties of our dataset, SNESet, in comparison with
existing open-source datasets.

2.1 Platform Description

NEP is an emerging leading-edge platform in its home country. Unlike traditional centralized

clouds with a limited number of sites within a single country, NEP boasts significantly more sites,

approximately two orders of magnitude larger, and is continuously expanding. This difference in

scale profoundly influences various aspects of the platform, including application performance and

resource utilization, which we will delve into in subsequent sections.

Despite the increasing number of edge sites, the capacity of each NEP site remains relatively

limited compared to traditional centralized cloud platforms. Traditional platforms can host thou-

sands or even millions of physical servers [59], whereas NEP edge sites are constrained by physical

infrastructure such as limited space and electricity, typically accommodating only tens or hundreds

of servers. The physical servers of NEP are obtained from various locations, including CDN PoPs,

third-party IDCs, and network operators. Currently, NEP primarily relies on micro data centers and

has not been widely implemented in cellular core networks, as originally envisioned by MECs [44].

In contrast to CDN platforms, NEP currently provides a comprehensive range of services, which

includes not only content caching, but also edge containers, virtual machine instances, bare metal

machines, and heterogeneous computing (e.g., ARM SoC [121], FPGA [120]). While NEP supports

many types of services, the current dominant usage among video content providers is Platform-as-

a-Service (PaaS).
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Fig. 1. Overall architecture of data collection and analytics.

2.2 System Architecture of Data Collection

Although NEP offers a wide range of services, VSAs currently exhibit the highest network through-

put growth rate, with a median queries-per-second (QPS) per edge site exceeding 20,000 in a single

day. Thus, it is imperative to quantify the QoS and QoE of VSAs to enhance the core competitiveness

of the edge platform. As depicted in Figure 1, we have designed a measurement system that aims

to optimize the overall performance of the edge platform through a data-driven approach. The

measurement system comprises three components, located at end-user devices, edge sites, and the

centralized cloud, respectively.

TheMedia Player on end-users’ devices utilizes various protocols such as HTTPS [87], RTMP [83],

and WebRTC [16] to download video chunks from nearby edge sites. The Analytics Client collects

various events (e.g., playbackPause, playbackStall) and properties (e.g., video codec, resolution) from

the Media Player and transmits the necessary metrics to an analytics server in the same edge sites.

Currently, the Analytics Client does not consider the users’ own processing and rendering latency,

which is related to the users’ devices, hardware configuration, and the number of concurrent

applications. The above metrics collected by the Analytics Client are still session-level metrics. To

robustly assess group-level QoE performance, the analytics server aggregates these metrics from

end-users at the same edge site within a coarser time granularity (e.g., 5 minutes). The aggregation

encompass various forms, including maximum, median, average, and 95th percentile, etc. Unless

explicitly stated otherwise, the metrics of SNESet utilize the average aggregation by default.

With the egress network bandwidth of the edge sites typically being 100Gbps and VSA requests

generally requiring 1Mbps-2Mbps bandwidth, the analytics server of each edge site aggregates

across approximately 50K to 100K end-users.

In each edge site, we also employ event tracking techniques to collect performance metrics of

various software, such as reverse proxy software-Tegine [98]. Moreover, Linux tsar [58] is used to
collect minute-level hardware metrics (CPU, memory, and storage) and network metrics. The QoS

telemetry data are then stored in QoS edge storage. The QoS and QoE data stored at each edge site

are merged and transmitted to the central cloud via HTTPS, and then fed into Apache Kafka [36]

message queues. Then offline and online analysis is performed using Hadoop-based [78] and
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Table 2. The detailed schema of SNESet. The network protocol stack is classified into the Application Layer

(5 for short), Transport Layer (4), Network Layer (3), Link Layer (2), and Physical Layer (1).

Metrics Taxonomy Type Net Stack Description Example

date_sequence Context BIGINT - The day of the month, which ranges from [1, 31]. 21

hour_sequence Context BIGINT - The hour of the day, which ranges from [0, 23]. 5

domain_name Context STRING -
The domain name identifier, which represents
different applications.

domain_18

city Context STRING - The city identifier. city_14

isp Context STRING - The ISP identifier. isp_10

node_name Context STRING - The edge site identifier. node_12

avg_fbt_time QoS (server-side)* BIGINT 5
The average first-byte time represents the time from
the edge site receiving the request to sending
the first response packet (unit ms).

12

inner_net_droprate QoS (server-side) DOUBLE 3 Edge site internal network packet loss rate (%) 0.001

inner_net_rtt QoS (server-side) BIGINT 3 Edge site internal network round trip time (ms) 2

cpu_util QoS (server-side) DOUBLE 1 Edge site average CPU utilization 0.56

mem_util QoS (server-side) DOUBLE 1 Edge site average memory utilization 0.62

io_await_avg QoS (server-side) BIGINT 1 Edge site average I/O waiting time 31

io_await_max QoS (server-side) BIGINT 1 Edge site maximum I/O waiting time 34

io_util_avg QoS (server-side) DOUBLE 1 Edge site average I/O utlization 0.30

io_util_max QoS (server-side) DOUBLE 1 Edge site maximum I/O utilization 0.34

ng_traf_level QoS (server-side) DOUBLE 1 Edge site normalized bandwidth level in range [0, 1) 0.88

synack1_ratio QoS (client-side) DOUBLE 4 One-time success rate of establishing TCP connections. 0.86

tcp_conntime QoS (client-side)* BIGINT 4
The time from when the server receives a SYN packet to
when it receives an ACK from the client (ms).

33

icmp_lossrate QoS (client-side) DOUBLE 3 The ICMP (Layer 3) packet loss rate 0.05

icmp_rtt QoS (client-side) DOUBLE 3 The ICMP (Layer 3) round trip time (ms) 21

499_5xx_ratio QoS (client-side) DOUBLE 5 The ratio of 499 and 5xx issued by Tengine 0.01

reset_ratio QoS (client-side) DOUBLE 5 Percentage of reset requests 0.22

buffer_rate QoE DOUBLE 5
The percentage of the video that experiences frozen
or stalling events during the playback period.

0.04

* Moreover, the startup delay QoE metric can be approximated by 4 ∗ tcp_conntime + avg_fbt_time .

Flink-based [21] framework, respectively, with statistical information presented through Apache

Grafana [37].

Ethical concerns. Our data collection system adhered to the agreement established between

content providers and end-users. The study participants include voluntarily opted-in end-users, and

the analysis was conducted in compliance with Institutional Review Board. To protect participants’

privacy, no personally identifiable information, such as phone numbers, IMEIs, or IMSIs, was

collected during the study. Additional measures were implemented, including anonymization of

customer IDs during QoE metric transmission, secure encryption of client-side metrics using

HTTPS, strict prohibition of cookies over HTTPS to avoid linkage with users’ personal identifiable

information that the user once registered to obtain the necessary services, and aggregation of

metrics across end users at each edge site for group-level analytics.

2.3 Comparison with Related Datasets

Based on the aforementioned system, we have released SNESet, a dataset containing 9 million
clean records from 8 VSAs collected over a period of four months in 2022, covering end-users from

798 edge sites, 30 cites, and 3 ISPs in one country. Similar to traditional methods [1, 26, 29], our

data cleaning primarily focuses on correcting erroneous values and imputing missing values with

mean or median using programmatic heuristic approaches. Figure 2 (a) depicts the specific number

of records for each application 3.

In Table 1, we highlight the limitations of existing open-source datasets and justify the need

for SNESet. Most realistic platform datasets only include sever-side QoS metrics and lack or

3The terms "domain" and "application" are used interchangeably in the following sections unless explicitly stated otherwise.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 236. Publication date: December 2023.



Demystifying the QoS and QoE of Edge-hosted Video Streaming Applications in the Wild with SNESet 236:7

Fig. 2. The number of records (a) and edge sites (b) of each applications. Both x axes represent different

applications.

have limited client-side QoE metrics (e.g., Alibaba Dataset [38], Azure Dataset [27] 4, and Google

Dataset [100]). QoS encompasses the performance of each component within end-to-end video

delivery system, including content origin sites, edge platforms, and ISPs involved in last-mile

delivery to end-users [3]. As is defined by International telecommunication union (ITU) [50], QoE

refers to the user’s delight or annoyance and is typically measured using subjective metrics like

MOS, a score between 1 and 5. However, subjective metrics are costly and complex to collect [23].

Therefore, our focus is on objective QoE metrics that are easily measured and compared, such as

the stall ratio, which is widely used to characterize the experience of VSAs [60]. In the following

sections, we will use "QoE" to refer specifically to objective QoE metrics.

Existing open-source QoE datasets primarily focus on client-side metrics, with little inclusion

of QoS metrics, such as LiSSi lab Dataset [7] and Puffer [114] Dataset. These datasets are mostly

collected from simulated testbeds, whichmay not accurately reflect real-world deployment scenarios

for commercial VSAs. Moreover, the SNESet dataset offers a more comprehensive scope, covering

not only service-side QoS and client-side QoE metrics (more horizontal diversity), but also a wider

range of network protocol stacks (more vertical hierarchy). As illustrated in Table 2, SNESet
covers four network protocol stack: application layer, transport layer, network layer, and physical

layer. In contrast, most existing datasets are limited to one or two protocol stack layers.

The existing datasets mainly target testbeds and traditional centralized cloud platforms, typically

with one or few site in a country. While the Edge Dataset [112] does contain a significant number of

edge sites, the number of sites in SNESet is approximately 5.7× higher. More specifically, Figure 2

(b) shows the number of edge sites of different applications deployment. Additionally, SNESet
offers comprehensive affiliation information of end users such as edge sites, cities, and internet

service providers (ISPs), providing a potential understanding of the characteristic of ISP backbone

network and scheduling policy.

Recently, similar to Huawei Dataset [102], Cisco has built a testbed to investigate the relationship

between QoE and QoS for real-time communication services [23]. However, their dataset is not

publicly available. The limitations of current datasets has prompted the creation of SNESet. A
comprehensive schema and metric description of SNESet are listed in Table 2.

Unique properties of SNESet. (1) Comprehensive coverage: SNESet stands out in terms

of its metric diversity, wider coverage of specific metrics, and provides extensive affiliation informa-

tion of end users. (2) Large-scale edge platforms in the wild: Unlike previous datasets collected

from simulated testbeds, SNESet is derived from the real-world, large-scale public edge platform

NEP, featuring a 5.7× higher number of edge sites compared to previous datasets.

Limitations of SNESet and future plan. (1) The current version of SNESet primarily focuses

on the stall ratio and has limited QoE metrics. However, we can estimate the start-up delay QoE

4We only compared the Alibaba Dataset (2018 version) and Azure Dataset (2019 version) as they closely match the edge

scenarios. The latest versions of these datasets focus on emerging scenarios such as GPU clusters and microservices, which

are not directly relevant to VSA.
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Fig. 3. Paradigm of Potential Data-centric Problems.

using the tcp_conntime and avg_fbt_time metrics. Specifically, in the country where SNESet
is collected, TLS 1.2 is predominantly used (about 90%), allowing us to calculate the start-up delay

QoE as 4 ∗ tcp_conntime + avg_fbt_time. We acknowledge the importance of other metrics such

as average playback bitrate and playback bitrate jitter for comprehensive QoE evaluation [9]. To

enhance the QoE evaluation process, we plan to incorporate these metrics in future versions of

SNESet. (2) To expand its scope, we also plan to include additional QoS metrics such as TCP

telemetry information, BBR bandwidth estimation, and chunk-level video quality assessment (SSIM

or resolution) in the future. (3) Currently, SNESetmainly covers edge sites within its home country.

However, future plans involve expanding the dataset to encompass edge sites from various locations

around the world.

2.4 Data-centric Challenges and Problems

As depicted in Figure 3, Section 2.2 introduces the data collection system, which consists of

geo-distributed edge sites and the centralized cloud . Section 3 and Section 4 introduce two

upper-layer use cases: qualitative analytics and quantitative analytics , respectively. The afore-

mentioned represents our preliminary exploratory investigation into the QoS and QoE of VSAs on a

large-scale edge platform. However, there remain numerous data-centric problems and challenges

that require effective and efficient solutions in the future. Here we mainly divide these into three

aspects: data collection (§ 2.4), data preparation (§ 3.4), and data management (§ 5). For a more
comprehensive understanding of data-centric problems and challenges, we refer readers to [119]

for an extensive overview.

In Section 2.2, we have introduced our data collection system. Data collection is the process

of gathering and acquiring data, which fundamentally determines the data quality and quantity.

With the increasing number of edge sites and VSA traffic, it is important for service providers to

collect data that accurately reflects end users’ QoE while minimizing costs. This objective requires

both lightweight implementations and low runtime costs [19]. The former entails collecting data in

a non-intrusive manner to minimize modifications to the existing codebase. The latter requires

minimizing the impact of data collection on application performance, such as delay and throughput,

during runtime. Considering the above aspects, the current version of SNESet primarily focuses
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Fig. 4. Comparison of Huawei [102] and SNESet. (a) Histogram with 50 bins between 0 and 1; (b) Classifica-

tion using the method of [102], where No/Mild/Severe corresponds to 0/(0, 0.1]/(0.1, 1] respectively.

on the stall ratio QoE. However, in the future, we plan to optimize these aspects to cover additional

QoE metrics such as bitrate jitter. In addition, efficient integration [20, 113] of existing internal

datasets [17, 34] and external datasets from third-party platforms [10, 14] is also a key consideration.

3 QOS AND QOE CHARACTERIZATION

In this section, we characterize the QoS and QoE metrics included in SNESet and investigate their

relationship using Kendall correlation and information gain. Specifically, we select the most crucial

QoS and QoE metrics to assess and evaluate, enabling us to gain valuable experiences and insights

of VSAs’ performance on large-scale edge platform.

3.1 QoE Characterization

Similar to many prior studies [77, 114, 117], SNESet is specifically focused on a key determinant

of end-user QoEs: buffer_rate (namely stall ratio or re-buffering ratio). This metric represents
the percentage of the video that experiences frozen or stalling events during the playback period.

SNESet revealsmore severe stalling thanprior datasets collected on small-scale testbeds,

and provides more comprehensive coverage of high-value interval. Figure 4 (a) shows the

histogram of the stall ratios of the Huawei testbed and our real system (50 bins between 0 and 1).

Although both datasets have similar trends in the [0, 0.3] interval, our dataset has more comprehen-
sive coverage in the range of [0.4, 1]. Figure 4 (b) depicts the classification of the stall ratio using
the method of [102], where No/Mild/Severe corresponds to 0/(0, 0.1]/(0.1, 1] respectively. In the
Huawei testbed dataset, 74% of the records have a stall ratio of zero, while in our real scenario this

proportion is only 5%. Moreover, in the real scenario, 91% of the stall ratios are concentrated in

the interval (0,0.1], while in the Huawei testbed, only 25% of the stall ratios fall within this range.

These findings highlight the differences between simulation testbed and real-world scenarios and

underscore the need for a more fine-grained classification of stall ratios between (0, 0.1].

Stall ratio exists obvious diurnal pattern. Figure 5 depicts the average stall ratios of all the

applications during a week. We observe rough diurnal patterns, with two prevalent peaks around

12 PM and 8 PM. There is a clear trough in the afternoon and early morning. In addition, it is

intuitive that the stall ratio on weekends (120th-168th hour-of-week) is significantly higher than

that on weekdays due to the backbone congestion.

Stall ratio is diversified across different applications, ISPs, and geographical locations.

Figure 6 (a) shows that the mean and standard deviation of different applications’ stall ratios vary

significantly. For example, domain_18’s average stall ratio is almost 3× higher than domain_16’s.
This difference is due to the distinct business types of different video applications. On-demand
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Fig. 5. Average stall ratio of all VSAs during a week.

Fig. 6. The mean and standard deviation distribution of stall ratio classified by domain_name (a), isp (b), and

city (c), respectively.

video applications like TikTok benefit from the CDN capabilities offered by edge sites, typically

resulting in a small stall ratio. On the other hand, live streaming or real-time communication video

applications require additional codec and preprocessing processes. They are more sensitive to

network fluctuations and weak network conditions and generally experience a higher stall ratio. In

Figure 6 (b), we observe that there is not much difference in the stall ratio among different ISPs. The

slight difference may result from the ISP’s coverage density difference. Finally, Figure 6 (c) shows

that most cities have little difference in stall ratio, while some cities may experience a slightly

higher stall ratio due to the remote geographical location. It is also worth noting that the mean and

standard deviation is of the same order of magnitude, and typically, the more significant the mean,

the larger the standard deviation.

Implications: For edge vendors, there are several key considerations. (1) The testbed’s lower stall

ratio may not accurately reflect the actual scenario, requiring in situ learning. (2) Proactive

resource pre-provisioning is essential due to the periodic nature of the stall ratio, mitigating

potential future peaks. (3) Customized solutions are necessary for optimizing different ap-

plications on a case-by-case basis. (4) Expanding existing edge sites or adding new sites in

high-stall-rate cities should be considered for addressing stall issues in the future.
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Fig. 7. (a) CDF distribution of different layers’ failure rate (ICMP/TCP/Tengine represents Layer 3/4/5 respec-

tively.); (b) CDF distribution of two types of estimated TCP throughput.

3.2 QoS Characterization

SNESet contains multi-layer metrics to measure end-to-edge network latency and vari-

ous network failure rate. SNESet contains ICMP RTT (icmp_rtt, Layer 3) and TCP connection
time (tcp_conntime, Layer 4) to characterize the network latency between end-users and edge
sites (end-to-edge). Both of the two metrics are mainly distributed in [10, 100] ms 5. More specifi-

cally, 93.36% of ICMP RTTs were distributed in [10, 100] ms, which is 96.78% for TCP connection

establishment time. In addition, we also found that the median of the ratio of TCP connection time

to ICMP RTT is 1.6. The additional 0.6× might be caused by: (1) differences between ICMP and

TCP transport paths and (2) the processing delay of more protocol stacks.

SNESet contains the failure rate ofmultiple layers (icmp_lossrate/synack1_ratio/ 499_5xx_r-
atio represents the failure rate of ICMP/TCP/Tengine, which is Layer 3/4/5 respectively). Figure 7
(a) shows the CDF distribution of them. The P99 value of ICMP loss rate is around 5× higher than

its median, while the P99 value of TCP one-time success rate and Tengine failure rate are both

about 3× higher than their respective medians. We can also observed that the failure rate tends

to decrease as the hierarchy move up, which could be attributed to the error control mechanisms

present at lower layers.

Case study: TCP throughput estimation. Although the NEP currently mainly employs

BBR [22] as the congestion control algorithm, which offers real-time estimations of the mini-

mum RTT and maximum bottleneck bandwidth for end-to-end links, SNESet currently does not

incorporate BBR telemetry information. However, the comprehensive metrics mentioned above aid

in estimating the bandwidth of end-to-end network through alternative approaches. [71] provides

a short and useful formula for the upper bound on the TCP throughput:

TP < MSS/RTT ∗(1/√𝑝) (1)
where TP is the TCP throughput; MSS is the maximum segment size (fixed for each Internet path,

typically 1460 bytes); RTT is the round trip time (as measured by TCP); 𝑝 is the packet loss rate.
Moreover, an improved form of the above equation can be found in [82] as follows:

TP ≈ min

������
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where𝑊𝑚𝑎𝑥 is the maximum congestion window size. 𝑏 is the number of packets acknowledged by
a delayed ACK. Many TCP receiver implementations send one cumulative ACK for two consecutive

packets received [33], so 𝑏 is typically 2. As shown in In Figure 7 (b), the upper bound and improved

5Due to space limitations, the figure is not shown.
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Fig. 8. (a) CDF distribution of SNESet’s resource utilization; (b) CDF distribution of SNESet’s average first
byte return time.

Fig. 9. (a) CDF distribution of SNESet’s average and max I/O await time; (b) CDF distribution of P95 and

mean CPU utilization of Edge dataset and SNESet;

form of estimated TCP throughput are heavily-tailed and both of them are predominantly distributed

in [0.1MB/s, 10MB/s], accounting for 96.52% and 88.77% respectively. Moreover, the P99 upper

bound of estimated TCP throughput is around 3.3× its median (0.36 MB/s).

Compared to existing datasets, SNESet containsmore service-side resource usagemet-

rics, and provides more comprehensive coverage of CPU and memory utilization. (1)

Unlike existing QoS datasets [27, 38, 100, 112], SNESet not only captures CPU, memory, and

bandwidth utilization, but also includes comprehensive I/O metrics such as average I/O time

(io_await_avg) and utilization (io_util_avg). Figure 8 (a) depicts the CDF distribution of edge
sites’ CPU utilization, memory utilization, normalized bandwidth utilization and I/O utilization.

As shown in Figure 9 (a), the max I/O await time is heavily-tailed and the P99 of it is about 4×
higher than its median. (2) Compared to Alibaba Dataset [38] and Edge Dataset [112], SNESet has

much more even coverage of CPU and memory utilization. As shown in Figure 9 (b), the average

CPU utilization of Edge Dataset is mainly concentrated in [0, 0.2]. The average CPU utilization of

SNESet (red dotted line) has much more even coverage. This might be due to an upgrade of the

platform internal resources management strategy, or to the proliferation of applications deployment

on NEP. Similarly, as shown in Figure 10, we can also observe this phenomenon when compared to

Alibaba ECS both in terms of CPU and memory utilization. Despite having more even coverage,

the metrics of SNESet are generally less utilized compared to ECS (centralized cloud data centers).

This further suggests that NEP will need to deploy more efficient resource management strategies

in the future to achieve similar utilization as centralized cloud data centres.

SNESet comprises several metrics that describe the inner networks of each edge site

and vary across applications. Specifically, SNESet includes metrics such as avg_fbt_time,
inner_network_rtt and inner_network_droprate. The CDF distribution of edge sites’ average
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Fig. 10. CDF distribution of P95 and mean CPU/memory utilization of Alibaba ECS and our SNESet

Fig. 11. Box plots of different applications’ average first byte time and inner network droprate.The boxes

depict the 25th, 50th, and 75th percentiles, respectively; the two whiskers are one interquartile range (IQR)

past the low and high quartiles.

first byte return time (AFBT) is illustrated in Figure 8 (b), indicating a heavily-tailed distribution.

The 95th-percentile of the AFBT is 2.5× higher than its median (10ms), which could be attributed

to initial requests for specific content, leading to retrieval from the source site or centralized cloud.

In Figure 11, we display the distribution of AFBT and inner network droprate across various

applications. Most domains have a comparable distribution of average inner network droprate at

0.05%, but domains_4 (0.0353%) and domains_20 (0.0432%) exhibit notably lower droprates than

others. Conversely, the differences in AFBT among applications are more pronounced, with most

applications having a median AFBT of around 10ms or less. However, domain_20 has the highest

median AFBT at 15ms, while domain_16 has the lowest at 7ms. These variations in AFBT and inner

network droprate may be due to the differences in the lengths of intra-network resource paths that

various applications must traverse.

Implications: SNESet includes diverse QoS metrics from various network stacks, enabling

edge vendors and content providers to explore joint optimization of QoE through multi-layer

network protocol stacks. Moreover, it also opens up possibilities for edge vendors to develop

QoE-aware QoS optimization techniques that maximize resource utilization while ensuring a

positive user experience.

3.3 Relationship Between QoS and QoE Metrics

In this section, we investigate the correlation and information gain between QoS and QoE metrics.

Note that these two classes of evaluation methods are complementary. Correlation provides a first-

order summary of monotone relationships between stall ratio and QoS metrics. The information
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Fig. 12. (a) The median Kendall correlation coefficient of different QoS metrics. (b) The median information

gain of different QoS metrics.

gain can corroborate or augment the correlation when the relationship is not monotone. Further, it

provides a more in-depth understanding of the interaction between the QoS metrics by extending

to the multivariate case.

Correlation. To avoid making assumptions about the relationships between the variables, we

choose the Kendall correlation instead of the Pearson correlation. Kendall correlation is a rank

correlation that does not assume anything about the underlying distributions, noise, or nature

of relationships. In contrast, Pearson correlation assumes Gaussian noise and a roughly linear

relationship between variables [30]. To compute the correlation, we bin stall ratio based on the QoS

metrics, using bin sizes appropriate for each QoS metric of interest. For ratio variables between 0

and 1, we use 0.01 bins, and for delay-related variables, we use 1ms intervals. The Kendall correlation

coefficients are then computed between the mean-per-bin vector and the values of the bin indices

for each application. Using these "binned" correlation metrics allows us to retain the qualitative

properties we are interested in while reducing computational costs.

Information Gain. Correlations are helpful for understanding the interaction between vari-

ables if the relationship is monotonic, but this is not always the case. Moreover, we aim to move

beyond single metric analysis as correlation-based analysis cannot address whether QoS metrics

complement each other or capture the same effects, nor can it determine which top k metrics to

optimize for improved user experience. To address the above challenges, we augment the correlation

analysis using the information gain [75], which is based on the concept of entropy. The entropy of

random variable Y and the conditional entropy of Y given another random variable X is defined as:

𝐻 (𝑌 ) = −
∑
𝑖

𝑃 [𝑌 = 𝑦𝑖 ] log 𝑃 [𝑌 = 𝑦𝑖 ] (3)

𝐻 (𝑌 |𝑋 ) =
∑
𝑗

𝑃
[
𝑋 = 𝑥 𝑗

]
𝐻 (𝑌 |𝑋 = 𝑥 𝑗 ) (4)

where 𝑃 [𝑌 = 𝑦𝑖 ] is the probability that 𝑌 = 𝑦𝑖 . And the relative information gain is
𝐻 (𝑌 )−𝐻 (𝑌 |𝑋 )

𝐻 (𝑌 ) .

As with the correlation, we bin the data into discrete bins with the same bin specifications.

Figure 12 (a) presents the median Kendall correlation coefficients of various QoS metrics, with

CPU utilization having the highest correlation with stall ratio, likely due to both metrics exhibiting

peaks during the same hour of the day. Additionally, the correlation between stall ratio and date is

relatively high, possibly due to ISPs intentionally throttling bandwidth at the end of the month.
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Notably, memory utilization, average I/O utilization, and TCP one-time success rate do not show

any clear monotonic relationship with stall ratio. Figure 12 (b) displays the median information gain

of different QoS metrics. Despite a near-zero Kendall correlation, the TCP one-time success rate

(synack1_ratio) has the highest relative information gain, significantly higher than other metrics.
The lower correlation indicates a uniform synack1_ratio distribution across stall ratio intervals.
In contrast, the higher information gain shows that the division of synack1_ratio substantially
reduce the heterogeneity of stall ratio. Moreover, the top five metrics with the highest gain are all

network-related. Finally, most QoS metrics have an information gain of around 1%.

Implications: Improving the end-to-end network performance is still the primary measure to

reduce the stall ratio. Due to the lower impact of memory and I/O utilization on stall ratio,

for edge vendors, it is promising to colocate memory or I/O-intensive services with VSAs to

improve the overall resource utilization.

3.4 Data-centric Challenges and Problems

In this section, we have involved data processing, which generally includes the cleaning [1, 26, 29],

transforming [8, 94, 116], and augmenting [63, 73] raw data for downstream tasks. Each edge site

generates massive daily data volumes (TB, 1012), contributing to the overall data scale of NEP

reaching petabytes (1015). Filtering redundant information and reducing complexity (feature size

or sample size) are crucial for resource-constrained edge sites. In contrast, data augmentation

enhances diversity and addresses class imbalance issues. Currently, these sub-modules are manually

executed based on expert experience. However, automating the search for optimal combinations

and parameters, known as pipeline search [85, 93, 110], faces challenges due to the substantial

computational overhead and the exponential growth of search space. Therefore, more efficient and

effective search strategies are need in real-world scenarios.

4 QOS-TO-QOE BENCHMARK AND RESULTS

In previous sections, we qualitatively analyze the relationship between QoS and QoE metrics.

In this section, we aim to utilize learning-based models to quantitatively measure the impact of

different QoS metrics. The reason is that QoE metrics are commonly located in the upper application

layer, while QoS metrics reside in the lower system layer. Directly obtaining QoE metrics can be

challenging for some VSAs due to permissions or framework limitations. Therefore, QoS-based

prediction serves as a non-intrusive approach to assess QoE.

Specifically, in this section, we first put existing methods into a taxonomy and present how each

method works. Finally, to meet the real-time requirements of QoS and QoE detection in practical

scenarios, we evaluate various methods in terms of the prediction accuracy and time efficiency.

4.1 Problem Statement

Definition 1 (QoS-to-QoE Prediction). Assumewe observe a set of recordsD = {(x𝑡 , y𝑡 )}𝑡=1,...,𝑇 ,
where x𝑡 = (𝑥1𝑡 , . . . , 𝑥𝑚𝑡 ) is a vector of𝑚 QoS metrics (features) and y𝑡 is the vector of correspond-

ing QoE metrics (labels). Records (x𝑡 , y𝑡 ) are independent and identically distributed according to

some unknown distribution 𝑃 (·, ·). Suppose that our prediction model 𝐹 has parameters 𝜃 . Thus, the
QoS-to-QoE prediction can be formulated as follows:

ŷ𝑡 = 𝐹 (x𝑡 , 𝜃 ) = 𝐹 (𝑥1𝑡 , 𝑥2𝑡 , ..., 𝑥𝑚𝑡 , 𝜃 ) (5)
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where ŷ𝑡 is the model prediction results. The goal is to train a model 𝐹 (·, 𝜃 ) : R𝑚 → R, which

minimizes the expected loss L(𝐹 ) := E[𝐿(y, 𝐹 (x, 𝜃 ))]. Here 𝐿(·, ·) is the loss function and (x, y) is
a test record sampled from 𝑃 independently of the training set D.

4.2 Taxonomy and Workflow

The current mainstream methods can be divided into classical ML methods (e.g. linear regression,

SVM and decision trees), Gradient Boosting Decision Trees (e.g. LightGBM, XGBoost and CatBoost)

and DNN-based methods.

4.2.1 Classical ML Methods.

Linear regression-ElasticNet. ElasticNet [126] is a typical linear regression method that com-

bines the residual sum of squares between the predictions and targets with both 𝐿1-norm (Lasso)

and 𝐿2-norm (Ridge) regularization.

Support Vector Machine for Regression (SVR). SVR aims to minimize the 𝐿2-norm regular-

ization, not the squared error. The error, however, is maintained in constraint with margin 𝜖 . For
data points fall outside the margin, their deviations are added to the objective with weight 𝐶 .

Decision Trees (DTs). DTs are a non-parametric supervised learning method that recursively

partitions the feature space such that the samples with similar target values are grouped together.

Random Forest (RF) [43] is a variant of DTs that builds multiple trees independently. Each tree is

constructed from a random subsample of the training set and their predictions are averaged.

4.2.2 Gradient Boosting Decision Trees (GBDT) Methods.

GBDT are a typical class of methods where base estimators are built sequentially, and each estimator

attempts to reduce the bias of the former combined estimators. The current mainstream GBDT

methods include: LightGBM, XGBoost, CatBoost.

LightGBM [56]. LightGBM aims to improve the efficiency and scalability when the feature

dimension is high and data size is large. Specifically, LightGBM introduces two novel techniques:

Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB). With GOSS, it

exclude a significant proportion of data instances with small gradients and use only the remainder

for estimation. With EFB, it bundle mutually exclusive features to reduce the number of features.

XGBoost [25]. XGBoost is a scalable end-to-end tree boosting system. The scalability of XGBoost

is due to several important algorithmic and system optimizations. From the algorithmic aspect,

it proposes a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for

approximate tree learning. From the system aspect, it improves in two unexplored directions:

out-of-core computation and cache-aware learning.

CatBoost [84]. CatBoost (Categorical Boosting) introduce two key algorithmic techniques:

ordered boosting, a permutation-driven alternative to the classical algorithm, and an innovative

algorithm for processing categorical features.

4.2.3 DNN-based Methods.

Similar to [47], we introduce DNN-based model and the model architecture is shown in Figure 13.

Specifically, each categorical features are first fed into an individual embedding layer. The remaining

numerical features are fed into a fully connected layer with output dimensions equal to the

embedding dimension. We then perform element-wise product between each pair of embedding

vector and numerical output vector, concatenate the resulting vectors with the original embedding

vectors, and feed the concatenated vectors into the next multi-layer blocks. Finally, the output layer

implemented by a fully connected layer generates the final prediction. Here our DNN-based model

is a simple multilayer perceptron. We leave more complicated DNN models built with LSTM or

even Transformer as a direction for future work.
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Fig. 13. The architecture of deep neural network model.

4.3 Experimental Setup

Evaluation Metric. We evaluate different models based on their prediction accuracy and time

efficiency. (1) For prediction accuracy, we utilize two metrics: Mean Absolute Error (MAE) and

Symmetric Mean Absolute Percentage Error (SMAPE). Since the stall ratio typically falls between 0

and 1 and most values are concentrated between 0 and 0.1 (as demonstrated in Figure 4), Mean

Squared Error (MSE) - which is a commonly used metric in prediction tasks - can result in very

small values. Therefore, we opted not to use MSE. Here is a brief description of MAE and SMAPE:

• The mean absolute error (MAE) reflects the average of the absolute errors. To compare the MAE,

we multiply it by 100 since the original value range of the stall ratios is [0, 1].

𝑀𝐴𝐸 =
1

𝑇𝑡𝑒𝑠𝑡

𝑇𝑡𝑒𝑠𝑡∑
𝑡=1

|𝑦𝑡 − 𝑦𝑡 | (6)

• The symmetric mean absolute percentage error (SMAPE) reflects the percentage of the error to

the ground-truth value. Since it is scale-independent, prediction errors are considered regardless

of the magnitude of the records.

𝑆𝑀𝐴𝑃𝐸 =
1

𝑇𝑡𝑒𝑠𝑡

𝑇𝑡𝑒𝑠𝑡∑
𝑡=1

|𝑦𝑡 − 𝑦𝑡 |
( |𝑦𝑡 | + |𝑦𝑡 |)/2

∗ 100% (7)

where 𝑇𝑡𝑒𝑠𝑡 is the number of records in test datasets, 𝑦𝑡 is the forecast value of the ground truth 𝑦𝑡 .
For all two of them, the lower value represents the higher accuracy of prediction.

(2) We evaluate time efficiency using three metrics: the average training time and inference time

of each fold, and the time taken for hyper-parameter tuning.

Methods Implementation. We implemented all machine learning methods using Scikit-learn

1.1.3 and employed random search [13] to determine the best hyperparameters for each model.

For the DNN model, we used Pytorch 1.8.1 with a batch size of 64 and 50 training epochs. We

optimized the DNN model with the Adam optimizer [57], and its learning rate decayed with the

ExponentialLR learning rate scheduler starting from 0.01. Additionally, we applied the same feature

engineering to process the raw data for both the ML and DNN models and utilized mean absolute

error as the loss function for both models. Finally, we evaluated accuracy and time efficiency using

5-fold cross-validation.

Hardware and Platform. All the models are trained and evaluated upon a Linux server with

80 Intel(R) Xeon(R) Gold 5218R @ 2.10GHz, 819GB RAM, and NVIDIA Tesla-V100.
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Table 3. Comparison of model accuracy in terms of MAE and SMAPE across varying dataset sizes. "-" indicates

that the training time for each fold of cross-validation exceeds 12 hours.

Methods
5K 10K 50K 100K 0.5M

MAE SMAPE MAE SMAPE MAE SMAPE MAE SMAPE MAE SMAPE

ElasticNet 2.3124 63.30% 2.3346 63.41% 2.3175 63.47% 2.3339 63.75% 2.3330 63.54%

SVR 2.2345 71.27% 2.5799 64.76% 2.3310 70.16% 2.5708 67.25% 2.8742 78.96%

RF 2.2211 60.16% 2.2430 60.84% - - - - - -

LightGBM 2.1181 60.83% 2.1819 62.18% 2.2124 63.34% 2.2347 63.52% 2.2546 63.24%

XGBoost 2.2151 61.09% 2.2544 62.05% 2.2694 62.78% 2.2614 62.35% 2.3105 63.05%

CatBoost 2.2161 60.97% 2.2748 62.25% 2.3035 62.91% 2.3274 63.36% 2.3657 63.75%

DNN 2.2157 64.49% 2.4095 70.02% 2.3628 68.93% 2.2432 68.14% 2.3105 72.19%

Table 4. Comparison of model training time and inference time across varying dataset sizes (measured in

seconds).

Methods
5K 10K 50K 100K 0.5M

Training
Time (s)

Inference
Time (s)

Training
Time (s)

Inference
Time (s)

Training
Time (s)

Inference
Time (s)

Training
Time (s)

Inference
Time (s)

Training
Time (s)

Inference
Time (s)

ElasticNet 0.51 0.00 1.86 0.01 3.42 0.01 8.59 0.01 26.05 0.02

SVR 5.29 0.01 6.85 0.01 44.87 0.01 110.72 0.02 555.56 0.03

RF 93.53 0.01 321.82 0.02 - - - - - -

LightGBM 13.03 0.02 14.75 0.03 51.02 0.27 70.30 0.45 264.42 2.14

XGBoost 43.15 0.03 87.09 0.07 368.85 0.20 1328.98 0.70 8141.11 5.11

CatBoost 16.45 0.01 18.28 0.01 146.43 0.03 173.31 0.04 351.99 0.10

DNN 37.04 0.06 93.63 0.19 315.98 0.48 622.31 0.84 2288.67 2.68

4.4 Experimental Results and Analysis

This section evaluates the mainstream methods on SNESet for QoS-based QoE regression. We

present the experimental results regarding prediction accuracy and time efficiency in the domain-

general (for all the applications) and domain-specific scenario (for specific applications). Particularly,

we aim to answer the following research questions via the experiments:

• RQ1: In the domain-general scenario, how does the dataset’s scalability affect the performance

of different methods?

• RQ2: In the domain-specific scenario, how does the model accuracy change over time (by training

models using data from the first month and evaluating their performance using data from the

subsequent one or two months as the testing set)?

• RQ3: Since the accuracy of GBDT methods are generally better, what’s the feature importance

of different GBDT models?

• RQ4: Considering the timeliness of real-world deployment, how GPU affect the performance of

GBDT methods?

4.4.1 Domain-general Experiments (RQ1).

Table 3 and Table 4 show the comparison of different models’ accuracy in terms of MAE and

SMAPE and the comparison of models’ training time and inference time across varying dataset

sizes respectively. From the evaluation results, we summarize three key observations for classical

ML methods: (1) With the increase of dataset size, the accuracy of the ElasticNet remains relatively

stable. In contrast, the performance fluctuation of SVR is more pronounced, with the maximum

MAE/SMAPE being 2.8742/78.96% on the 0.5M/0.5M dataset and the minimum being 2.2345/64.76%

on the 5K/10K dataset. This may be related to the optimization objective of the SVR model, which

only has the L2-norm of the model coefficient vector and considers the prediction error only as

a model optimization constraint. (2) When the size of dataset is small (5K and 10K), the Random

Forest model has the highest accuracy in terms of SMAPE due to the aggregation of multiple base

estimator predictions, resulting in a smaller relative error. However, due to the need to aggregate

multiple base estimators, the increase in time expenditure becomes significant as the dataset size
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Table 5. Performance comparison of different models using the first month’s dataset for training and the

datasets from the following one or two months for testing.

Train Test (1 month) Test (2 months)
Methods

MAE SMAPE MAE SMAPE MAE SMAPE

ElasticNet 0.78 39.80%
1.07

(↑ 0.29)
55.46%

(↑ 15.66%)
1.32

(↑ 0.54)
57.95%

(↑ 18.15%)
SVR 1.00 56.43%

1.14

(↑ 0.14)
60.59%

(↑ 4.16%)
1.40

(↑ 0.39)
62.90%

(↑ 6.47%)
RF 0.68 36.75%

0.93

(↑ 0.25)
45.53%

(↑ 8.78%)
1.16

(↑ 0.48)
48.13%

(↑ 11.38%)
LightGBM 0.61 33.88%

0.842

(↑ 0.24)
41.90%

(↑ 8.02%)
1.28

(↑ 0.67)
50.36%

(↑ 16.48%)
Xgboost 0.55 31.19%

0.86

(↑ 0.31)
42.37%

(↑ 11.18%)
1.20

(↑ 0.65)
47.55%

(↑ 16.36%)
Catboost 0.59 33.12%

0.841

(↑ 0.25)
41.60%

(↑ 8.48%)
1.21

(↑ 0.62)
47.72%

(↑ 14.60%)
DNN 0.99 47.33%

0.96

(↓ 0.03)
44.38%

(↓ 2.95%)
1.21

(↑ 0.22)
47.79%

(↑ 0.46%)

increases. For datasets larger than 10K samples, the training time for each fold of cross-validation

exceeds 12 hours. As a result, we use "-" to indicate in those cases. (3) Across various dataset sizes,

classical ML methods generally have a lower average inference time than tree-based boosting

methods and DNN-based methods.

When it comes to the tree-based boosting methods, we first conclude that the tree-based boosting

methods generally outperform classical machine learning methods. In addition, among the three

gradient boosting decision tree (GBDT) methods, LightGBM has the best MAE accuracy and the

shortest training time. When the dataset size is equal to or larger than 50K, XGBoost achieves the

highest SMAPE accuracy. However, the average training time of the XGBoost model is also the

highest among the three GBDT methods, which becomes more pronounced as the dataset size

increases. For example, when the dataset size is 0.5M, the average training time of the XGBoost

model is more than 10× that of LightGBM and CatBoost. Correspondingly, the average inference

time of the CatBoost model is the smallest among the three GBDT methods. When the dataset

size is greater than 10K, it is approximately one-tenth of LightGBM and XGBoost. DNN-based

models may underperform linear regression methods in certain cases, which could be due to the

unrepresentative training dataset or the simpler model structure that requires more careful design.

4.4.2 Domain-specific Experiments (RQ2).

Table 5 shows the performance comparison of different methods in terms of MAE and SMAPE in

the specific environment. From the evaluation results, we summarize three key observations as

follows: (1) Similar to the general environment, tree-based boosting methods generally outperform

classical ML methods in terms of both MAE and SMAPE. (2) Moreover, the prediction errors of both

classical ML methods and tree-based boosting methods, measured by MAE and SMAPE, tend to

increase gradually over time. Among them, ElasticNet exhibits the most significant error growth in

SMAPE, with an increase of 15.66% and 18.15%, respectively. (3) However, it is worth noting that the

DNN-based method shows the smallest increase in MAE and SMAPE over time and even achieves

a lower error in the following month. Compared to classical ML methods and GBDT methods,

DNN-based methods can capture more complex implicit correlations.

4.4.3 Feature Importance of GBDT Methods (RQ3).

Figure 14, Figure 15 and Figure 16 respectively illustrate the feature importance of three GBDT

methods in domain-general and domain-specific scenarios. In the domain-general scenario, while

the ranking order varies, the top five influential features for LightGBM and CatBoost are generally
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Fig. 14. The feature importance of LightGBM in the general and specific environment.

Fig. 15. The feature importance of XGBoost in the general and specific environment.

the same, namely ’domain_name’, ’city’, ’isp’, ’hour’, and ’reset_ratio’. However, it is worth noting

that XGBoost is unique in that the top five features do not include ’hour’ and ’city’, but instead

introduce ’node_name’ and ’icmp_lossrate’.

In comparison, in domain-specific senario, the top five most influential features of the three

methods differ considerably, but they all include ’date’, ’hour’, and I/O-related features. Additionally,

because the domain-specific senario involves data from the same domain within the same city and

the same ISP, the feature importance of ’domain’, ’isp’, and ’prov’ for all three methods is zero.

Finally, it is worth noting that for CatBoost, in the specific environment, the impact of ’date’ and

’hour’ is significantly greater than that of other features, roughly 2 ∼ 3× higher.

4.4.4 GPU Effects for GBDT Methods (RQ4).

Effects on accuracy. For LightGBM and XGBoost, the same hyperparameters yield the same

accuracy on both CPU and GPU. However, for CatBoost, the same hyperparameters result in

significantly higher accuracy on GPU compared to CPU. Figure 17 depicts the comparison of MAE

and SMAPE accuracies for CatBoost using both CPU and GPU across varying dataset size. For
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Fig. 16. The feature importance of CatBoost in the general and specific environment.

Fig. 17. Comparison of MAE and SMAPE for CatBoost model with CPU and GPU.

Fig. 18. Training time comparison. (a) The training time of LightGBM with CPU and GPU. (b) The training

time of XGBoost with CPU and GPU.

example, for CatBoost, when the dataset size is 5K, the accuracy improvement is the greatest using

GPU, reducing MAE and SMAPE by 4.19% and 2.10%, respectively, compared to CPU. The superior

performance of the GPU versions of CatBoost can be attributed to their low-level optimization to

utilize specific hardware resources on the GPU, such as high-speed memory and parallel computing.

This optimization significantly improves the computational efficiency of the models, ultimately

resulting in higher accuracy.

Effects on training time. The use of GPU significantly improves the training time of LightGBM

and XGBoost. As is shown in Figure 18, for LightGBM, the training time with GPU is reduced by
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Fig. 19. CatBoost training time comparison.

an average of 46.97% compared to CPU, while for XGBoost, the reduction is 65.21% on average.

It is worth noting that as shown in Figure 19, when the dataset size is less than or equal to 50K,

the training time of CatBoost on GPU is higher than that on CPU. In these cases, the overhead of

transferring data to the GPU and running computations on the GPU may outweigh the benefits of

parallelization. Therefore, training on CPU may actually be faster.

4.4.5 Main Findings.

Our main findings of this section are summarized as follows:

• Random Forest (RF) generally outperform other classical machine learning methods. However,

the training time of RF grows exponentially as the size of dataset increases.

• In both the general and specific environment, the GBDT methods generally outperform classical

machine learning methods. Among the three GBDT methods, LightGBM has the best MAE

accuracy and the shortest training time.

• DNN-based methods demonstrate more robust performance over time, capturing the complex

and implicit correlations.

• In the general environment, the top five influential features for GBDT methods are generally the

same. However, in the specific environment, significant differences are exhibited.

• CatBoost achieves improved accuracy on GPUs compared to CPUs with the same hyperparame-

ters. Moreover, GPU can speed up the training time of GBDT methods on large dataset, however

it cannot make them as quick as classical ML methods.

5 DISCUSSION AND FUTUREWORK

Effective DNN-based model. Although this study employed a DNN-based method with a fully

connected neural network, several advanced neural networks could also be applied to the QoS-based

QoE problem. For instance, a graph neural network could capture the spatial correlation among

different edge sites, while recurrent neural networks could capture temporal dependencies. Future

research could investigate the applicability and effectiveness of these neural networks in addressing

the QoS-based QoE problem.

Online processing. Previous sections mainly focus on the offline scenarios of QoS-based QoE

prediction. Although Section 4.4.2 briefly discusses the online scenarios, the next phase of online

processing (deployment) should consider dealing with dataset shift [90] and catastrophic forget-

ting [88] with the trade-off between the accuracy and efficiency of the frequent model updates on a

real deployment environment.

Diagnosis and cost-efficient QoE optimization. This paper primarily focused on measuring

the impact of QoS metrics on user QoE. Future work could explore mechanisms to proactively

diagnose quality issues to minimize their impact on users’ QoE and find the most cost-efficient

methods to maximise QoE improvements.
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Data integration. In this paper, we mainly focus on combining both QoS and QoE records from

different edge sites. However, to improve data quality, it may be necessary to integrate data from

various sources, including third parties. This might present potential challenges such as security

risks and inconsistent data sources.

Data Cleaning. Currently, our data cleaning methods primarily center on rectifying erroneous

values and imputing missing values with mean or median using programmatic heuristic approaches.

However, such heuristics can be inaccurate or ineffective. Thus, exploring learning-based meth-

ods [42, 55] that not solely focus on the cleaning itself but also enhance the final model performance

holds significant promise.

Cloud-edge collaborative distributed data management. Data management system is re-

sponsible for handling the underlying raw data and providing interfaces for upper-layer applications.

Currently, each edge site persists the structured QoS and semi-structured QoE datasets on SSDs

and transmits them to the centralized cloud for management via HTTPS. However, the centralized

data management exist the limitations of significant network bandwidth overhead and transmis-

sion time consumption. To address these challenges, there is an urgent need for a cloud-edge

collaborative distributed data management system. Unlike existing distributed data management

systems [45, 52, 111], the unique challenge is threefold: (1) In the future, the underlying data consist

not only of structured QoS data and semi-structured QoE data but also semi-structured system logs,

graph data and even videos. (2) The number of geo-distributed edge sites is expected to be in the

hundreds or thousands, which is significantly higher than the typical distributed databases that

support mostly dozens of nodes. And the connection between these sites is established through

wide area networks (WAN) instead of local area networks (LAN), leading to increased network

throughput fluctuations. Moreover, compliance with respect to dataflow constraints is also a key

consideration, controlling the movement of data across borders [12]. (3) The data management

system also need to guarantee low latency and high throughput for concurrent query requests from

upper-layer applications, such as batch processing, OLTP, and OLAP. These require new designs of

cache and materialized views for these large-scale WAN-connected edge sites, improving query

performance and simplifying data access while reducing maintenance overhead.

6 RELATEDWORK

QoS characterization of commercial edge/cloud platforms. Recent work on datacenter

characterization has mainly focused on the centralized cloud datacenter (Microsoft [27, 40, 92],

Facebook [72, 91], Google [76, 100, 103], and Alibaba [39, 68, 109]) and seldom targets the geo-

distributed edge sites. Xu et al. [112] perform a first-of-its-kind measurement study on a leading

public edge platform in China. However, the number of network protocol stacks covered by their

dataset is less than ours, and it does not include QoE-related metrics. Wang et al. [107] examined

the WAN traffic characteristics in Baidu’s datacenter network, but the number of geo-distributed

sites they studied is much smaller than NEP.

Modeling and optimizing QoE. In academia, the current research on modeling and optimiz-

ing QoE can be categorized into two main groups: the multimedia community and the network

community. The multimedia community mainly focuses on visual quality assessment, traditionally

relying on pixel-level patterns and data-driven models (e.g., PSNR [51], SSIM [108], and VMAF [80])

as well as deep learning models [32, 118, 122] to model users’ perception of encoded video. Recent

QoE models in this community have incorporated streaming-related incidents (join time, bitrate

switches,etc) [31, 89] and visual attention [35, 81]. However, these models often focus on subjective

metrics, such as MOS, which can be expensive and complex to collect.
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In the network community, researchers have focused on adaptive bitrate algorithms that aim to

maximize bitrate based on available network throughput. Traditional approaches include buffer-

based [46, 48] and rate-based algorithms [54, 64, 95], while recent advancements utilize control

theory [114, 117], ML-based throughput prediction [5, 96], or deep reinforcement learning [70].

However, the performance of these algorithms in emulated environments or synthetic datasets

may not generalize to real-world scenario.

Measuring and characterizing video streaming applications (VSAs). Numerous studies

on VSAs [2, 4, 11, 53, 101] have been conducted, covering various aspects such as architecture,

performance characterization, and user access patterns, etc. Recent research has expanded to

specific types of VSAs (live streaming [61, 66] and real-time communications [24, 65, 69]), 5G

environments [79], and mobile devices [41]. While some prior works have implemented passive

measurements in the wild [18, 74], their methodologies are specific to certain applications and may

not be generalizable. Moreover, few studies have included both server-side QoS and client-side

QoE. SNESet is the first active measurement dataset that captures server-side QoS and client-side

QoE metrics for eight VSAs in large-scale edge sites.

Distributed data analytics. This is a well-studied problem in the literature [12, 28, 49, 62, 97,

115], with extensive research covering many aspects of the problem, including distributed query

processing, parallel computing frameworks, data placement, and privacy considerations. Some

studies have also focused on WAN-connected geo-distributed sites. For instance, [86] address the

problem of optimal task placement among geo-distributed sites to minimize query response time.

[105, 106] proposed WANalytics and Geode, aiming to minimize data transfer costs. Similarly, [104]

proposed the Clarinet system, which considers WAN-aware optimization for achieving low query

response times. However, unlike these works that typically involve only a few or dozens of sites,

our edge platform consists of hundreds or thousands of WAN-connected geo-distributed edge sites.

7 CONCLUSION

In this paper, we propose SNESet, the first active measurement dataset of eight video applica-
tions, including both server-side QoS and client-side QoE metrics, on a public edge platform. We

characterize the QoS and QoE metrics in SNESet and compare them with existing datasets. Our

qualitative analysis examines the impact of QoS metrics on QoE using Kendall correlation and

information gain. In contrast, our quantitative analysis measures the influence of different QoS

metrics through mainstream regression methods. This study represents a preliminary exploratory

analysis toward understanding the QoS on QoE of VSAs on a large-scale edge platform.
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