
PieBridge: Fast and Parameter-Efficient On-Device Training via
Proxy Networks

Wangsong Yin1, Daliang Xu1, Gang Huang1,2, Ying Zhang1
Shiyun Wei3, Mengwei Xu4#, Xuanzhe Liu1

1School of Computer Science, Peking University, Beijing, China
2National Key Laboratory of Data Space Technology and System, Beijing China

3Zhongguancun Laboratory, Beijing, China
4Beijing University of Posts and Telecommunications, Beijing, China.

yws@stu.pku.edu.cn
{xudaliang,hg,zhang.ying,weishiyun,liuxuanzhe}@pku.edu.cn

mwx@bupt.edu.cn

ABSTRACT
On-device training Neural Networks (NNs) has been a crucial cat-
alyst towards privacy-preserving and personalized mobile intel-
ligence. Recently, a novel training paradigm, namely Parameter-
Efficient Training (PET), is attracting attention in both the machine
learning and system community. In our preliminary measurements,
we find PET well-suited for on-device scenarios; yet, its parameter
efficiency does not translate coequal to time efficiency on resource-
constrained devices, as the training time is dominated by the frozen
layers.

To this end, this work presents PieBridge, an on-device train-
ing framework with both time and parameter efficiency. Its key
idea is to dynamically approximate the frozen layers to cheaper
ones (subnets) with data awareness during PET. To achieve effec-
tive and efficient approximate training, we introduce (1) a pre-
training-assisted on-cloud subnets generation method and (2) an
edge-friendly on-device data-aware subnets routing method. The
subnets generation method performs fine-grained pruning and la-
tent space alignment to generate a series of high-quality proxy
subnets with varying speed-accuracy trade-offs for the deployment-
ready NN. The subnets routing method perceives data diversity
from two unique perspectives (referred to as importance and dif-
ficulty). The routing strategy is provided by an offline-learning
and online-estimation fusion, which is accurate, end-to-end and
cost-effective on devices. Through extensive experiments, we show
that PieBridge exhibits up to 2.5× training speedup compared to
state-of-the-art PET methods, and up to 6.6× speedup compared to
traditional full model training and other on-device training frame-
works, without compromising parameter efficiency and accuracy.
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1 INTRODUCTION
On-device training Neural Networks (NNs) has been a crucial cat-
alyst towards privacy-preserving and personalized mobile intel-
ligence. There exist numerous applications: input prediction per-
sonalization [94], sequential recommendation system [43], video
analytics [25], voice assistant wake-up service [5], etc. Due to its
huge resource demand, substantial prior literature [11, 16, 17, 55, 73,
92, 102, 103, 106] have attempted to alleviate its resource tension
on mobile devices.

Recently, Parameter-Efficient Training (PET) methods such as
adapter [50, 80] and LoRA [52] have been widely recognized as
an effective training paradigm. Freezing most of the pre-trained
weights, PET achieves competitive accuracy by adjusting only a
tiny portion (e.g., ≤1%) of parameters compared to fully fine-tuning
the model. Thereby, PET can efficiently deploy a shared foundation
NN [96, 99] to multiple downstream tasks on devices, with only
a few plug-and-play parameters. As will be shown in §2.2, it also
reduces the training overhead including memory footprint and data
labels — two scarce resources on mobile devices. It could even offer
enhanced data security by leveraging TEE to protect the plugged
parameters [104].

However, such parameter efficiency does not translate coequal
to time efficiency. For instance, when fine-tuning ResNet50 [47]
on a MI 10 smartphone, PET methods with less than 1% trainable
parameters still consume up to 96% and on average 65% of the
training time compared to traditional full-model fine-tuning (§2.2,
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Figure 2b). Such long training time results in more energy consump-
tion, compromised user experience and delayed personalization
service. Diving into the reason, we find out that the frozen layers
dominate the training time (both forward pass and backward pass).
For instance, when training Vision Transformer (ViT_base) [33] on
NVIDIA Jetson TX2 with PET methods, the frozen layers account
for 96.34%—99.59% of the computation time (Table 2). This obser-
vation provides a key opportunity that, as the compute-intensive
layers are frozen during training, we can approximate them with
cheaper ones (dubbed as Proxy sub-networks, or subnets in short).

The main challenge in accelerating PET through NN approx-
imation is that a simple, static replacement strategy could result
in nontrivial degradation of convergence accuracy. For instance,
approximating the frozen layers of a ViT_base with a structurally
identical network that has significantly fewer FLOPs (e.g., < 50%)
for fine-tuning on the DTD [3] dataset would result in a 29.11% de-
crease in accuracy (§5.2, Figure 13), and this number would further
increase on more complex datasets [2, 8, 9]. This arises from two
aspects: one is the error between the approximated network and
the original network; the other is the compromised generalization
ability due to the decreased model capacity.

In response, this work presents PieBridge, the first fast PET
framework for mobile devices. Instead of statically approximat-
ing the frozen layers during PET, the key idea of PieBridge is
data-aware dynamic approximation and routing. It’s based
on a key insight that the approximation of frozen layers must be
more fine-grained, i.e., be dynamic for different training samples
during on-device training due to the high diversity of real-world
data [29, 31, 41, 45, 48, 54, 76, 100, 102]. More specifically, the train-
ing data exhibits opportunistic diversity in two unique aspects:
difficulty and importance. Difficulty is that some training samples
are intrinsically easier to extract accurate and informative features
from. Importance is that some non-trivial training samples can
facilitate faster convergence and better generalization. We define
them in our system model and show their ubiquitous presence in
§2.3.

Realizing the above design needs to tackle two crucial challenges.
First, training-oriented subnets are hard to acquire: they must be
with low approximation-induced accuracy loss, fast on-device exe-
cution speed, and a vast latency-accuracy trade-off space. Second,
as will be shown in §2.3, perceiving data diversity is non-trivial:
data importance is stateful, and data difficulty is stateless but pos-
terior. Online perceiving data diversity brute-force and forming
routing strategy introduce undesirable extra time overhead.

PieBridge incorporates a two-stage design akin to prior liter-
ature [34, 87, 89]: on cloud (offline), it pre-generates the approxi-
mated subnets through public data; on devices (online), it finetunes
the models by judiciously routing the data to proper subnets. Specif-
ically, the aforementioned challenges are tackled in the following
two stages: the on-cloud pre-approximation and the on-device data-
aware routing.

In the first stage, PieBridge employs a pruning-based fine-
grained approximation method. By gradually and structurally re-
moving various components from the original NN, this method
generates subnets with faster on-device execution speed. The de-
sign differs significantly from prior inference-oriented pruning-
based NN approximation [18, 60], since: (1) It redesigns the pruning

specification for PET, ensuring that the pruned NN structure is
compatible with the parameter efficiency of the original NN. (2) It
recognizes that the requirements of NN approximation for training
are more stringent (i.e., latent space alignment instead of trivial la-
bel alignment), thereby proposes a lightweight on-cloud retraining
mechanism for more effective NN approximation.

In the second stage, PieBridge proposes an online-offline fused
data perceiving and subnets routing method. For data difficulty, it
offline trains a transferable tiny policy model with public data as
a substitute for online traversing all the subnets on devices; For
data importance, it builds an online monitor to employ observed
training loss for zero-overhead estimation. Specifically, the key in-
sight of the policy model is that system-level compute-expensive
estimation can be simplified using a data-driven black-box model.
It perceives data difficulty through a novel joint training mecha-
nism with subnets. Our method orchestrates the above perception
(difficulty and importance) into subnets routing strategy during
on-device training. Through these algorithm-system co-design, our
method is accurate, end-to-end and cost-effective on devices.

We implemented PieBridge on multiple mobile/embedded de-
vices including Nvidia Jetson TX2 [12], Raspberry Pi 4B [14], MI
10 smartphone [10] and an NPU-empowered Commercial Off-The-
Shelf (COTS) device Huawei Mate 30 [7]. We then evaluate its
performance on four popular datasets [1–4] and three representa-
tive NN architectures [33, 47, 51]. The results show that PieBridge
consistently outperforms baselines in terms of time-to-accuracy,
achieving up to 6.6× on-device speedup compared to traditional
full model training and other competitive on-device training frame-
works [55, 73], and 1.5×–2.5× speedup compared to state-of-the-art
PET methods. Meanwhile, PieBridge does not compromise con-
vergence accuracy and parameter efficiency. Moreover, with the
assistance of NPUs [6], PieBridge makes on-device training more
practical on COTS devices: a medium-sized workload (ResNet50,
Caltech-101) requires only 0.21 hours and 0.91 kJ of energy on
Huawei Mate 30.

The major contributions are summarized below.
• We thoroughly explore a key opportunity for tapping into the
potential of parameter efficiency: dynamic frozen-layer approxi-
mation, and propose the first on-device training framework with
both time and parameter efficiency.
• We introduce a pre-training-assisted on-cloud approximation
method with high-quality speed-accuracy trade-offs, as well
as an edge-tailored data perceiving and routing method that
effectively and fully exploits the benefits brought by frozen-layer
approximation.
• We implement PieBridge on diverse mobile/edge devices and
demonstrate its effectiveness through extensive experiments.
PieBridge makes on-device NN adaptation and deployment
muchmore practical for COTS devices in the era of deep learning.

2 BACKGROUND AND MOTIVATION
2.1 Parameter-Efficient Training
Parameter-Efficient Training (PET) is a class of training techniques
that aims to achieve performance comparable to full model train-
ing while freezing most pre-trained parameters. Its parameter effi-
ciency exhibits the following two pivotal characteristics: (1) Few
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PET Method Trainable layers Formula Trainable
Parameters

Linear Probing The last linear layer 𝑦 = 𝑥 ·𝑊 + 𝑏 0.69%

Last-K The last 𝐾 layers N/A ≥8.3%

TS Layers Task-specific layers
(Norm. layers here) N/A 0.87%–2.80%

Adapters The inserted adapters 𝑦 = 𝑥 + 𝜎 (𝑥 ·
𝑊𝑑𝑜𝑤𝑛 ) ·𝑊𝑢𝑝

0.71%

Table 1: Comparisons of practical on-device PET methods.
Model: ViT_base.

Figure 1: A layer-level general abstraction of PET.

adjustable parameters. Table 1 provides a detailed presentation.
(2) Statically predefined trainable components. Trainable layers
remain fixed during PET.

The rationale behind PET is that, through pre-training on large-
scale datasets, the NN has learned a general inductive bias that is
close to the downstream task (e.g., object contours in CV tasks).
Therefore, the expression ability brought by only adjusting a small
number of parameters can adapt this bias to the downstream task.
PET is generally orthogonal to the deep model design and the train-
ing optimizers, and has gained lots of attentions in both academia
and industry with the rise of large pre-trained models.

We summarize widely used on-device PET methods in Table 1.
(1) “Linear Probing” means only fine-tuning the output layer and
maximizing the retention of pre-trained knowledge.It can achieve
accuracy close to or even better than fine-tuning all parameters
according to recent studies, especially when data domains are
close [59, 61, 68, 81]. (2) “Last-K” method tunes the last 𝐾 lay-
ers based on the rationale that layers close to the NN input learn
generic transferable features [30, 42, 90]. (3) “TS layers” means
fine-tuning task-specific layers for specific downstream tasks, e.g.,
normalization layers for domain adaptation, prefix layers for tuning
language models [67], or text-embedding layers for adding new
concepts into text-to-image diffusion models [38]. (4) “Adapters”
method proposes to inject trainable, task-specific “adapter” modules
between layers of the pre-trained model [50, 80]. There are other
advanced PET techniques such as LoRA [53] and p-tuning [71], yet
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Figure 2: The preliminary measurement results of PET. (a)
Theoretical memory consumption of fine-tuning all parame-
ters (FT-All) and PET (ViT_base: Adapters; ResNet50: Linear
Probing; MobileNetV3: Last-3; mini-batch size=4). (b) Wall-
clock training time per epoch (ResNet50 + Caltech-256 +
MI10, LP: Linear Probing). Red dotted line: the average daily
training-available time on smartphones (2.7 hours) [94].

they are mainly designed for very large models (e.g., LLMs) and are
not readily well deployed on devices.
A unified abstraction of PET. We unify the above PET meth-
ods into a general abstraction for the design of PieBridge. As
shown in Figure 1, the “frozen block” remains unchanged after
pre-training, while the “trainable block” is optimized during down-
stream fine-tuning. Each “block” contains as many consecutive
frozen or trainable layers as possible. In a PET training iteration,
both the frozen and trainable blocks need computing the forward
pass. During the backward pass phase, the frozen blocks only need
to compute the error gradients, while the trainable blocks not only
compute the error gradients but also perform weight updates. Note
that when all the components preceding a specific trainable block
are frozen, there is no need to continue computing the backward
pass further.

2.2 Preliminaries
Observation#1: PET is friendly to the on-device deployment
of foundation NNs. With the scaling of NN size and advance-
ments in pre-training techniques [33, 46], on-device NNs are con-
verging from various architectures and weights to one generalized
foundation NN (e.g., M4 [99] and EdgeFM [96]). The parameter
efficiency of PET enables the foundation NNs to adapt to diverse
tasks through plug-and-play additional parameters, with high scal-
ability and lightweight memory/storage/task-switching overhead.
Furthermore, recent research on critical parameter protection on
devices [104] indicates that PET’s parameter efficiency provides
enhanced security and privacy, as these few parameters can be
executed within the Trusted Execution Environments (TEEs) like
ARM TrustZone.
Observation#2: PET is less prone to the device memory wall.
Since most parameters are frozen, PET does not need to keep their
gradients and the intermediate activation (at least linear layers
and bottom frozen layers) in memory [27]. Figure 2a shows that
PET only consumes 21.19%–38% memory compared to full model
training.
Observation#3: However, parameter efficiency does not trans-
late to time efficiency. Although >90% parameters are frozen, PET
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Model PET Config. Upd.
Paras.

Frozen Layers Trainable Layers

Time
(Sec.) FLOPs (G) Time

(Sec.) FLOPs (G)

ViT_base
Linear Probing 0.69% 0.46 67.44 1.88×10−3 0.36
Adapters (6) 1.75% 0.64 134.86 5.44×10−3 0.54
Adapters (12) 2.80% 0.84 202.31 1.24×10−2 0.71

ResNet50 Linear Probing 0.81% 0.06 16.53 4.36×10−4 4×10−2
Last-K (K=3) 14.3% 0.07 15.59 2.56×10−3 2.15

Table 2: Breakdown of different parts in a PET iteration.mini-
batch size=4; Device: Jetson TX2.

is still time-consuming with only 35.82% training speedup on aver-
age in Figure 2b. Fine-tuning ResNet50 1 epoch with Caltech-256
on a MI10 smartphone takes 14.8 hours, and even with the most
aggressive PET strategy that only performs linear probing, it still
takes 4.7 hours, which is significantly longer than the average
daily training-available time on smartphones (2.7 hours, red dotted
line) [94].
Observation#4: Frozen layers are significantly more compu-
tationally expensive than trainable layers in a PET iteration.
Table 2 shows the measured time consumption of frozen and train-
able layers in a PET iteration (forward + backward). The majority
of the computation time is attributed to the frozen parts (96.34%–
99.59%).
Implications Parameter-efficient training is a good fit to on-device
training. However, even though most parameters are frozen, it is
still time-consuming. To make on-device PET practical and efficient,
system level support is needed to re-architect the model structure
and training paradigm. Given the predominance of frozen layers, it
is promising to focus on reducing their computational cost.

2.3 Training Data Diversity
To reduce the forward/backward training time on the frozen layers,
this work proposes to opportunistically replace them with more
lightweight ones. Yet, training is known to be sensitive to weights
precision [22, 40, 83, 93] and simply downsampling the frozen lay-
ers could degrade the convergence accuracy significantly (§5.2,
Figure 13).

To speedup on-device PET while not compromising the conver-
gence accuracy, we exploit a known opportunity: data diversity.
Existing studies have provided evidence for the presence of diver-
sity in real-word data [29, 31, 41, 45, 48, 54, 76, 100, 102]. From our
observation, data in deep learning presents two aspects: (1) Samples
vary in their difficulty level, where some are intrinsically easier to
extract accurate and informative features from, i.e., data difficulty.
(2) Samples also differ in their importance level to training tasks, as
certain nontrivial examples can facilitate faster model convergence
and better generalization, i.e., data importance.

We provide an incomplete but intuitive example of data diversity
in Figure 3. We select representative training samples from a classic
transfer learning benchmark dataset Dogs vs. Cats [4]. Some train-
ing samples are more difficult to extract features from, because they
are intrinsically blurry, obstructed, or complicated, etc. When the
NN has learned plenty of tabby cats, a non-trivial British Shorthair
can help the NN to better generalize to the broader concept of “cats”,
thus contributing more to convergence.
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Figure 3: An intuitive example of data diversity. Dataset: Dogs
vs. Cats; Class: cats.
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Figure 4: The diversity of training data from a statistical
perspective. Model: ResNet50; Dataset: Caltech-101; Pruning
step in (a): about 7%–10% FLOPs.

Here, we provide more formal definitions, and demonstrate the
training data diversity from a statistical perspective.

Definition#1: data difficulty is measured by feature qual-
ity. PieBridge provides multi-level approximation for a network.
Specifically, given a pre-trained NN F0, we approximate it with a
series of subnets {F𝑛}, 𝑛 ∈ {1, 2, · · · , 𝑁 } (pruned and fine-tuned in
§3.2; the larger 𝑛, the smaller capacity). Based on the rationale that
NNs with larger capacity exhibit stronger capability, the difficulty
of a data sample 𝑥 can be reflected by the minimal subnet that
captures feature that on-par with the non-approximated network.
We define data difficulty 𝜙 (𝑥) by

𝜙 (𝑥) =𝑚𝑎𝑥 (𝑛 ∈ {0, 1, · · · , 𝑁 }),
𝑠 .𝑡 . F𝑛 (𝑥) ≃ F0 (𝑥) .

(1)

where F𝑛 (𝑥) is the feature extracted by NN F𝑛 , ≃ means the fea-
tures are equivalent with each other in PET. The larger 𝜙 (𝑥) is, the
simpler the data sample 𝑥 becomes.

Definition#2: data importance is measured by its contribution
to the model convergence. Given a data sample 𝑥 , the gradient norm
∥∇𝑙 (𝑥 ;𝑤𝑡 )∥ reflects the degree of contribution that 𝑥 makes to the
model convergence at time 𝑡 [58, 102]. In practice, the feed-forward
loss 𝑙 (𝑥 ;𝑤𝑡 ) is a more straightforward estimation for the gradient
norm, and it is proven to possess a relatively tight upper bound [58].
Thus, we define data importance𝜓 (𝑥, 𝑡) by

𝜓 (𝑥, 𝑡) = 𝑙 (𝑥 ;𝑤𝑡 ) = L[F (𝑥 ;𝑤𝑡 ), 𝑦], (2)
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where𝑤𝑡 is the state of NN F at time (i.e., training iteration) 𝑡 , 𝑦
is the label of data sample 𝑥 , L is the function to calculate feed-
forward loss. Notably, data importance 𝜓 (𝑥, 𝑡) is with respect to
both the data sample 𝑥 itself and the current training time step 𝑡 ,
being stateful. This is owing to the data importance is influenced
by the knowledge that has been learned by the NN in the training
process.
Training data is diverse in difficulty and importance. After
defining data difficulty/importance, we further show that a realistic
training dataset can exhibit highly diversified difficulty/importance,
which sheds light on assigning various subnets for various data
samples.

For data difficulty, to concretely show its diversity, here we tem-
porarily use a straightforward cosine similarity1 for modeling the
closeness of the extracted features. Specifically, F𝑛 (𝑥) ≃ F0 (𝑥) is
measured by F𝑛 (𝑥) ⊗ F0 (𝑥) > 1 − 𝜎 , where ⊗ is the operator to
compute cosine similarity, and 𝜎 is a threshold. Figure 4a shows the
percentage of training data with feature cosine similarity greater
than 1 − 𝜎 as NN is pruned. With the threshold 𝜎 set at 3%, more
than 70% of the training data is capable of being transferred to
lighter sub-networks, and in excess of 20% can be migrated to a sub-
network demanding just half the computational power of original
NN F0. With this inclined curve, we can see that data difficulty is
diversified in a collection of data. The diversity consistently exists
with varied 𝜎 in Figure 4a.

For data importance, in Figure 4b we observe that various sam-
ples also demonstrate diversity in importance; and the importance
varies with time step (# iterations). For example, at the beginning
of training, the data importance obeys a Gaussian distribution; post
200 iterations, the distribution rapidly consolidates to a minor frac-
tion of data samples, with the remainder having a minimal impact
on model training.
Remarks. So far, we have defined data difficulty and importance for
PET, and have shown that a collection of training data is diverse in
these aspects. This inspires PieBridge to dynamically approximate
the frozen layers with the awareness of data characteristic during
training. Notably, while training data has diversity is a known
property [23, 86], we are the first to present a tailored and rigorous
definition of data diversity in the context of PET, and we are also the
first to identify the unique key opportunity that it can work with
the approximation of static frozen layers to accelerate on-device
fine-tuning. A further discussion can be found in §7.

3 PIEBRIDGE DESIGN
3.1 Overview
System design goal. PieBridge is a cloud-device collaborated
framework that aims to speed up the parameter-efficient on-device
fine-tuning while not compromising the convergence accuracy (i.e.,
better time-to-accuracy) and the parameter efficiency.
Workflow. Figure 5 illustrates the two-stage simplified workflow
of PieBridge.

At cloud offline stage, PieBridge generates proxy networks
and prepares for the on-device training. ① It first employs a PET

1Cosine similarity reflects the similarity of two tensors 𝑎 and 𝑏 by calculating 𝑎 ·𝑏
∥𝑎∥·∥𝑏∥ .

It is widely used in ML techniques such as knowledge distillation [20, 49] and vector
database [44].

oriented structured pruning to reduce the size of a given well-
pre-trained original neural network. ② In order for the proxy sub-
networks to participate in the training of the original network, a
lightweight retraining mechanism is introduced to enable them to
share the same latent space.③ PieBridge profiles or estimates their
actual on-device execution cost (including the original network) and
records it in a latency score table. ④ Data difficulty is learned offline
by an extremely lightweight end-to-end policy model. PieBridge
jointly trains it with the original network, proxy sub-networks, and
on-device cost information using general public data on cloud. ⑤
Finally, the original network, proxy sub-networks, and the policy
model are all deployed together onto the device.

At device online stage, like other on-device continuous machine
learning systems, PieBridge consists of two loosely-coupled run-
times, i.e., training runtime and inference runtime. At training
runtime, the plug-and-play trainable parameters are fine-tuned
with device-collected data to adapt it to the drifted task or domain.
At inference runtime, the deployed NN serves as a one-size-fits-all
foundation model shared by various applications. PieBridge fo-
cuses on training runtime. It dynamically routes training samples to
different networks (the original network or the proxy sub-networks)
according to an importance-and-difficulty-aware strategy. This rout-
ing strategy for certain data sample 𝑥 is fused from two sources:
(1) The difficulty-based routing strategy from the policy model; (2)
The importance𝜓 (𝑥, 𝑡) monitored in near real-time.

3.2 On-Cloud Pre-Approximation
Independent-Dimension Constrained (IDC) pruning. There
are many ways to obtain a lightweight approximation of the orig-
inal network, such as pruning [18, 54], quantization [37], distilla-
tion [21], and early exit [91]. Intuitively, magnitude-based pruning
provides the best trade-off between accuracy and computation
among the above methods, since it is the most fine-grained. Given a
neural network with weights denoted as𝑊 , we can rank its element
𝑤
𝑗
𝑖
by the magnitude




∇𝑙 (𝑥 ;𝑤 𝑗
𝑖
) ·𝑤 𝑗

𝑖




 on calibration samples 𝑥 and
prune it. Akin to prior arts [35, 74], PieBridge derives calibration
samples from public general dataset (100 samples from ImageNet,
by default).

To achieve actual speedup on device processors (e.g., ARMCPUs [7,
10] or NVIDIA edge GPUs [12]) which typically do not support spar-
sity, the pruning must be structured. However, traditional on-device
acceleration oriented structured pruning [13, 18] lacks additional
structural constraints, resulting in the approximated network being
unable to participate in PET alongside the original network. Fig-
ure 6 shows an example of removing 20% parameters from a PET
structure in CNN. A tuple (128, 128) represents the input/output
dimensions of a layer. If we arbitrarily prune any dimensions of
a frozen layer (Figure 6(a)), the generated subnets cannot replace
each other due to shape mismatch.

To this end, PieBridge employs a dedicated pruning specifica-
tion for PET, named Independent-Dimension Constrained (IDC)
pruning (Figure 6(b)). Specifically, Given a PET network structure,
IDC pruning identifies dimensions that are independent to its train-
able blocks. For a CNN block 𝑦 = C𝑟 (· · · C1 (𝑥)) where C𝑟 (𝑥) repre-
sents the 𝑟𝑡ℎ convolutional layer, the independent dimensions are
(1) C𝑜𝑢𝑡1 , C𝑖𝑛2 , · · · , C𝑖𝑛

𝑟−1, if r is odd; (2) C
𝑜𝑢𝑡
1 , C𝑖𝑛2 , · · · , C𝑖𝑛𝑟 , if r is even.
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Figure 5: An overview of PieBridge.
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Figure 7: The latent space shift. (a) The visualized feature
extracted by the original NN and 2 pruned subnets suffers a
shift. (b) Test Accuracy and average cosine similarity between
pruned and original NN.
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.
Following the above constraints, PieBridge performs magnitude-
based pruning at a step size 𝑑 (by default 10%, varied in §5.2). For
instance, proxy sub-network F1/F5 removes 10%/50% parameters
compared to the original network F0 (and FLOPs are reduced in
proportion).

In a nutshell, PieBridge’s IDC pruning effectively provides ap-
proximations that achieve on-device speedup, and enables the gen-
erated proxy subnets to work seamlessly with each other.
Latent space alignment through lightweight retraining. Un-
fortunately, the proxy sub-network pruned by IDC pruning is still
not a good (accurate) approximation. We dive into the reason and

find out that the requirements of NN approximation for training
are more stringent. In Figure 7a. we reduce the dimensionality of
the latent space through PCA (Principal Component Analysis) and
visualize it. The latent spaces exhibit a gap. It means that, though
the pruned network may retain the ability to do inference (e.g., pre-
dict a dog as “dog”), the feature feed to the shared trainable block
may be tortured and thus noisy for PET. To this end, we propose an
enhanced alignment method with a dedicated regularization term.
For each proxy sub-network F𝑛 , 𝑛 ∈ {1, 2, · · · , 𝑁 }, we respectively
minimize

L = L′ +
𝑅∑︁
𝑟=1

𝜆𝑟 (ℎ𝑟0 ⊗ ℎ
𝑟
𝑛), (3)

where L′ is vanilla fine-tuning loss (e.g. cross entropy loss), ℎ𝑟𝑛
is the hidden state before the 𝑟𝑡ℎ trainable block (i.e., the input),
𝑅 is the number of trainable blocks, ⊗ is an operator to compute
similarity, and 𝜆𝑟 is the scale factor (1.0 by default). Effectiveness.
Figure 7b reports the test accuracy and latent space alignment of
vanilla fine-tuning and our method. After vanilla fine-tuning, the
features can only maintain a good test accuracy but compromise
the alignment, while our method achieves both. We integrate our
alignment method into a lightweight retraining mechanism trig-
gered after pruning. We also conduct experiments on significance
of key designs in §5.2.
Overhead analysis. Firstly, it is worth noting that the pre-approximation
process takes place on cloud, which is relatively resource-abundant.
Secondly, compared to the resource-intensive pre-training process,
the cost of our pruning and retraining is much lower. We only
perform 3 epoch of retraining for each sub-network. Furthermore,
this process is executed one-shot: these approximated public proxy
sub-networks can be shared by various devices.

3.3 On-Device Data-Aware Routing
Profiling data diversity: undesirable system overhead. Ac-
cording to equation 1, acquiring the difficulty of a training sample
is “posterior”: it demands up to 𝑁 forward passes in the worst case
(whereas the training itself involves just one forward/backward
pass), which is unacceptable on devices. According to equation 2,
data importance is “stateful”: it is influenced by the current training
state 𝑡 , which incurs additional forward computations [102] for
accurate perception because of the issue of “staleness” (Figure 8).
Online-offline fused data perception. Inspired by ML-based sys-
tem optimization efforts, such as database query optimization [75,
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Algorithm 1: Data-aware on-device training.
input : {F𝑛 }, 𝑛 ∈ {0, 1, 2, · · · , 𝑁 }; Ω; On-device dataset 𝐷 ;
output :Fine-tuned F0 ;

1 Function data_aware_training():
2 𝑡𝑟𝑎𝑖𝑛_𝑙𝑜𝑎𝑑𝑒𝑟 ← 𝐷 , 𝑃𝑜𝑙𝑖𝑐𝑦_𝑠𝑎𝑚𝑝𝑙𝑒𝑟 ( ) ; 𝜃 ← −1;𝑚← 0.8;
3 for 𝑒𝑝𝑜𝑐ℎ in 𝑒𝑝𝑜𝑐ℎ𝑠 do
4 for 𝑑𝑎𝑡𝑎 in 𝑡𝑟𝑎𝑖𝑛_𝑙𝑜𝑎𝑑𝑒𝑟 do
5 𝑋 , 𝑛← 𝑑𝑎𝑡𝑎; // mini-batch and routing strategy

6 𝑙 ←𝑋 , F𝑛 ; // get loss by one sub-network F𝑛
7 /* Opportunistic data skipping */

8 for 𝑥 in𝑋 do
9 if 𝑙 [𝑥 ] > 𝜃 then 𝑙 [𝑥 ] .𝑏𝑝 ( ) ; 𝑠𝑎𝑚𝑝𝑙𝑒𝑟 .adjust(𝑥 , 0) ;

10 else 𝑠𝑎𝑚𝑝𝑙𝑒𝑟 .adjust(𝑥 , 1) ;
11 /* Momentum-based filtering threshold */

12 if 𝜃==−1 then 𝜃 ← 𝑙 ; else 𝜃 ←𝑚𝜃 + (1 −𝑚)𝑙 ;
13 /* Synchronizing trainable blocks */

14 for 𝑖 in {0, 1, · · · , 𝑁 } do F𝑖 .𝑡𝑟𝑎𝑖𝑛𝑎𝑏𝑙𝑒← F𝑛 .𝑡𝑟𝑎𝑖𝑛𝑎𝑏𝑙𝑒 ;
15 return F0 ;
16 Function Policy_sampler(): // called once per epoch
17 𝑃 ← Ω, 𝐷 ; // a list, routing strategy 𝑛 = 𝑃[index of 𝑥]

18 Function adjust(𝑥 , 𝜖); // adjust 𝑥’s routing strategy by 𝜖

19 𝑄 ← [0 : 𝑙𝑒𝑛 (𝐷 ) ]; // a list storing sampling order of 𝐷

20 𝑄 .sort().shuffle(); // sort by policy, shuffle in same policy

21 return 𝑠𝑎𝑚𝑝𝑙𝑒𝑟 ; // for 𝑡𝑟𝑎𝑖𝑛_𝑙𝑜𝑎𝑑𝑒𝑟 to sample mini-batch

78] and matrix multiplication optimization [36], we decouple the
perception of data difficulty to the on-cloud offline phase. Specif-
ically, we design a data-driven black-box tiny model, referred as
policy model Ω. The model is offline trained and performs online
inference. The design and training details are shown in §3.3.1. As a
stateful attribution, data importance is still perceived online. We
use the current forward pass to get real-time data importance. At a
certain iteration, the importance comes from the current network
state by reusing the training loss, and the details are presented in
the following Algorithm 1.

The above online-offline fused data perception incurs negligible
online overhead. Most of the additional overhead comes from the
online inference of the tiny policy model. For instance, on NVIDIA
Jetson TX2, the per-sample perception time for ResNet50 is only 0.6
ms on average, which is less than 1% of an entire training iteration.
Data-aware subnet routing. Based on the perceived data diversity,
PieBridge judiciously assigns training samples to proper subnets.
In general, we obtain a difficulty-based routing strategy from the

policy model, and adjust this strategy with real-time data impor-
tance. This strategy is dynamic: during training, each mini-batch
selects the most suitable sub-network for itself.

In detail, we demonstrate our routing strategy by describing
the on-device training procedure of PieBridge in algorithm 1. It
receives {F𝑛}, Ω, and the on-device dataset 𝐷 , and finally outputs
the fine-tuned network F0. The routing strategy is maintained by
function 𝑃𝑜𝑙𝑖𝑐𝑦_𝑠𝑎𝑚𝑝𝑙𝑒𝑟 (), which samples mini-batches and en-
sures that samples within the same mini-batch share the same level
of difficulty. After getting the output of Ω (line 17), we online adjust
it by function 𝑎𝑑 𝑗𝑢𝑠𝑡 () (line 18, line 8–10). Both Ω and 𝑎𝑑 𝑗𝑢𝑠𝑡 ()
adhere to the principle of minimizing computation for easier or
less important data. The main body of on-device training is in
function 𝑑𝑎𝑡𝑎_𝑎𝑤𝑎𝑟𝑒_𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔(). During each iteration, we sample
a mini-batch 𝑋 , obtain its routing strategy 𝑛, and select a proxy
sub-network F𝑛 for training (line 5–6).

In line 7–12, we further filter unimportant data from back-propagation.
Training data that has already well converged is all pain and no
gain: it consumes computational resources while contributes lit-
tle to convergence. We skip the backward pass stage of training
sample 𝑥 by comparing its data importance to a threshold 𝜃 . To
perform stable and solid filtering, 𝜃 is dynamically updated based
on momentum. Let 𝜃𝑡 be the threshold at iteration 𝑡 ,𝑚 ∈ [0, 1) be
the momentum coefficient, 𝑙 be the loss of current iteration, then
we get

𝜃𝑡+1 =𝑚𝜃𝑡 + (1 −𝑚)𝑙 . (4)

Usually, 𝜃 is initialized as the loss from the first iteration, and𝑚
is relatively large (e.g., 0.8, our default). After filtering, we then
feed the profiled importance back to routing strategy by function
𝑎𝑑 𝑗𝑢𝑠𝑡 ().
Asynchronous subnets loading. Notably, only one proxy sub-
network is involved in a training iteration, so keeping all net-
works in device memory simultaneously is not necessary. Thereby,
PieBridge asynchronously loads the subnet of next iteration dur-
ing the current iteration. Such a loading is overhead-free in training
time as computation time is much longer than loading. In doing
so, the peak memory usage of our framework is nearly identical
to PET, with only additional buffers for maintaining weights of a
proxy sub-network of next iteration (detailed in §5.3).

3.3.1 Learned Data Difficulty. Here we focus on the details of
how data difficulty is obtained through offline-online collaboration.
As discussed before, a straightforward way to perceive the data
difficulty is to run all (pre-trained) proxy networks for a data sample
to compare the features (recall Equation 1). On one hand, running
all proxy networks is unacceptable on devices, and the constraint
to determine whether F𝑛 (𝑥) ≃ F0 (𝑥) also involves ad-hoc designs
(e.g., using cosine similarity; setting threshold 𝜎 , etc.). On the other
hand, as an intrinsic characteristic standalone to training state,
intuitively the data difficulty does not have to be perceived online.
“Learned data difficulty” through a lightweight policy model.
PieBridge’s response is an end-to-end learning for data difficulty
with implicitly determining F𝑛 (𝑥) ≃ F0 (𝑥) by the learning loss.
We design a lightweight policy model Ω to end-to-end learn the
data difficulty. The input of the policy model is a training sample 𝑥 ′
downsampled from 𝑥 (i.e., resizing the input using interpolation),
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Figure 9: Learning difficulty through joint training.

and the output is a one-hot vector Ω(𝑥 ′) ∈ R1×(𝑁+1) . Ω is tiny
because we only use a small fraction of the original network F0.
For instance, we use 2 residual blocks for ResNet50, 2 basic blocks
with 2 depthwise separable convolutions each for MobileNetV3, or
1 encoder layer for ViT base, and each module has a smaller size
compared to the original network. The total parameter count is less
than 5% of the original network.2
Joint training the policy model. The policy model is jointly
trained with the original network and the proxy sub-networks
(i.e., {F𝑛}, 𝑛 ∈ {0, 1, 2, · · · , 𝑁 }) on large-scale public cloud data.
The training procedure is shown in Figure 9. We combine Ω and
{F𝑛} together to create a joint end-to-end trainable network. The
network structure before the 𝑟𝑡ℎ trainable block (i.e., the red circle
in Figure 9) is

𝑥𝑟 =
∑︁
𝑑𝑖𝑚=1

[(𝑥𝑟0 |𝑥
𝑟
1 | · · · |𝑥

𝑟
𝑛 | · · · |𝑥𝑟𝑁 ) ◦M] (5)

where𝑥𝑟𝑛 ∈ R𝐵𝑆×1×𝐻 is from the𝑛𝑡ℎ networkF𝑛 , ◦ is theHadamard
product,M ∈ R𝐵𝑆×𝑁×1 is the mask from the policy model, 𝐵𝑆 is
the mini-batch size, 𝑁 is the number of proxy sub-networks, 𝐻 is
the hidden state size, (𝑥𝑟0 |𝑥

𝑟
1 | · · · |𝑥

𝑟
𝑛 | · · · |𝑥𝑟𝑁 ) represents concate-

nating the tensors sequentially at the 1𝑠𝑡 dimension,
∑
𝑑𝑖𝑚=1 repre-

sents summarizing the tensors along the 1𝑠𝑡 dimension, and finally
we get the input tensor 𝑥𝑟 of the 𝑟𝑡ℎ trainable block. In addition,
since the output of the policy model Ω is discrete, which makes Ω
non-differentiable, we borrow the Gumbel-Softmax [56] trick3 to
facilitate the backpropagation of the gradient to the policy model.

We update the parameters of the policy model and the trainable
blocks while keeping the frozen blocks frozen again. We minimize
a multi-task learning loss

L = L′ + 𝜆 1
𝑁

∑︁
∗
(M ◦ S), (6)

2Although increasing the model size may lead to better routing performance, the
benefits diminish marginally, while the online inference overhead shows no marginal
effect. Therefore, we keep it small enough.
3An open-source implementation of Gumbel-Softmax Sampling: https://github.com/
gyhui14/spottune/blob/master/gumbel_softmax.py

Name Processor Software env.

Jetson
TX2 [12]

Dual-Core NVIDIA Denver 2 64-Bit CPU,
256-core NVIDIA Pascal™ GPU.

Ubuntu 18.04 LTS,
PyTorch 1.7.1.

RPI 4B [14] Broadcom BCM2711B0 quad-core
A72 64-bit @ 1.5GHz CPU.

Raspbian 11,
PyTorch 1.7.1.

MI 10 [10]
2.84GHz Cortex-X1,
3× 2.4GHz Cortex A78,
4× 1.8GHz Cortex A55 CPU. Android 10,

MNN 2.0.0,
ONNX 1.13.1.Huawei

Mate 30 [7]

2x 2.86 GHz ARM Cortex-A76,
2x 2.09 GHz ARM Cortex-A76,
4x 1.86 GHz ARM Cortex-A55 CPU,
Kirin 990 NPU.

Table 3: Details of devices used in the experiments.

where 𝜆 is the scale factor (1.0 by default),
∑
∗ represents sum-

ming all elements in the tensor,M ∈ R𝑁×1 is the mask tensor
from the policy model, S ∈ R𝑁×1 is the on-device profiled latency
scores of networks {F𝑛}, 𝑛 ∈ {0, 1, 2, · · · , 𝑁 }. Equation 6 forces the
policy model Ω to learn a strategy that minimizes computational
complexity (the second term) while ensuring accuracy (the first
term).
Training data. By default, the learning of policy model is on the
large-scale general dataset used in the pre-training process (e.g.
ImageNet). Although the policy model is deployed on devices for
new fine-tuning data, it shows a strong transferablity without the
need for retraining the policy model in most cases, since a large-
scale general training dataset has covered a wide range of difficulty
patterns. We make a detailed evaluation and discussion on the
training data distribution issue in §5.2 and §7.
Training overhead. The joint training converges within a single
epoch and also only requires one-shot execution like the on-cloud
pre-approximation. In general, the entire training only incurs 5%–
10% GPU-hours of the vanilla pre-training process.

4 IMPLEMENTATION AND METHODOLOGY
System implementation.Wehave fully implemented a PieBridge
prototype with 4k LoC in Python and 3k LoC in C/C++ atop Py-
Torch and MNN [11]. All the techniques of PieBridge can work in
other ML frameworks designed for different devices and runtime
environments like TensorFlow [15] and TFLite [16]. At the cloud
side, we use a GPU server with 4× NVIDIA A40. At the edge side,
we use devices described in Table 3.
Models, datasets and metrics. We evaluate PieBridge with the
following representativemodels:MobileNetV3-L [51], ResNet50 [47]
and ViT_base [33]. We on-cloud pre-train these models with the
ImageNet2012 [9] dataset that contains 1.2M images, and then
on-device fine-tune them with the downstream datasets (Caltech-
101 [1], Caltech-256 [2], Dogs vs. Cats [4], DTD [3]) which are
more fine-grained. We mainly focus on the following metrics: the
wall-clock on-device training time and the best test accuracy.
Baselines. We compare PieBridge to these alternatives: Fine-
tuning all parameters (FT-All) always fine-tunes the whole pre-
trained NN. This is the default fine-tuning methodology used in
most pre-training-and-fine-tuning paradigms. Parameter-Efficient
Training (PET) freezes most layers of the pre-trained NN and trains
only a small portion. We evaluate various PET methods: Linear
Probing [61] for ResNet50, Last-3 [42, 90] for MobileNetV3 and

https://github.com/gyhui14/spottune/blob/master/gumbel_softmax.py
https://github.com/gyhui14/spottune/blob/master/gumbel_softmax.py


PieBridge: Fast and Parameter-Efficient On-Device Training via Proxy Networks SENSYS ’24, November 4–7, 2024, Hangzhou, China

MobileNetV3-L
ResNet50

ViTBase

Caltech-101

0

1

2

3

W
al

l-c
lo

ck
 Tr

ai
ni

ng
 T

im
e 

(h
rs

)

1.71
2.21

3.38

0.64 0.63

2.18

1.73
2.09

3.29

0.88
1.28

2.07

0.32 0.38

1.34

MobileNetV3-L
ResNet50

ViTBase

Caltech-256

0

5

10

15

8.61
11.10

17.01

3.22 2.98

11.17

8.71
10.52

16.54

6.42 6.39

10.36

2.00 1.85

7.35

MobileNetV3-L
ResNet50

ViTBase

DogsvsCats

0

1

2

1.03
1.32

2.03

0.39 0.37

1.31

1.03
1.25

1.96

0.53
0.77

1.25

0.17 0.20
0.52

MobileNetV3-L
ResNet50

ViTBase

DTD

0

2

4

2.11
2.73

4.18

0.80 0.97

2.71

2.13
2.59

4.06

1.10
1.57

2.56

0.48 0.56

1.84

FT-All PET PT ET Ours

Figure 10: Wall-clock on-device training time. Device: Jetson TX2.

Table 4: Accuracy of PieBridge and baselines. C-101: Caltech-101; C-256: Caltech-256; DVC: Dogs vs. Cats.
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Figure 11: PieBridge achieves significant speedup across dif-
ferent accuracy targets. Model: ResNet50; Dataset: DTD.

Adapters(12) [50, 80] for ViT_base. PruneTrain (PT) [73] is a frame-
work that dynamically prunes the NN during training. Elastic-
Trainer (ET) [55] is one of the state-of-the-art on-device training
frameworks that dynamically determines trainable layers by esti-
mating the importance of NN tensors.
Hyper-parameters. The momentum coefficient𝑚 of PruneTrain
is 0.8. The L1 penalty coefficient of PruneTrain is set to 1e-4. The
ratio 𝜌 of ElasticTrainer is set to 0.4. To provide big-enough search
space, we on-cloud generate 𝑁 = 10 proxy sub-networks with a
pruning step size 𝑑 = 7%–10%. Limited by the memory constraint
of edge devices, the mini-batch size is set to 4. Training epochs are
set to 12 following prior work [55]. Training samples are resized to
a 224×224 RGB image with standard data augmentation strategies
such as random cropping and flipping.

5 EVALUATION
5.1 End-to-End Performance
Overall performance.We begin with comparing the overall per-
formace of PieBridge to its baselines. We conduct the experiments
on 3 various NN architectures and 4 various downstream datasets.
The details are mentioned in §4. We record the test accuracy ev-
ery epoch and report the best test accuracy and corresponding

wall-clock training time. The computing cost on testing is excluded.
Table 4 shows the best test accuracy. PieBridge does not com-
promise test accuracy compared to its baselines. As is shown in
Figure 10, by dynamically routing training data to lightweight sub-
nets, PieBridge achieves up to 6.60× speedup over all baselines,
and 1.47×–2.52× speedup compared to PET. Here we perform a
detailed analysis:
• Compared to FT-All. PieBridge significantly outperforms FT-All
by up to 6×. This comes from both the parameter efficiency and
our key designs.
• Compared to PET. PieBridge consistently outperforms PET by up
to 2.5×. This is attributed to the full utilization of data diversity.
• Compared to other strong baselines (PT/ET). PieBridge also out-
performs these strong baselines. PT’s NN approximation only
reduces training FLOPs, which does not translate to wall-clock
time reduction on general-purpose processors. ET only performs
tensor-level non-deterministic training with evaluated impor-
tance. It cannot fully utilize the potential of NN approximation
and data diversity. Another significant drawback is that they com-
promise parameter efficiency, preventing them from enjoying
various benefits of PET in terms of both training and deployment
mentioned in §2.1.

Performance under various accuracy budgets. In practice,
on-device training tasks often do not choose to reach the high-
est test accuracy because of the marginal effect. Thus, we also
explore the wall-clock training time for different accuracy targets.
Figure 11a shows the time-to-accuracy curve of PieBridge and its
baselines. We observe that, thanks to our dynamic routing design,
PieBridge achieves shorter per-epoch computation time and faster
end-to-end convergence speed. Further, we report the speedup
achieved by PieBridge when reaching 85%/90%/95%/99% of the
baseline’s best accuracy. As is shown in Figure 11b, PieBridge
always achieves significant speedup (1.86×/1.89×/1.54×/1.80× to
PET, and 4.17×/4.20×/5.43×/5.82× to FT-All) under different ac-
curacy budges. Specifically, there is a trend that the higher the
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FT-All PieBridge

5-shot 10-shot PL 5-shot 10-shot PL

Time (min.) 7.92 16.38 138.21 3.60 5.97 35.53
Accu. (%) 12.92 27.28 55.32 18.13 32.71 60.15

Table 5: Performance in extremely few-shot scenarios. PL:
Pseudo Labeling; Model: ResNet50; Dataset: DTD Device: Jet-
son TX2.
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Figure 12: Performance on various devices.
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Figure 13: Compared to static alternative proxy sub-networks.
Our data-aware subnet routing is a pareto-improved solution.
target accuracy, the greater the speedup achieved by PieBridge.
This is because, as training progresses, more and more data require
fewer computational resources, allowing PieBridge to effectively
mitigate the marginal effect of training.
Performance on various devices. We further explore the perfor-
mance of PieBridge on 3 devices: Jetson TX2, Raspberry Pi 4B and
MI 10 smartphone in Figure 12. PieBridge outperforms its base-
lines on all these devices by a minimum factor of 1.61×/1.63×/1.72×,
and the improvements are particularly notable on bothGPU-empowered
devices (e.g., Jetson TX2) and resource-constrained devices (e.g.,
Raspberry Pi 4B and MI 10 smartphone).
Performance in extremely few-shot scenarios.We also explore
the performance of PieBridge with extremely few human-labeled
training data in Table 5. Our system consistently outperforms the
baseline method under 5-shot/10-shot settings. We further apply a
commonly used few-shot learning approach: pseudo-labeling [62].
We provide 100 pseudo-labeled data for each category. PieBridge
significantly outperforms the baseline and achieves accuracy close
to training with adequate human-labeled data.

5.2 Design Effectiveness and Sensitivity
Analysis

In this section, our primary focus is on analyzing the effectiveness
and sensitivity of PieBridge design.
Compared to static alternative proxy sub-networks. We com-
pare our data-aware subnet routing strategy (§3.3) to statically
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Figure 14: Behavior on datasets of different complexity.

routing all training samples to the same proxy sub-network. Fig-
ure 13 shows the best test accuracy and wall-clock training time
of the original network (•), the proxy sub-networks (♦) and our
data-aware subnet routing (★). We have the following observations:

(1) A simple, static replacement strategy could result in nontrivial
degradation of convergence accuracy. After pruning the original
network by 50%, ResNet50 experiences a 28.24% decrease in test
accuracy on the Caltech-256 dataset, and ViT_base suffers a 29.11%
decrease in test accuracy on the DTD dataset. There are two reasons
behind this. One is that there is an error between the original
network and the approximated subnet. The other is that, without a
resource-intensive search, the pruned network structure may not
be optimal.

(2) Our data-aware subnet routing is a pareto-improved solution.
Compared to other static solutions, our approach not only reduces
training time but also does not exhibit a noticeable decrease in
accuracy.
Behavior on datasets of different complexity. As is shown
in Figure 14, compared to the more complex dataset Caltech-101,
PieBridge effectively routes more training samples to lighter sub-
nets on Dogs vs. Cats dataset.
Number of proxy sub-networks. Recall that we globally choose
a proxy number 𝑁 = 10 (the pruning step size 𝑑 is about 1/𝑁 ). Here
we analysis the rationale and influence of choosing this factor. As
shown in Figure 15(a), a larger N provides more fine-grained ap-
proximation tradeoffs, but its benefit diminishes when large enough
(e.g., >=10). Determining it properly isn’t a challenge: PieBridge
can provide heuristic suggestions to a typical range (e.g., 10–15); or
the cloud can automatically obtain it through profiling on public
dataset.

From our observation, the number of subnets does not apparently
influence wall-clock training time (Figure 15(b), ResNet50+Caltech-
256+TX2). This is mainly because the size of the subnets already
covers the entire trade-off space, regardless of the number 𝑁 .
Policy model training data. Recall that we train our policy model
Ω on large scale public dataset, i.e. ImageNet. Through the afore-
mentioned end-to-end experiments, its effectiveness has been veri-
fied. Here we discuss PieBridge’s sensitivity to the data for cap-
turing data difficulty. We report fine-tuning ResNet50 on Caltech-
101 dataset. The data difficulty learned from the large-scale gen-
eral dataset ImageNet exhibits a strong transferability. Figure 15(c)
shows that training on ImageNet achieves comparable accuracy
compared to directly training on Caltech-101. When training policy
model with 5% data (simulating crowd-sourcing user-permitted
training data), the policy model still can work well. Only when the
cloud training data completely mismatches with device data (e.g.,
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PieBridge
W/O IDC
pruning

W/O latent
space alignment

W/O policy model
based routing

Training
Time (h) 1.85 N/A

(shape mismatch) 2.06 26.2

Test
Acc.(%) 82.89 N/A

(shape mismatch) 64.24 82.62

Table 6: Significance of key designs.
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Figure 15: Sensitivity analysis.
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Figure 16: Energy and memory consumption.

using cifar-10 for training in Figure 15(c)), the policy model behaves
biased.
Significance of key designs. In Table 6, we show the significance
of PieBridge’s key designs. We report fine-tuning ResNet50 on
Caltech-256, Jetson TX2. The results show that without IDC prun-
ing, the proxy subnets cannot replace the original network because
of shape mismatch. Without latent space alignment, the pruned
subnets conflict with each other, leading to a significantly dropped
convergence accuracy. Without the lightweight policy model for
perceiving the data difficulty, the training is slowed down by over
13×, because that PieBridge has to run each subnet to get and
compare the extracted feature in each iteration.

5.3 Energy and Memory Consumption
In this section, we report the energy and memory consumption of
PieBridge against its baselines. We train ResNet50 on Caltech-101
dataset with Jetson TX2. We obtain energy/memory consumption
by jtop [19]. The results are shown in Figure 16.
Energy consumption. PieBridge reduces energy consumption
by 5.53×/1.28× compared to FT-All and PET. This is attributed
to PieBridge’s time efficiency, since PieBridge achieves better
time-to-accuracy. However, compared to PieBridge’s training time
reduction, the energy reduction is slightly lower. This is mainly
due to PieBridge periodically loads proxy sub-networks from disk
(§3.3), which is also energy consuming.
Memory consumption.We have the following observations. (1)
Both PET and PieBridge consumes fewermemory than FT-All/PT/ET.
The measured reduction is less than theoretical. This is mainly due
to pytorch framework loads some runtime packages to memory,
and does not prioritize memory saving operations such as in-place
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Figure 17: Performance on COTS devices with different pro-
cessors compared to MNN. “1BIG”, “4BIG” and “NPU” are
run on Huawei Mate30 with 1 CPU big core, 4 CPU big cores
and NPU, respectively. “X” means not supported.

computation and buffer-reuse. (2) PieBridge consumes more mem-
ory than vanilla PET. This is because PieBridge uses additional
memory for swapping.

5.4 NPU Acceleration
Commercial off-the-shelf mobile devices typically integrate var-
ious processors into their SoCs for different purposes, such as
CPU, GPU, DSP, ISP, NPU, etc.4 While NPUs offer high-precision
(FP32/FP16) AI computing ability, their operators and software
stacks are closed-source and only inference-friendly (e.g., only high-
level non-configurable ABIs available for Kirin NPUs [6]).

Fortunately, PieBridge’s design is NPU-friendly, as its frozen
subnets can reuse NPU operators and software stacks for accel-
eration, while trainable blocks that require weight updates can
still be computed on the CPU. This is a “syntactic sugar” at the
implementation level, completely orthogonal to the core design of
PieBridge.

We run PieBridge on a HuaiWei Mate30 smartphone with Kirin
990 half-precision (FP16) NPU, and compare its performance to
a popular on-device training framework MNN [11]. The default
fine-tuning strategy of MNN is full model fine-tuning with 4 CPU
big cores. As is shown in Figure 17, with the assistance of key tech-
niques in PieBridge and NPU offloading, on-device fine-tuning
becomes practical and even efficient: a medium-sized fine-tuning
workload (ResNet50, Caltech-101) requires only 0.21 hours and 0.91
kJ of energy, whereas MNN takes 13.26 hours and 57.2 kJ of energy.
On much larger datasets (Caltech-256), PieBridge also requires
only 0.84 hours and 3.46 kJ of energy.

6 RELATEDWORK
Time-efficient on-device training. A considerable amount of
literature/frameworks have investigated how to enable and accel-
erate training on resource-constrained edge devices [11, 16, 17,
55, 73, 92, 102, 103, 106]. For instance, ElasticTrainer [55] reduces
4Mobile GPUs have been proven unsuitable for DNN training [32], and DSPs, due
to their low-precision (INT8/INT4) computing characteristics, can only be used for
training from scratch instead of fine-tuning pre-trained weights [92].
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training time by non-deterministically training a portion of the
network. Mandheling [92] directly downsamples the entire net-
work and maps it to the hardware accelerator. There are also many
open-source frameworks tailored for on-device training, such as
TFLite [16] from Google and MNN [11] from Alibaba. PieBridge
is compatible with the above frameworks and hardware accelera-
tor oriented works. The difference between PieBridge and other
works, such as ElasticTrainer and PruneTrain, which also employ
dynamic neural network architectures, lies in that PieBridge does
not compromise on parameter efficiency.
Neural network compression/approximation. Neural network
compression/approximation refers to approximating the original
network with simpler and lighter networks, which can come from
network structure approximation (e.g., structural pruning [18, 60,
69, 70] or sparse weights [84]) or data precision approximation (e.g.,
INT8/INT4 quantization [37, 101]). Different from the aforemen-
tioned works, PieBridge’s NN approximation is dynamic for each
data point, and is accurate enough for lossless training.
Foundation models as a mobile system service. Compared to
traditional on-device AI paradigm that individually deploys a com-
pactmodel for each task [28, 28, 34, 72, 95, 97, 98], recent advances in
LLMs [24, 26, 39, 77, 105] andmultimodal [63–65, 79, 82, 85] suggest
that a highly parameterized OS-level foundational model [96, 99]
with stronger generalization and emergent capabilities is more
suitable for the evolving workloads in on-device AI. PieBridge
sheds light on building such a one-for-all foundation ML system on
devices to continuously and personally serve ubiquitous AI tasks.
Routing diverse data tomultiple networks. Several prior arts [57,
66, 88] also leverage the idea of routing diverse data to multiple
networks that has diverse compute cost. Appealnet [66] proposes a
two-head little network for routing data to two cascaded big-little
networks at inference time. The difficulty in Appealnet is defined as
a loose measurement on softmax probability. Selective Query [57]
trains a routing model for assigning the to-be-inferenced sample to
either the cloud or the device. These work mainly focus on infer-
ence optimizations, which are much more simple and deterministic
compared to training. PieBridge’s data routing identifies several
unique aspects in training, including feature-level difficulty and
training sample importance to convergence.

7 DISCUSSION
Data diversity. Although there are some early efforts [23, 86] that
explore the diversity, their definition cannot be directly applied to
PET mainly due to the following reasons. Firstly, they mainly focus
on reducing the inference-time overhead by layer-level early exit for
diverse samples. NN inference has a higher tolerance for extracted
features. For instance, when a feature is tortured, one classification
network can still output the correct answer if the highest logit is in
the label class, regardless the other classes. While in training, this
may lead to a severely affected convergence. Instead, PieBridge
sets stringent restriction for training by a feature-level matching
in its difficulty definition. Secondly, early exiting is essentially a
pruningmethodwith sequential layer-level heuristic, which ismuch
more coarse-grained than PieBridge’s IDC pruning that prunes
neurons in independent dimensions.

Handling diversity distribution drift. One practical issue that
PieBridge faces in real-world deployment is the data diversity
distribution drift. As PieBridge focuses on on-device fine-tuning,
the distribution of on-device data may differ from on-cloud pre-
training data. To this end, PieBridge has the following conclusions
and alternatives. Firstly, as elaborated in §5.2 and §3.3.1, the pattern
of data difficulty is much more simple and deterministic than the
distribution on concrete tasks, thus showing strong transferablity.
For instance, an NN trained on ImageNet still needs fine-tuning on
caltech-101 dataset, while the difficulty pattern that captured by
PieBridge’s policy model on ImageNet has been nearly equivalent
to caltech-101. Besides, PieBridge has several alternatives when
the fine-tuning data is completely different from pre-training. One
can crowd-source a portion of user-permitted trainable data to
the cloud, federated learn the policy model, or directly on-device
continuously train the policy model.
Other approximation techniques. Sparsity and quantization is
not a good fit for PieBridge, as they can only provide a limited
wall-clock speedup on mobile SoC processors. For instance, to the
best of our knowledge, the Raspberry Pi has no dedicated com-
pute units for quantized data formats like int4. Thereby, a highly
quantized network only achieves an insignificant speedup on these
devices since most of its operators are compute-bound. Sparsity is
also not well-supported on mainstream mobile SoCs. Early exiting
is essentially a coarse-grained pruning, thus also sub-optimal com-
pared to pruning. PieBridge employs structural pruning, which
is the most suitable technique direction for PET acceleration on
mobile devices.
Applicability to languagemodels.Currently, PieBridge is mainly
designed for on-device tuning CV models. The LLMs are typically
much heavier than CV models (e.g., llama-7B), and their fine-tuning
on extremely resource-constrained mobile devices is still not a prac-
tical solution for demands like personalization. Nevertheless, the
main techniques of PieBridge are generally applicable to LLMs,
with minor adjustments like supporting LoRA structures and pro-
filing token-level data diversity. We leave this as our future work.

8 CONCLUSION
This work has proposed PieBridge, a framework for time-efficient
on-device parameter efficient training. It innovatively leverages
data diversity and neural network approximations for reducing
the computation cost of frozen layers. PieBridge achieves up to
2.5× on-device fine-tuning speedup compared to state-of-the-art
PET methods, and up to 6.6× speedup compared to traditional full
model fine-tuning. PieBridge makes on-device fine-tuning more
practical for COTS devices equipped with NPUs.
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