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Abstract—Large constellations of Low Earth Orbit (LEO) satellites have been launched for Earth observation and satellite-ground
communication, which collect massive imagery and sensor data. These data can enhance the AI capabilities of satellites to address
global challenges such as real-time disaster navigation and mitigation. Prior studies proposed leveraging federated learning (FL)
across satellite-ground to collaboratively train a share machine learning (ML) model in a privacy-preserving mechanism. However, they
mostly focus on single unique challenges such as limited ground-to-satellite bandwidth, short connection window, and long connection
cycle, while ignoring the completeness of these challenges in deploying efficient FL frameworks in space. In this paper, we propose an
efficient satellite-ground FL framework, SatelliteFL, to address these three challenges collectively. Its key idea is to ensure that each
satellite must complete per-round training within each connection window. Moreover, we design a progressive block-wise quantization
algorithm that determines a unique bitwidth for each block of the ML model to maximize the model utility while not exceeding the
connection window. We evaluate SatelliteFL by plugging an implemented FL platform into real-world satellite networks and satellite
images. The results show that SatelliteFL highly accelerates the convergence by up to 2.8× and improves the bandwidth utilization
ratio by up to 9.3× compared to the state-of-the-art methods.
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1 INTRODUCTION

O VER the years, Earth observation satellites have consis-
tently provided rich informational support in critical

areas such as food security, disaster navigation, climate
change, and disease spread [1]–[3]. In recent years, signifi-
cant advancements in satellite technology have substantially
reduced satellite deployment costs, leading to the emer-
gence of low Earth orbit (LEO) satellite constellations as a
mainstream trend. For example, companies like Planet [4]
are now able to collect over 350 million square kilometers of
images daily. Massive imagery and sensor data (10s-100s of
TB/day) collected by these satellites can effectively enhance
machine learning (ML) capabilities to address numerous
global challenges. For example, the Sunflower Satellites,
with the aid of AI model, can spot wildfires in less than 1
minute, which could have been used to avoid the 2019-2020
Australian ‘Black Summer’ bushfire with over $70 billion in
property and economic losses [5].

Traditional satellite-based machine learning tasks are
mostly completed on the ground. Those collected data by
LEO constellation, in Fig. 1(a), is transmitted to the ground
station across satellite-to-ground link, and used to train ML
models with a powerful computation cluster. However, this
paradigm is becoming increasingly infeasible for the follow-
ing reasons: 1) downloading the raw data collected from
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Fig. 1: (a) LEO satellite constellations comprise many low-
Earth orbit satellites, which orbit 500 to 2,000 kilometers
from Earth and offer communication services collaborated
with the ground stations; (b) Satellite-ground FL framework
in space without downloading satellite data to the ground.

satellites would raise substantial overhead to the satellite-
ground link. Nevertheless, the current satellite-ground link
bandwidth does not even support the download of all the
collected data. 2) sharing high-resolution Earth observation
images, such as rare natural resources and significant eco-
nomic activities may not always be feasible due to regula-
tory restrictions imposed by different countries [6].

There have been several efforts that dedicate to deploy-
ing in-orbit computing to address these challenges, which
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is motivated by the improvement of satellite computation
capabilities. OEC [7] is a proposed orbital edge computing
platform to support various computing tasks on satellites so
that those collected data can be processed locally. SmallSats
[8] aims to bring efficient inference and training of DNNs
in space by introducing lightweight hardware accelerators
and designing compact ML algorithms. However, it also
faces two key challenges with the deployment of on-board
training. First, centralized ML on a single satellite with
limited training data is hard to obtain an advanced model,
due to privacy concerns when exchanging sensitive imagery
data across LEO satellites [2]. Second, considering the mem-
ory and power cost of inter-satellite communication, cross-
satellite distributed ML in space is currently infeasible in
LEO satellite constellations [9].

Our goal in this work is to address these challenges by
designing an efficient FL framework that enables satellites
to collaboratively train a shared ML model with the coor-
dination of ground stations. Our system is designed with
several steps as shown in Fig. 1(b): (1) the global model is
dispatched to those connected satellites through ground-to-
satellite link; (2) connected satellites run on-board training
to update local models without sharing their raw data; (3)
these models are transmitted to the ground station through
the satellite-to-ground link for global model aggregation.
These steps form per-round FL training and iterate with an-
other batch of connected satellites in the next round until the
global model converges. Some prior literature [2], [10]–[12]
also introduces FL framework across satellites and ground
stations to enable efficient AI applications in space. Most
of them focus on tackling the straggler and staleness prob-
lems of synchronous or asynchronous FL algorithms, due
to the system heterogeneity of satellites [2], [13]. Another
important problem in this satellite-ground FL framework
is the slow model convergence caused by limited ground-
to-satellite bandwidth [10], [12]. However, it is still fun-
damentally challenging to apply existing solutions to this
environment when considering all the unique challenges
introduced by orbital dynamics of LEO satellites:

• Limited ground-to-satellite bandwidth: Dispatch-
ing the global model to connected satellites through
the ground-to-satellite link is a key step in this en-
vironment to guarantee the success of FL training.
However, the ground-satellite link is asymmetric.
Specifically, the ground-to-satellite link bandwidth is
extremely limited, often only about 200 Kbps [14].
Thus, even if the satellite-to-ground download band-
width is as high as a few Gbps, the entire FL training
speed will be severely constrained by the ground-to-
satellite link.

• Short connection window: Considering the orbital
dynamics of LEO satellites and limited deployment
of ground stations on Earth, each satellite tends to
stay a short time (≤ 10 minutes [14]) in the cov-
erage of a particular ground station before flying
away. This causes the per-round FL training to be
interrupted because it is often impossible to complete
the above steps in such a short connection window.
Especially, the first step of per-round FL training
across the limited ground-to-satellite link makes this

interruption more frequent.
• Long connection cycle: Furthermore, each satellite

would only get several connection periods with
ground stations in one day, and it often takes over 6
hours [14] for any two connection periods. Therefore,
once a satellite fails to transmit its model update to
the ground in the assigned connection window, it
takes excessive time to wait till the next connection
window and the update is likely to be expired.

In this paper, we present an efficient satellite-ground
FL framework, namely SatelliteFL, that leverages progres-
sive weight quantization to compress the communication
data size across ground-to-satellite links. (Quantization in-
volves representing model parameters with fewer bitwidth
to reduce model size while maintaining acceptable neural
network model performance degradation.) We first high-
light the importance of ensuring that each satellite must
complete the per-round FL training within each connection
window to tackle the above three challenges. Then, we
formulate this per-round FL training as a delay-constrained
optimization problem to maximize the model utility while
not exceeding the connection window. However, solving
this optimization problem is also challenging due to the
complex trade-off between model utility and constrained
connection window caused by the limited decision space
of quantization bitwidth. Finally, we propose a progressive
block-wise quantization (ProBQ) algorithm that fine-grained
quantizes each block of model with a unique quantization
bitwidth, which can solve the problem and achieve near-
optimal performance. The rationale is that we cherry-pick a
proper quantization bitwidth for each block of ML model,
instead of the whole model; it makes full use of the ground-
to-satellite link bandwidth therefore retains more weight
information to improve the model accuracy.

We evaluate SatelliteFL on our implemented FL platform
plugged in real-world satellite networks. Extensive exper-
iments are performed on classical ML models and open-
source satellite imagery data, and we will also open-source
our platform once published. The results show that, Satel-
liteFL can accelerate the convergence by 1.8×(on average,
up to 2.8×) and improve the bandwidth utilization ratio by
4.5×(on average, up to 9.3×) compared to the state-of-the-
art satellite-ground FL methods.

We make the following contributions:

• We formulate the collaborative satellite-ground train-
ing problem, with ground-to-satellite bandwidth,
short connection window and long connection cy-
cle, as a delay-constrained optimization problem. To
tackle these challenges, we introduce an efficient
satellite-ground FL framework that each satellite
should complete per-round FL training within each
connection window.

• We propose a progressive block-wise quantization
algorithm to maximize the model utility while not
exceeding the connection window.

• We validate the effectiveness of our solution with
real-world satellite networks and satellite imagery
dataset, and show that it significantly accelerates FL
training and improve the bandwidth utilization ratio
over the state-of-the-art methods.
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Fig. 2: LEO satellite operates in orbits with two angles and
its connection window is related to the signal coverage of
ground station. (1) The location of the satellite with respect
to a ground station on Earth is defined by the two angles
azimuth and elevation; (2) The connection window of the
satellite is determined by its orbit and the signal coverage of
ground station on Earth, which also indicates the connection
window of this satellite at a time.

2 BACKGROUND AND MOTIVATIONS

In this section, we first introduce the communication model
of satellite-ground dynamic links and the system model of
FL at LEO satellites. Then, we formulate the optimization
model of deploying FL framework across satellites and
ground stations based on the unique communication model.
Finally, we highlight the key obstacles and the limitations
of existing solutions to enable communication-efficient FL
training in this satellite-ground cooperative environment.

2.1 Communication model of satellite-ground link

In an Earth observation scenario, we first illustrate the back-
ground of LEO satellites related to the dynamic communi-
cation link. Then, we introduce two important definitions of
connected satellite and connection window.

In Fig. 2, there are two observation angles: azimuth and
elevation that decide the location of a satellite with respect
to a ground station on Earth. The former denotes the angle
between the North pole, measured clockwise around the
ground station’s horizon, and the satellite, while the latter
denotes the vertical angular distance between the satellite
and the ground station’s local horizon. Specifically, when
the satellite passes directly over the ground station, the
elevation angle reaches its maximum value of 90 degrees.
Due to the satellite’s low orbit, it often takes only a few
minutes for a satellite with a low elevation (β1 in Fig. 2) from
entering the signal coverage of a ground station to leaving
it. But, with a higher elevation (β2 > β1), this satellite gets
closer to Earth’s surface, thus delivering a longer connection
window as shown in Fig. 2. These observations reveal that:
(1) satellites aren’t always connected to ground station, nor
are they intended to be; (2) and even when they do, each
connection window is short.

Consider a collection LEO satellites S and ground sta-
tions G for Earth observation. We introduce a continuous

Algorithm 1: Satellite-ground FL framework
Input : total satellites S, initialized global model ω0.
Output: the global model ωr .

1 Ground station executes: // global coordination
2 for r ← 0 to R do

// per-round of FL training
3 Sc, {τd} ← connected satellites and their

duration
4 Ss ← randomly select Ks satellites from Sc
5 for each satellite k ∈ Ss with duration τd do
6 tg,s ← Dispatch the ωk

r to satellite k
7 ωk

r+1, tc and ts,g ←SatelliteUpdate(ωk
r )

8 if ts,g + tc + tg,s > τd then
9 Satellite k failed this round of FL

training
10 Remove k from selected Ss

11 Update global ωr+1 as Eq. (3)

12 SatelliteUpdate(ωk
r ): // local training

13 ωk
r+1 ← on-board training to update ωk

r as Eq. (2)
14 tc ← obtain the computation time tc
15 ts,g ← return ωk

r+1 and obtain communication time
ts,g

wall clock time t and a discrete time index i ∈ {0, 1, 2, · · · }
with each adjacent time indexes having τ wall clock time
interval. We denote the wall clock time interval from iτ to
(i + 1)τ as [i]. If a satellite s ∈ S is captured by a ground
station g ∈ G at any time t ∈ [i], their communication link
would be established. We define the satellite s as a connected
satellite in time interval [i]. As s moves out of signal coverage
of g, the link breaks, and s is no longer a connected satellite.
We define the duration of this link as connection window,
which is denoted as τd, and we have τd ≤ τ .

In this work, we assume that all the ground stations
work as a powerful computing cluster without consid-
ering the transmission delay across those geographically-
distributed ground stations. This assumption is theoretically
sound because the fabric connectivity among them is always
well-provisioned and much faster than the satellite-ground
links [15]. Therefore, a satellite connected to anyone ground
station can be considered to be connected to a cluster with
all the ground stations G.

2.2 Optimization model of satellite-ground FL

LEO satellites in this Earth observation scenario have col-
lected a lot of imagery and sensor data to train a global
model. Due to data privacy and bandwidth limitation
concerns, a satellite-ground cooperative FL framework is
proposed to collaboratively learn this model with on-board
training and on-ground coordination in Fig. 1(a). We follow
the classical synchronized stochastic gradient descent (SGD)
method to formulate this cooperative FL process.

Consider K satellites in S and a cluster with ground
stations G. For each satellite k ∈ {1, 2, · · · ,K}, it collects
and stores an imagery dataset Dk. These satellites aim to
collaboratively learn a global model ω by minimizing a
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Fig. 3: LEO satellite’s three distinctive characteristics on satellite-ground connection [17]–[19].

global objective function F (ω) as follows:

min
ω

{F (ω) =
K∑

k=1

nk

n
fk(ω)}, (1)

where nk = |Dk| denotes the samples of training data at
satellite k, fk denotes the local objective function of satellite
k, and we have n =

∑K
k=1 nk. The global model ω is main-

tained and advanced on the cluster of ground stations. We
introduce the most popular FL protocol, FedAvg [16], that
performs local SGD algorithm on satellites and aggregates
those models of satellites on the ground to advance global
model. In particular, we only randomly select Ks satellites
from Kc connected satellites in each round, where Kc ≤ K .
The local update on each selected satellite k ∈ Ks can be
formulated as:

ωk
r+1 = ωr − η∇fk(ωr), (2)

where η denotes the hyper-parameter learning rate and
r denotes the global training round across satellites and
ground stations. The global update is to aggregate the
received models from Ks selected satellites, which can be
formulated as:

ωr+1 =
∑
k∈Ks

nk

n
ωk
r+1. (3)

Consider the wall clock time during per-round of FL
training, which includes three key steps: 1) dispatching
global model to each satellite; 2) on-board training to update
local model; 3) sending local model to ground station. We
denote the time of above three steps as tg,s, tc and ts,g ,
respectively. In this satellite-ground FL framework, it is
highly likely that some satellites’ per-round of FL training
will be forced to stop due to the disconnection of satellite-
ground links. We describe the procedures of this framework
in Algorithm 1.

2.3 Challenges of deploying efficient FL in space

As illustrated above, those participating satellites in each
round are selected from those connected satellites with deter-
mined connection window, which makes the satellite-ground
communication crucial in the FL optimization. However,
satellite-ground communication substantially differs from
traditional communication on the ground in three aspects.

Limited ground-to-satellite bandwidth. In Earth obser-
vation scenario, the communication links from the ground
station to satellite are typically designed to transmit con-
trol signaling, thus resulting in very low bandwidth. In
addition, expanding this ground-to-satellite bandwidth is
often highly expensive due to the huge monetary cost and
serious heat dissipation when replacing Earth-dial links
with satellite communication links [20]–[22]. Therefore, the
ground-to-satellite bandwidth is often hundreds of Kbps
as shown in Fig. 3(a), although the ground station to-
day supports Gbps satellite-to-ground bandwidth [1], [14],
[23]. Our preliminary experiments show that transmitting
a ResNet18 [24] model to ground station only costs 0.4
seconds, yet it takes nearly one hour for the aggregated
model on ground station to be dispatched to connected
satellites. The extreme ground-to-satellite bandwidth breaks
down the widely-accepted assumption of symmetric up-
load/download bandwidth in traditional FL.

Short connection window. Traditional FL on ground
runs in a well-connected distributed system with a number
of high-performance network infrastructures to guarantee
their superior connection conditions. However, due to the
orbital dynamics of LEO satellites and limited deployment
of ground stations on Earth, the established communication
link usually only lasts for a short time. For example, it is
often several minutes at a time, and in most cases no more
than ten minutes as shown in Fig. 3(b). Our preliminary
experiments on ResNet18 model show that 80% of the
satellites fail to complete the per-round FL training under
these stringent connection windows.

Long connection cycle. Given the frequent failure in
one connection window mentioned above, many satellites
would attempt to complete the previously failed steps in
the next connection window. However, apart from the short
connection window, the orbital dynamics of satellites and
limited deployment of ground stations also lead to a very
long connection cycle of satellite-ground communication
links. Fig. 3(c) shows that each satellite would only get sev-
eral connection periods with ground stations in one day, and
it often takes many hours for any two connection periods.
Therefore, this makes it infeasible to pick up the failed steps
in the next connection window, due to the expired weights
with large staleness.
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2.4 Limitations of existing solutions

The aforementioned unique challenges have not been thor-
oughly studied, leaving us with ample room for improve-
ment. This drives us to delve deeper into how to en-
able satellites in space with efficient intelligent processing
capabilities. Based on existing efforts made from various
perspectives, we group related work into three categories:
AI on satellites. Several categories of work relate to en-
abling AI capability of LEO satellites. OEC [7] and Tian-
suan constellation [25] proposed to build the orbital edge
computing platform to support various computing tasks on
satellites so that those collected data can be processed in
space. Model inference on satellite [8], [26]–[28] is the key
to improving the image process capacity, which can help to
efficiently analyze the massive collected Earth observation
image. To tackle the challenges of satellite networks, some
early research [29], [30] proposed to execute distributed ma-
chine learning in space. Their goal is to enable ML model to
work better under a limited computing power and commu-
nication bandwidth of satellites. However, considering the
memory and power cost of inter-satellite communication,
cross-satellite distributed ML in space is currently infeasible
in LEO satellite constellations.
Federated learning in space. Federated learning [31], [32], a
collaborative machine learning paradigm, has been intro-
duced to enable satellites to collaboratively train an ML
model with the coordination of ground stations [2], [10],
[11], [13], [33], [34]. Most of them focus on tackling the
straggler and staleness problems of synchronous or asyn-
chronous FL algorithms, due to the system heterogeneity
of satellites [2], [13]. Other research aim to accelerate the
slow model convergence caused by limited ground-satellite
bandwidth [10], [12], [33], [34]. However, it is still fun-
damentally challenging to apply existing solutions to this
environment when considering all the unique challenges
introduced by orbital dynamics of LEO satellites: limited
ground-satellite bandwidth, short connection window and
long connection cycle. This motivates us to tackle those
challenges together to enable communication efficient FL in
space.
Model quantization for communication efficient FL. Quan-
tization for FL [35], [36] is an approach that allows several
devices to update models using low bitwidth gradients,
maintaining accuracy while reducing their communication
cost. Most existing neural quantization approaches focus on
how to prune the redundant gradient information in the
training processing, e.g., replacing the default numerical
FP32 gradients with INT8 and even INT4 [37]–[42]. Instead
of contributing a novelty accuracy-first FL quantization
training algorithm, our goal is to design a generic system to
efficiently support in-orbit satellite training under dynamic
ground-satellite connection in reality.

In this paper, our goal is to enable satellites with effective
intelligent processing capabilities under aforementioned
unique challenges. Notably, some new Earth observation
satellites have been launched in recent years with ground-
satellite bandwidth up to tens of Mbps [43], but the majority
of orbiting satellites, particularly those launched earlier,
maintain only hundreds of Kbps bandwidth [44]–[47]. Be-
sides, as the scale of a satellite network increases, the actual
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Fig. 4: Overview of our SatelliteFL framework with K
satellites and a cluster of ground stations. Each satellite has
c connection windows to the ground station in one day.

bandwidth allocation per satellite diminishes. Thus, deploy-
ing communication-efficient FL framework across satellites
and ground stations to enable satellites with effective intel-
ligent processing capabilities is crucial and meaningful.

3 DESIGN OF SATELLITEFL FRAMEWORK

This section proposes a satellite-ground FL framework
(SatelliteFL) with a progressive block-wise quantization al-
gorithm (ProBQ) to improve communication efficiency dur-
ing FL training across satellites and ground stations. Its key
idea is to ensure that each satellite completes per-round
FL training within each connection window by progressive
weight quantization. § 3.1 firstly illustrates the overview of
SatelliteFL. § 3.2.1 formulates the objective of SatelliteFL as
a delay-constrained optimization problem. § 3.2.2 proposes
the ProBQ algorithm, which can approximately solve this
problem.

3.1 SatelliteFL Overview

We show the detailed illustration of our SatelliteFL frame-
work in Fig. 4. Overall, SatelliteFL also adopts a C/S archi-
tecture, where a central server served by ground stations
maintains and keeps advancing a global model, and the
client refers to a collection of LEO satellites. These satellites
dynamically establish communication links with ground
stations in the process of orbiting Earth.

Each satellite in SatelliteFL is responsible for three tasks:
(1) It dequantizes the received integer (INT) model into
32-bit float (FP32) one; (2) The dequantized FP32 model,
along with the local data, are used to obtain an advanced
model by on-board training; (3) It maintains the connection
information, such as link bandwidth and connection win-
dow. The updated FP32 model and connection information
are transmitted to the ground stations for global model
updating. Considering the relatively fixed satellite orbit and
ground station deployment, the daily connection of each
satellite is predictable, but the connection’s bandwidth and
window can only be determined once the link is established.
§ 3.2 specifically analyzes the impact of these dynamic
connections on the satellite-ground FL training.

Ground station serves as two key roles: aggregator and
quantizer. The aggregator is responsible for aggregating
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the received FP32 models from satellites, and obtaining
an advanced global model. The quantizer is responsible
for quantizing the global model into multiple INT models,
which are adaptive to the connection information in the
satellite profiles. Its goal is to improve the model utility
under the communication constraints, which is formulated
as a delay-constrained optimization problem (details in §
3.2.1). Then, it adopts a progressive block-wise quantization
algorithm that fine-grained quantizes each block of model
with a unique quantization bitwidth to solve this problem
(details in § 3.2.2). Finally, these quantized INT models are
dispatched to corresponding satellites through the ground-
to-satellite link.

3.2 Delay-constrained optimization problem
3.2.1 Problem formulation
Consider a connected satellite participating in this round of
FL training, the ground station obtains its connection win-
dow τd , ground-to-satellite bandwidth bg,s and satellite-to-
ground bandwidth bs,g . The ground station also maintains
a global model ω and launches a round of FL training with
three steps. First, it would quantize this model into INT
format to accelerate the communication from ground station
to satellite, which can be formulated as:

ω(γ) = quantize(ω, γ), γ ∈ S, (4)

where γ is the quantization bitwidth to represent the INT
format model ω(γ) and N is a set of available bitwidth
specifications for hardware devices on satellite. Then, the
quantized model ω(γ) with γ-bit INT format is sent to this
satellite through the ground-to-satellite link. After receiving
this quantized model, the satellite would dequantize this
INT model to obtain dequantized model ω′(γ) with FP32
format, and run on-board training with ω′(γ). Finally, the
locally updated model with FP32 format is transmitted to
the ground station through the satellite-to-ground link. The
original model ω and dequantized model are represented in
FP32 format. We denote the data size of model as | · |, thus

γ

32
=

|ω(γ)|
|ω|

, and |ω′(γ)| = |ω|. (5)

The implication of Eq (5) is that the compression rate of the
ω(γ) to the original ω is γ

32 , and the data size of dequantized
model ω′(γ) is the same as global model ω. So, a smaller γ
attributes to fewer communication data, thus accelerating
the model transmission from the ground station to the
satellites.

Let t denote the per-round time for anyone connected
satellite participating in the FL training to complete the
above three steps. We do not consider the computation time
of model quantization and dequantization, because it only
needs to conduct a few scalar multiplications that are much
less complex than local model updates. Therefore, we have
the per-round time t as follows.

t = tg,s + tc + ts,g, (6)

where tg,s is the communication time for ω(γ) to be trans-
mitted from the ground station to the satellite, tc is the
computation time for the model training on satellite, and
ts,g is the communication time for updated model based
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Fig. 5: The deficiency of naive uniform quantization on
model accuracy and bandwidth utilization.

on ω′(γ) to be transmitted from the satellite to the ground
station. We calculate the two communication time based on
the transmission data size and link bandwidth as follows:

tg,s =
|ω(γ)|
bg,s

=
|ω| · γ
32 · bg,s

, (7)

and

ts,g =
|ω′(γ)|
bs,g

=
|ω|
bs,g

. (8)

The computation time tc is spent updating ω′(γ) by SGD
algorithm, which is related to the hardware devices on
satellite and ω.

Recall the global objective function F (ω) in Eq. (1). Our
goal is to minimize each F (ω) in our SatelliteFL with two
key considerations: 1) ensuring that per-round FL training
does not exceed the connection window τd of this satellite in
this round; 2) the numerical error between the dequantized
ω′(γ) and the original ω without quantization should not ex-
ceed the threshold ϵ to ensure the global model accuracy. We
introduce weight divergence between ω′(γ) and ω to quantify
their numerical error: | ||ω||−||ω′(γ)|| |

||ω|| . So, we formulate this
problem:

P1:min
γ

{F (ω) =
∑
k∈S

fk(ω
′(γ))}

s.t.
|ω| · γ
32 · bg,s

+ tc +
|ω|
bs,g

≤ τd,

| ||ω|| − ||ω′(γ)|| |
||ω||

≤ ϵ,

γ ∈ N .

Solving P1 is challenging for the following reasons. First,
a smaller γ attributes to fewer communication data, thus ac-
celerating the transmission across ground-to-satellite. How-
ever, a larger γ is required to represent more information
of original ω, thus reducing the numerical error introduced
by quantization. Second, it is generally impossible to obtain
an exact analytical relationship to connect local objective
function f with the dequantized ω′(γ).

3.2.2 Analysis of P1
Low bitwidth quantization, while transmitting-friendly,
severely limits the expressiveness of the updated informa-
tion. Updating the local parameters on satellite with such
limited information thus may not improve the quality of
local models, even making them worse. We first analyze the
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Fig. 6: Comparison of traditional fully FP32 blocks (FP32)
and only one quantized block with INT4 bitwidth represen-
tation (B1-B6: Block1-Block6).

deficiency of naive uniform quantization to solve P1. Then,
we dive into the sensitivity of the bitwidth of quantization
to model structure, and translate the above problem to P2.

Naive uniform quantization is to decide a unique γ to
quantize all the weights of global FP32 model, which aims to
ensure that each satellite must complete per-round training
within each connection window. Based on the estimation of
computation time and communication time, we choose as
large bitwidth as possible to quantize model, while satis-
fying the constraint of connection window. However, this
scheme leads to a serious deficiency in the model accuracy
and bandwidth utilization as shown in Fig. 5. The reason
behind is that limited decision space on γ makes it difficult
to achieve a complex balance between the constraints of
connection window and quantization error.

Therefore, we dive into the impact of model architecture
on accuracy performance when deciding different quantized
bitwidth γ. Since the classical model architectures tend to
have several blocks, conceptualized as analogous to the
ventral visual blocks [48]. We then conduct a comprehensive
measurement on each block with different low bitwidth,
separately. We obtain two key observations from these
experimental results that motivate our further design. The
settings of measurements are consistent with § 4.1.

• Observation 1: The impact on the accuracy varies
greatly when quantizing different blocks with low
bitwidth, blocks in the middle layer are less suitable for
low bitwidth quantization. Fig. 6 shows the end-to-end
accuracy performance when using 4-bit quantization in each
single block, while other blocks in this model use FP32 rep-
resentation. Most of the blocks suffer accuracy degradation
when using low bitwidth quantization. For example, block2,
block3, and block4 of DenseNet121 cause up to a 35%-67%
accuracy loss, while there is less than 6% accuracy loss
when quantizing block1 and block6. Therefore, it is worth
that we can improve the efficiency of model accuracy and
bandwidth utilization (in Fig. 5) by cherry-picking suitable
blocks for low bitwidth quantization.

• Observation 2: High bitwidth quantization on blocks
can make up for the accuracy loss caused by low bitwidth
quantization quickly. Fig. 7 shows the accuracy perfor-
mance when using hybrid bitwidth quantization across FL
round on all blocks. Note that the four marked regions
denoting the lower obtained accuracy with full INT4 quan-
tization. The lower accuracy immediately reverts to a higher
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Fig. 7: Hybrid bitwidth quantization across FL training
round with DenseNet121 on two datasets. The deep V
regions marked in red represent the lower accuracy when
using fully INT4 quantization in this round.

level in the next few rounds when turning to INT8 (or
INT16, INT32) quantization. The behind reason is that a
higher bitwidth representation retains more correct gradient
information than a lower one, which can revise the incorrect
updating direction and mitigate the accuracy degradation.
This motivates us to introduce hybrid bitwidth quantization
among different blocks for efficiency improvements during
the FL training.

• Implications. In summary, low bitwidth quantization as a
strategy to reduce model parameters, make an obvious accuracy
degradation. However, some specific blocks will not suffer this
serious performance loss, and the high bitwidth quantization can
mitigate the accuracy degradation caused by the low bitwidth
quantization. To enable a practical scheme with tolerable accuracy
degradation and full link utilization, the quantization paradigm
needs to be re-architected.

Therefore, we introduce the block-wise decision of γ to
P1. For anyone model ω, we have m blocks:

ω = {ω1, ω2, · · · , ωm}, (9)

where ωi denotes a block of ω and i ∈ [1, 2, · · · ,m]. For
anyone block ωi ∈ ω, we decide a unique bitwidth γi to
quantize this block with FP32 format into INT format with
γi bit representation. Then, we get a new decision vector Γ:

Γ = {(ω1, γ1), (ω2, γ2), · · · , (ωm, γm)}. (10)

Consider the new quantization decision on ω, we re-
calculate the communication time tg,s from ground station
to satellite:

tg,s =

∑m
i=1 |ωi(γi)|

bg,s
=

∑m
i=1 |ωi| · γi
32 · bg,s

, (11)

where ωi(γi) denotes the quantized block ωi with bitwidth
decision γi. We also dequantize block ωi(γi) (i ∈
[1, 2, · · · ,m]) one by one, and organize them to obtain the
dequantized model ω′(Γ) with FP32 format.

Finally, we translate P1 into P2 as:

P2:min
Γ

{F (ω) =
∑
k∈S

fk(ω
′(Γ))}

s.t.

∑m
i=1 |ωi| · γi
32 · bg,s

≤ τd − tc − ts,g,

| ||ω|| − ||ω′(Γ)|| |
||ω||

≤ ϵ,

∀γi ∈ Γ, γi ∈ N .
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Algorithm 2: Satellite-ground FL with ProBQ de-
sign

Input : initialized global model ω0(γ) and sorted
blocks {ω1, ω2, · · · , ωm} based on the impact
degree, decision of bitwidth
γ ∈ N = {b1, b2, · · · , bn}, ground-to-satellite
bandwidth bg,s, set of total satellites S and
total training rounds R.

Output: the global model ωr .
1 Ground station executes: // global coordination
2 for r ← 0 to R do

// per-round of FL training
3 Sc, {τd} ← connected satellites and their

duration
4 Sort Sc by its connection duration τd in reverse
5 Ss ← select top-Ks satellites from Sc
6 for each satellite k ∈ Ss with duration τd do
7 tc, ts,g ← estimated training and download time
8 Γ← ProBQ(τd, tc, ts,g, bg,s)
9 Quantize ωr(γ) to INT model ωk

r (int) as Γ

10 Dispatch the ωk
r (int) to satellite k

ωk
r+1 ←SatelliteUpdate(ωk

r (int))
11 Update global model ωr+1 as Eq. (3)

12 ProBQ(τd, tc, ts,g, bg,s): // search a feasible
decision

13 Default decision
Γ = {(ω1, b1), (ω2, b1), · · · , (ωm, b1)}

14 for i← 1 to m do
15 if tg,s =

∑m
i=1 |ωi|·γi

32·bg,s > τd − tc − ts,g then
16 for j ← b1 to bn do
17 bj = bj+1

18 Set γi = bj for ωi and update Γ

19 else
20 return Γ

21 SatelliteUpdate(ωk
r (int)): // local training

22 Dequantize ωk
r (int) to FP32 model ωk

r

23 ωk
r+1 ← on-board training to update ωk

r as Eq. (2)
24 return the updated FP32 model ωk

r+1

In problem P2, the objective is to minimize the each F (ω) in
our SatelliteFL with two key considerations. Note that this
F (ω) is controlled by the decision vector Γ in each satellite.
One of the key considerations is how to ensure that per-
round FL training does not exceed the transmission time
τd − tc − ts,g of this satellite in current round, and the per-
round FL training time is determined by the current decision
vector Γ in each satellite model. The other key consideration
is how to ensure that the numerical error between the de-
quantized model and original model should not exceed the
threshold ϵ. Therefore, problem P2 is a nonlinear integer dy-
namic optimization problem [49], [50]. To solve P2, we need
to find out how the value of Γ affects the loss function F and
the weight divergence | ||ω||−||ω′(γ)|| |

||ω|| . However, it has been
proved that problem P2 is a classical NP-hard problem [51]
over Γ, and in reality, algorithm with reduced computation
complexity is required to solve P2. Meanwhile, considering
the relatively limited integer bitwidth supported by satellite
hardware, the greedy strategy can be used to solve it well.
Thus, we adopt the greedy idea to obtain a suboptimal

solution in designing Algorithm 2.
Intuitively, as long as the bitwidth of quantization is

larger, the practical training loss would be closer to the orig-
inal FP32-based loss and the quantization error would be
smaller. Therefore, the key is how to choose the maximum
quantization bitwidth. As long as connection window is
guaranteed by this decided bit width, the model utility can
be improved to the maximum. And the available bitwidth
specifications for hardware devices on satellite are very lim-
ited (like INT2, INT4, INT8, etc.), which means the decision
space of γ is also small. Therefore, we can adopt a greedy
algorithm to solve this problem in a short clock time.

3.3 Progressive Block-wise Quantization Algorithm

In this section, we propose a progressive block-wise quan-
tization algorithm (ProBQ) that quantizes each block of a
model with a suitable bitwidth based on the above obser-
vations. This novel design compensates for the quantization
error as much as possible on the premise of guaranteeing
the model update in each transmission process. Its core
technical designs are two-fold: (1) adaptive quantization on
fine-grained blocks to achieve a better trade-off between
model utility and delay constraints; (2) FP32-guided de-
quantization on low bitwidth model to enable high precision
on-board training. Algorithm 2 describes the workflow of
our SatelliteFL with proposed ProBQ algorithm.

We first introduce two key variables in our decision
vector to help describe the algorithm: N and ω. Consider
a finite space with n positive integers N = {b1, b2, · · · , bn}
that represents a set of available bitwidth specifications for
hardware devices on satellite. In most cases, it supports only
several types of bitwidth. (like INT2, INT4, INT8, etc.) We
sort this set by the number of bitwidth in reverse, which
means that the first element of N is the maximum bitwidth
to quantize each block. Consider a general ML model ω
with m blocks. Based on the prior profile information that
the impact degree on the model accuracy when quantizing
different blocks with a low bitwidth as shown in Fig. 6
and Fig. 7. We sort model’s all blocks as this impact degree
from smallest to largest to obtain a sorted list of blocks: ω =
{ω1, ω2, · · · , ωm}.

Then, under the satellite-ground cooperative mechanism
in this framework, we focus on the introduction of the
ProBQ algorithm. To reduce the failure of satellites’ FL train-
ing in one round, we select Ks satellites with the longest
connection time from the connected satellites in each round
(Line 4-5). During each satellite’s decision phase, we first
obtain the transmission time for the quantized INT model
in this connected duration by the estimation (Line 7), then we
adopt a greedy method to search the feasible solution with
the constrained available time τd − tc − ts,g (Line 13-21).
Although this method’s complexity is very high, the prac-
tical execution speed is not slow due to the small number
of available satellites, bitwidth supported by the satellites,
and the blocks of the model. With the obtained decision
vector Γ, global model is quantified into INT format and
dispatched to the corresponding satellite. Finally, in order to
ensure the training accuracy, each satellite dequantizes the
received INT model into FP32 model for on-board training
(Line 23-25).
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TABLE 1: Datasets used in experiments for one task: image
classification. IC (image classification), OD (object detec-
tion), IS (instance segmentation).

Dataset Task Size Samples Labels

fMoW[52] IC, OD, IS resize 224*224 1 million 63
L-SUN[53] IC 256*256 59 million 30

4 PERFORMANCE EVALUATION

4.1 Experimental Settings

4.1.1 Datasets and models
We adopt a real-world satellite imagery dataset and an
open-source image dataset as shown in Table 1: Functional
Map of the World (fMoW) [52] and L-SUN [53] on 3 classic
CNN models: DenseNet121 [54], VGG16 [55] and ResNet18
[24]. These three models are popular for image classification,
which contains 6, 6, and 5 blocks respectively.

• fMoW is a classic world functional map dataset,
which contains more than 1 million high-resolution
images with a total of 63 categories. We generate a
sub-dataset by random sampling the data for each
class, setting 0.2 as the fraction of data to be sampled.
In sub-dataset, each high-resolution image is resize to
224*224.

• L-SUN is a classic image classification dataset, which
contains approximately 59 million images with 10
scene categories and 20 object categories, and the
fraction of data to be sampled is set as 0.01.

4.1.2 Simulated platform
We have implemented SatelliteFL on a simulated platform
atop FedML [56], a popular FL framework with real-world
communication and computation simulation. We also fol-
lowed the prior work [2] to plug all the configurations
as an example constellation, named Planet Lab with 12
ground stations and 191 satellites. We follow the prior work
[57]–[59] to divide the two datasets into non-iid sub-dataset,
and assigned them to 191 satellites. Here, we use the cote
simulator to obtain the connection information same as
FedSpace [2]. Specifically, to establish a clear correspon-
dence between training rounds and the clock time, we set
per training round period with τ = 15 minutes, and there
are 96 training rounds in one day. The connected satellites
with their connection information in each round are also ob-
tained from this simulation platform. Moreover, to simulate
the dynamic variations in the satellite-to-ground link, we
attempted to model the ground-to-satellite bandwidth using
a Gaussian distribution with a mean of bg,s and a standard
deviation of bg,s/3. All the experiments are conducted on a
Ubuntu 18.04 Linux server with 8 NVIDIA A40 GPUs.

4.1.3 Metrics
Apart from the convergence accuracy of the testing data,
we also report the following two metrics that closely relate
to the satellites. (i) Clock time is the end-to-end training time
perceived by the satellites, including multiple rounds of per-
round FL training until model convergence. (ii) Bandwidth
utilization of ground-to-satellite link refers to the ratio of the

valid data size to the total data size that can be transmitted
by the ground station during each connection duration,
denoted as u ratio. The total data size can be calculated
as bg,s · τd, which means if there is enough data required
to be transmitted to the satellite throughout the connection
duration τd with the ground-to-satellite bandwidth bg,s. The
valid data size here refers to the size of actual transmitted
model parameters and it must be a complete one with all
parameters, because part of parameters cannot be used for
the satellite’s on-board training. So we have:

u ratio =
α(|ω|)
bg,s · τd

, and α(|ω|) =
{
|ω|, success

0, fail.
(12)

We fix the sum of computation time tc and communication
time ts.g as 3 minutes based on the profiled measurement
on Jetson TX2 and 1 Gbps satellite-to-ground bandwidth.
Note that the average connection window is 6 minutes as
shown in Fig. 3(b), and the maximum u ratio is about 50%
on average.

4.1.4 Baselines
We use three baselines in experiments to demonstrate Satel-
liteFL’s benefits are: (i) FedAvg [16]: the traditional FL
protocol using fully FP32 format on the ground. (ii) Vanilla
SatelliteFL (vanilla): using naive uniform bitwidth quan-
tization in satellite-ground FL framework as described in
Analysis of P1 of § 3.2. (iii) FedSpace [2]: a state-of-the-art
satellite-ground FL framework using an adaptive buffer to
balance the synchronous and asynchronous training phases.

4.2 Experimental Results
4.2.1 End-to-end Performance
We show the overall results of SatelliteFL on the two
metrics compared to baselines when using bg,s=400 as the
default setting. Fig. 8 shows the time-to-accuracy perfor-
mance of SatelliteFL compared to three baselines, which
demonstrates that our SatelliteFL framework with ProBQ
algorithm greatly improves both the convergence speed
and the model accuracy. Fig. 9 shows the performance
of bandwidth utilization ratio, which reveals that it also
highly improves the bandwidth utilization of the ground-
to-satellite link.

As shown in Fig. 8, SatelliteFL greatly improves both
the convergence speed and model accuracy compared
with baselines, Compared to FedAvg with DenseNet121
on fMoW and L-SUN, SatelliteFL obtains 31.6% and 36.9%
higher convergence accuracy, and it takes 42.1% and 44.2%
fewer days to converge. Moreover, for ResNet18 and
VGG16, FedAvg’s accuracy is even less than 10% without
any useful learned information. And FedSpace achieves the
same result when using VGG16 model. This is because
they are not designed for transmission delay-constrained
scenarios, but only transmit current update information as
possible, thus the update information is likely to be inter-
rupted. Compared to FedSpace with DenseNet121 on fMoW
and L-SUN, SatelliteFL obtains 10.7% and 1.8% higher
convergence accuracy, and it takes 45.8% and 47.5% fewer
days to converge. But for ResNet18 on these two datasets,
FedSpace only achieves 13.3% and 34.7%, which is 33.8%
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Fig. 8: The time-to-accuracy performance of our SatelliteFL with ProBQ (ours) compared with three baselines: FedAvg,
Vanilla SatelliteFL (vanilla) and FedSpace.

Fig. 9: The utilization ratio (u ratio) of ground-to-satellite
link bandwidth when comparing our SatelliteFL with
ProBQ (ours) and three baseline algorithms using three
models on two datasets. Considering the on-board training
time and data transmission time across satellite-to-ground
link, the maximum u ratio is only about 50% on average
(details in § 4.1).

and 23.4% lower than SatelliteFL, respectively. Vanilla Satel-
liteFL with uniform quantization method achieves much
better performance than the other two baselines, yet, com-
pared with our SatelliteFL with ProBQ, its time-to-accuracy
performance still has obvious shortcomings. For example,
using ResNet18 on fMoW and L-SUN, ours accuracy is 3.4%
and 12.1% higher than Vanilla, respectively. Even on the
other two models, it can achieve up to 1.7%-7.4% accuracy
improvement. The reason is that ProBQ can retain more
effective gradient information when the ground-to-satellite
bandwidth fluctuates and even decreases. Such improve-
ments are mostly attributed to the progressive quantization
design as described in § 3.2.2.

Apart from the time-to-accuracy performance, we also
evaluate the utilization ratio of ground-to-satellite link
bandwidth in Fig. 9. The results show that the u ratios
of FedAvg and FedSpace are very low, almost close to
0, due to the frequent failure of ensuring the per-round
FL training with one connection window. Among these
two algorithms, FedSpace respectively achieves 30.2% and
31.4% with DenseNet121 on fMoW and L-SUN, but they
are still 17.2% and 16% lower than our SatelliteFL. Our
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Fig. 10: The performance of our SatelliteFL with ProBQ
(ours) compared with three baselines under varying band-
width.

SatelliteFL with ProBQ can also improve the u ratio (3.9%-
8.3%) of Vanilla SatelliteFL using naive uniform quantiza-
tion method. For example, using ResNet18 on fMoW, our
SatelliteFL with ProBQ achieves 50.5% u ratio, which is
8.3% higher than Vanilla SatelliteFL. The reason behind is
that ProBQ designed in our SatelliteFL has progressively
expanded the quantization bitwidth on the most of blocks,
which can improve the system efficiency under delay con-
straints.

4.2.2 Link Analysis
We further study the performance of SatelliteFL under
different ground-to-satellite bandwidth compared to base-
lines. We keep the hyper-parameter settings the same as
the above end-to-end settings. Fig. 10 shows the accuracy
and u ratio of different methods under varying ground-to-
satellite bandwidth. We set bg,s= 160, 240, 320, 400, 480, and
560, and train DenseNet121 on fMoW in this experiment.

As observed, ProBQ only reduces accuracy performance
by 9.1%-15.6% under poor bandwidth conditions, whereas
the other three methods decrease accuracy by 19.8%-30.3%,
6.8%-44.1%, and 14.9%-36.5%, respectively. The rationale is
that, compared to FedAvg and FedSpace, ProBQ strives to
preserve effective update information as much as possible
under limited bandwidth conditions. In contrast to Vanilla
SatelliteFL’s fixed quantization, ProBQ’s progressive block
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Fig. 11: Impacts of SatelliteFL settings. V (Vanilla). D (Default): order of original front-to-back. S (Size): order of parameter
size. R (Random): order of random shuffling. O (Ours).

quantization allows sensitive blocks with lower bitwidth
to retain more useful update information. More specifically,
with lower bandwidth conditions such as bg,s= 160 and 240,
ProBQ reduces only 18.6% and 1.2% u ratio, whereas Fe-
dAvg and FedSpace struggle to keep the system operational
with an effective u ratio. This is because ProBQ permits
the retention of more fragmented update information and
transmits it at a block-wise granularity. In addition, with
bg,s > 240, ProBQ can maintain a stable u ratio close to 50%
with consistent accuracy performance. Vanilla SatelliteFL
also can keep a stable u ratio close to 40%, while the
other two baselines experience a sharp decline in u ratio
as bandwidth becomes worse. The rationale is that, within a
relatively ample bandwidth range, each block can retain suf-
ficient useful information for updates. In contrast, in more
constrained bandwidth conditions, ensuring the availability
of enough update information for the entire model becomes
challenging.

4.2.3 Sensitivity Analysis
We then dive into the performance sensitivity of SatelliteFL
under varying environments. Specifically, to further explore
SatelliteFL’s performance under poor bandwidth condi-
tions, we set bg,s=240 according to the observation drawn
from the above link analysis discussed, while keeping the
remaining hyper-parameters consistent with the end-to-end
configuration.

Impacts of block ordering methods. Fig. 11(a) reports
the impact of block ordering methods in our SatelliteFL
on the performance of the above two metrics. We intro-
duce another three kinds of ordering methods into Vanilla
SatelliteFL: (i) The default method (Default) orders the
blocks based on the original front-to-back order; (ii) The
size method (Size) orders the blocks based on the order of
parameter size; (iii) The random method (Random) orders
the blocks based on a random shuffle of all the blocks.
We set bg,s=240 and train DenseNet121 on fMoW in this
experiment.

The results in Fig. 11(a) show the compared performance
to ProBQ (“Ours”), Vanilla, Default, Size, and Random algo-
rithms. For the accuracy performance, ProBQ still outper-
forms other algorithms 8.4%-14.6%, this is because ProBQ
can achieve a near-optimal choice on block priority under
poor bandwidth, to give priority guarantee on the sensitive
blocks remaining information with a higher bitwidth. Note
that, whatever the block priority we choose in SatelliteFL,
the last four methods with block-wise quantization can

obtain 6.7% (on average) higher accuracy and 19.1% (on
average) higher u ratio. The reason for such performance
improvement is that our block-wise strategy can make more
efficient use of redundant fragmented ground-to-satellite
links under poor bandwidth.

Impacts of bandwidth variation. Fig. 11(b) shows the
accuracy and u ratio on different settings of bandwidth
variation. We set bg,s= 240 and change the standard devi-
ation = 40, 80, 120, 160, and 200 in Gaussian distribution
to simulate the dynamic fluctuations of ground-to-satellite
bandwidth, and then train DenseNet121 on fMoW in this
experiment.

As observed, Fig. 11(b) illustrates the performance of
SatelliteFL under varying degrees of bandwidth fluctua-
tions. With an increase in the degree of bandwidth variation,
the u ratio decreased by 1.1%-2.4%, while the accuracy
remained nearly constant, fluctuating within approximately
1%. The underlying reason for this phenomenon is that
ProBQ can effectively adjust the different bitwidth for pa-
rameter quantization under varying degrees of dynamic
bandwidth changing, thereby maintaining model accuracy
as stably as possible.

Impacts of connection window. Fig. 11(c) shows the
accuracy and u ratio on different settings of connection
window. We set bg,s= 240 and train DenseNet121 on fMoW
with connection window = 4, 5, 6, 7, 8, and 9 minutes in this
experiment.

The results in Fig. 11(c) show the benefit of increasing
the connection window time. It shows that SatelliteFL can
improve accuracy by 39.5%-59.6% and 2.1×-3.7× u ratio,
which is due to ProBQ being able to retain more update
information and benefit from a richer connection window
time. Note that, when the connection window time > 6,
the u ratio exceeds 50%, this is because ProBQ has more
transmission time to transmit gradients across the ground-
to-satellite link and maintain a stable accuracy performance.

Impacts of connected satellite numbers. Fig. 11(d)
shows the accuracy and u ratio on different settings of
connected satellites numbers. We set bg,s= 240 and train
DenseNet121 on fMoW with connected satellites number =
3, 4, 5, 6, and 7 in this experiment.

Fig. 11(d) illustrates the performance on SatelliteFL for
different numbers of connected satellites. As the number
of connected satellites increases, the u ratio abnormally
decreases by 0.6%-8.9%, the accuracy first increases by
5.1%, and then also abnormally decreases by 0.9%-1.9%.
The reason behind the abnormal phenomenon is that when
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connected satellite numbers increase, there is a greater prob-
ability of selecting satellites with worse link conditions, and
these satellites have a poor u ratio, which also affects the
final accuracy.

5 DISCUSSION AND LIMITATION

In our research, we build upon the foundational work
presented in prior work [2], which assumes the existence of
a steady (with some dynamic changes) communication link
during each connection window. However, it is important
to acknowledge that in real-world satellite-ground commu-
nication scenarios, achieving such steadiness can be chal-
lenging due to varying distance between the satellite and
the ground station or atmospheric conditions like rainfall-
induced signal attenuation. The presence of an uncertain
communication link can pose difficulties in meeting our
objective of completing the per-round FL training within
each connection window.

In our future work endeavors, we aim to enhance the
success rate of parameter transmission by developing pre-
dictive models for link uncertainty. Additionally, we in-
tend to explore redundant training strategies and missing-
parameter recovery mechanisms, minimizing the need for
re-transmissions following parameter transmission failures
based on the concept of bounded-loss tolerance commonly
applied in ML tasks [60]. Furthermore, the images collected
by Earth observation satellites lack labels, posing a challenge
in efficiently utilizing this raw data. We intend to explore
effective methods for providing soft labels to these raw data,
focusing on unsupervised training [61] and leveraging the
few-shot capabilities exhibited by current large models [62].

6 CONCLUSION

SatelliteFL is a communication efficient FL framework
across satellites and ground stations that focuses on three
unique challenges introduced by the dynamic orbits of LEO
satellites: limited ground-to-satellite bandwidth, short con-
nection window and long connection cycle. It formulates the
goal as a delay-constrained optimization problem to maxi-
mize the model utility while guaranteeing not to exceed the
connection window. To solve this problem, it leverages a
progressive weight quantization method that fine-grained
quantizes each block of model with a unique quantization
bitwidth. Experiments show that SatelliteFL can accelerate
the convergence by 1.8×(on average, up to 2.8×) and im-
prove the bandwidth utilization ratio by 4.5×(on average,
up to 9.3×) with acceptable accuracy loss.
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