
A Comprehensive Benchmark of Deep
Learning Libraries on Mobile Devices

Qiyang Zhang, Xiang Li, Xiangying Che, Xiao Ma, Ao Zhou,
Mengwei Xu, Shangguang Wang, Yun Ma, Xuanzhe Liu

1

TheWebConf 2022

DL Inference on Smartphones

ØIncreasingly popular DL

2

Object Detection NN accelerators

PyTorch Mobile

Ø Emerging DL libraries

DL libraries are not fully understood

3

server NN design AI chip

Ø A comprehensive benchmark for on-device DL inference
The benchmark triumphs at the aspect of rich support for more various DL libs

Ø Existing Benchmarks mainly focus on:

…

The comparison of existing benchmarks and ours.

Measurement Settings

4

• Rich support

• the most popular DL libs: TFLite, NCNN, MNN, PyTorch
Mobile, Mace, SNPE.
• 15 models in total, for various tasks and different model

precision.

Measurement Settings

5

Supported DL libs and models in this work.

C/G/D: CPU/GPU/DSP
32/8: FP32/INT8

Measurement Settings

6

ØRich support
• The most popular DL libs: TFLite, NCNN, MNN,

PyTorchMobile, Mace, SNPE.
• 15 models in total, for various tasks and different model

precision.
ØDevices
• 10 different device models with various SoCs and GPUs

ØDetailed metrics
• The inference time and operator-level information.

Research goal

7

(The first) measurement to understand how DL libs
affect inference.

• Performance Fragmentation
• Impacts of Quantization and Hardware
• Operator-level Integration
• Cold-start Inference
• Longitudinal Inference

Analysis Workflow

8

NCNN

Push libs and
models

Pytorch Mobile Run inference

9

CPU

Best-performing lib on CPU

Performance Fragmentation

DL lib with the
smallest inference
time in 6 DL libs

The DL lib with fastest speed
to run “albert_tiny”on

“Samsung S21” is “MNN”.

10

CPU

Best-performing lib on CPU/GPU

Performance Fragmentation

There is no one-size-fit-all DL lib
for optimal performance across
models and hardware.

11

Performance gap of DL libs can be large.

Performance Fragmentation

the longer one
divided by the

shorter one

The performance gaps of different DL libs

the longer one
divided by the

shorter one

12

With software heterogeneity, the model structure is not the sole factor
that determines relative performance.

Implication: To pursue the optimal performance, the developers need
to incorporate different DL libs and dynamically load one based on
the current model and hardware platform.

Performance Fragmentation

13

Benefit brought by INT8 quantization is under expectation.

0.8×–3.0× faster
than FLOAT

Performance Fragmentation

Best inference speed across all DL libs

14

Benefit brought by INT8 quantization is under expectation.

0.8×–3.0× faster
than FLOAT

Performance Fragmentation

Best inference speed across all DL libs

Implication: There exists great potential at software level to accelerate
the inference of quantized models.

15Best inference speed across all DL libs

GPU can not always accelerate DL inference.

Impacts of Hardware

speedup 1.4×–
1.9× compared to

CPU

16Best inference speed across all DL libs

On INT8-based models, GPU can hardly bring any benefit.

Impacts of Hardware

Implication: Observations motivate developers to focus on GPU
optimization. It also motivates researchers to design models suitable
for GPU.

17Best inference speed across all DL libs

DSP can significantly accelerate INT8 model in most cases.

Impacts of Hardware

Implication: The current DL libs can not fully exploit the capacity of
each hardware.

reduce inference
time of INT8 model

by 2.0×–12.9×

18

Implication: Those diversities need to be unified before the operator
implementation can be combined.

Oracle time brings
inference time reduction

Oracle lib that combines the fastest operator from those DL libs

Operator-level Integration

The benefits that integrate the wisdom of DL libs （ms）

How about integrating the best-performing operator
from DL libs?

19

Cold-start Inference

The first inference beginning from model loading

The ratio of cold-start inference to warm inference
slow 1.4×–45×
on GPU than
warm inference

Cold-start inference is
significantly slower than
warm inference

slow 1.3×–37.7×
on CPU than
warm inference

20

Breakdown of Cold-start Inference

The breakdown of cold-start inference

Memory preparation contributes to the largest overhead in cold-
start inference.

21

Breakdown of Cold-start Inference

The breakdown of cold-start inference

Implication: Potential solutions include speeding up memory
preparation using multiple threads and generating pipeline to run
model loading memory preparation and inference simultaneously.

22

Longitudinal Analysis

Better

The inference performance evolvement across time of TFLite

The performance of DL libs are continuously improving in early years,
but becomes relatively stable since 2020.

Time

23

Longitudinal Analysis

The inference performance evolvement across time of TFLite

Better

Performance bug

Time

24

Longitudinal Analysis

Better

Implication: The current open-source ecosystems is possibly due to
a comprehensive benchmarking tool available for developers to test
commits.

ØA comprehensive benchmark to quantitatively understand
inference performance of DL libs.

ØLead to insightful implications for complete landscape of
DL libs ecosystem.

Please check benchmark at

Øhttps://github.com/UbiquitousLearning/MobileDLFrameworksBenchmark

25

Summary

https://github.com/UbiquitousLearning/MobileDLFrameworksBenchmark

