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DL Inference on Smartphones 

ØIncreasingly popular DL
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Object Detection NN accelerators

PyTorch Mobile

Ø Emerging DL libraries



DL libraries are not fully understood
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server NN design AI chip

Ø A comprehensive benchmark for on-device DL inference
The benchmark triumphs at the aspect of rich support for more various DL libs

Ø Existing Benchmarks mainly focus on:      

…

The comparison of existing benchmarks and ours.



Measurement Settings
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• Rich support

• the most popular DL libs: TFLite, NCNN, MNN, PyTorch 
Mobile, Mace, SNPE.
• 15 models in total, for various tasks and different model 

precision.



Measurement Settings
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Supported DL libs and models in this work.

C/G/D: CPU/GPU/DSP
32/8: FP32/INT8



Measurement Settings
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ØRich support
• The most popular DL libs: TFLite, NCNN, MNN, 

PyTorchMobile, Mace, SNPE.
• 15 models in total, for various tasks and different model 

precision.
ØDevices
• 10 different device models with various SoCs and GPUs

ØDetailed metrics
• The inference time and operator-level information.



Research goal
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(The first) measurement to understand how DL libs 
affect inference.

• Performance Fragmentation
• Impacts of Quantization and Hardware
• Operator-level Integration
• Cold-start Inference
• Longitudinal Inference



Analysis Workflow
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NCNN

Push libs and 
models

Pytorch Mobile Run inference
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CPU

Best-performing lib on CPU

Performance Fragmentation

DL lib with the
smallest inference 
time in 6 DL libs

The DL lib with fastest speed 
to run “albert_tiny”on

“Samsung S21” is “MNN”.
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CPU

Best-performing lib on CPU/GPU

Performance Fragmentation

There is no one-size-fit-all DL lib 
for optimal performance across 
models and hardware.
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Performance gap of DL libs can be large.

Performance Fragmentation

the longer one 
divided by the 

shorter one

The performance gaps of different DL libs

the longer one 
divided by the 

shorter one
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With software heterogeneity, the model structure is not the sole factor 
that determines relative performance.

Implication: To pursue the optimal performance, the developers need 
to incorporate different DL libs and dynamically load one based on 
the current model and hardware platform. 

Performance Fragmentation
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Benefit brought by INT8 quantization is under expectation.

0.8×–3.0× faster 
than FLOAT

Performance Fragmentation

Best inference speed across all DL libs
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Benefit brought by INT8 quantization is under expectation.

0.8×–3.0× faster 
than FLOAT

Performance Fragmentation

Best inference speed across all DL libs

Implication: There exists great potential at software level to accelerate 
the inference of quantized models. 



15Best inference speed across all DL libs

GPU can not always accelerate DL inference.  

Impacts of Hardware

speedup 1.4×–
1.9× compared to 

CPU



16Best inference speed across all DL libs

On INT8-based models, GPU can hardly bring any benefit.  

Impacts of Hardware

Implication: Observations motivate developers to focus on GPU 
optimization. It also motivates researchers to design models suitable 
for GPU. 



17Best inference speed across all DL libs

DSP can significantly accelerate INT8 model in most cases.

Impacts of Hardware

Implication: The current DL libs can not fully exploit the capacity of 
each hardware. 

reduce inference 
time of INT8 model 

by 2.0×–12.9×
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Implication: Those diversities need to be unified before the operator 
implementation can be combined.

Oracle time brings 
inference time reduction

Oracle lib that combines the fastest operator from those DL libs

Operator-level Integration

The benefits that integrate the wisdom of DL libs （ms）

How about integrating the best-performing operator 
from DL libs?
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Cold-start Inference

The first inference beginning from model loading

The ratio of cold-start inference to warm inference
slow 1.4×–45×
on GPU than 
warm inference 

Cold-start inference is 
significantly slower than 
warm inference

slow 1.3×–37.7×
on CPU than 
warm inference 
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Breakdown of Cold-start Inference

The breakdown of cold-start inference

Memory preparation contributes to the largest overhead in cold-
start inference.
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Breakdown of Cold-start Inference

The breakdown of cold-start inference

Implication: Potential solutions include speeding up memory 
preparation using multiple threads and generating pipeline to run 
model loading memory preparation and inference simultaneously.
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Longitudinal Analysis

Better

The inference performance evolvement across time of TFLite

The performance of DL libs are continuously improving in early years, 
but becomes relatively stable since 2020.

Time
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Longitudinal Analysis 

The inference performance evolvement across time of TFLite

Better

Performance bug

Time
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Longitudinal Analysis

Better

Implication: The current open-source ecosystems is possibly due to 
a comprehensive benchmarking tool available for developers to test 
commits. 



ØA comprehensive benchmark to quantitatively understand 
inference performance of DL libs. 

ØLead to insightful implications for complete landscape of 
DL libs ecosystem.

Please check benchmark at

Øhttps://github.com/UbiquitousLearning/MobileDLFrameworksBenchmark
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Summary

https://github.com/UbiquitousLearning/MobileDLFrameworksBenchmark

