
Commutativity-guaranteed Docker Image Reconstruction
towards Effective Layer Sharing

Sisi Li
Beijing University of Posts and

Telecommunications
Beijing, China

sisili@bupt.edu.cn

Ao Zhou∗
Beijing University of Posts and

Telecommunications
Beijing, China

aozhou@bupt.edu.cn

Xiao Ma
Beijing University of Posts and

Telecommunications
Beijing, China

maxiao18@bupt.edu.cn

Mengwei Xu
Beijing University of Posts and

Telecommunications
Beijing, China

mwx@bupt.edu.cn

Qingyuan Jiang
Beijing University of Posts and

Telecommunications
Beijing, China

qingyuan_jiang@bupt.edu.cn

Shangguang Wang
Beijing University of Posts and

Telecommunications
Beijing, China

sgwang@bupt.edu.cn

ABSTRACT
Owing to the benefit of light weight, containers have become a
promising enabler for cloud native computing. Container images
composed of applications and dependencies support flexible ser-
vice deployment and migration. Rapid adoption and integration
of containers generate millions of images to be stored. Addition-
ally, non-local images have to be frequently downloaded from the
registry, resulting in huge amounts of traffic. Content Addressable
Storage (CAS) has been adopted for saving storage and network-
ing by enabling identical layers sharing across images. However,
according to our measurements, the implication of CAS is signifi-
cantly limited as layers are rarely fully identical in practice. In this
paper, we propose to reconstruct the docker images to raise the
number of identical layers and thereby reduce storage and network
consumption. We explore the layered structure of images and de-
fine the commutativity of files to assure image validity. The image
reconstruction is formulated as an integer nonlinear programming
problem. Inspired by the observed similarity of layers, we design
a similarity-aware online image reconstruction algorithm. Exten-
sive evaluations are conducted to verify the performance of the
proposed approach.

CCS CONCEPTS
• Networks→ Cloud computing; • Human-centered comput-
ing→ Ubiquitous and mobile computing.

KEYWORDS
Containers, Container images, Docker, Docker hub

∗Ao Zhou is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9096-5/22/04. . . $15.00
https://doi.org/10.1145/3485447.3512154

ACM Reference Format:
Sisi Li, Ao Zhou, Xiao Ma, Mengwei Xu, Qingyuan Jiang, and Shangguang
Wang. 2022. Commutativity-guaranteed Docker Image Reconstruction to-
wards Effective Layer Sharing. In Proceedings of the ACM Web Conference
2022 (WWW ’22), April 25–29, 2022, Virtual Event, Lyon, France. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3485447.3512154

1 INTRODUCTION
Containers have revolutionized how web applications are deployed,
including social networking, e-commerce, etc [17][24][27]. Com-
pared with virtual machines (VMs) [23], containers are more light-
weight and incur less overhead by sharing the operating system
kernel [12]. Moreover, containers enable developers to focus more
on application logic without worrying about the underlying infras-
tructure [19]. Owing to these advantages, containers are envisioned
as the key technique to achieve cloud native vision [8].

The executable files and runtime dependencies of containers are
packaged into images. Flexible sharing of containers is achieved
by delivering images among machines. Images are structured in
independent layers and each layer is a subset of files. All the images
are stored in a centralized registry, which clients “push” new images
to, and “pull” existing images from to start and run containers at
hosts. With the development of containers and cloud computing
technologies, the number of images is growing rapidly, consuming
considerable storage and networking resources. For example, as
the most popular image registry, Docker Hub [2] now stores more
than 2 million public images and over 400 million private images,
occupying roughly 1 PB storage. Moreover, the ubiquitous use of
internet connected mobile devices aggravates the mobility and
dynamism of services. Google starts an average of 7,000 containers
per second [14] for supporting the continuously changing requests.
Frequent service deployment and migration can pose huge pressure
on storage and networking.

Content-addressable storage (CAS) [29] has been employed to
relieve the burden of storage and networking by reusing the identi-
cal layers among different images at the same client server. Layer-
aware image caching [26] and service placement [14][13] have been
investigated. However, as presented in our measurement (Section
3), CAS provides 38% storage saving while 35% of file storage is
still redundant. The main reason is that the number of identical

https://doi.org/10.1145/3485447.3512154
https://doi.org/10.1145/3485447.3512154

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Sisi Li, Ao Zhou, Xiao Ma, Mengwei Xu, Qingyuan Jiang, and Shangguang Wang

Figure 1: The layered structure of image java. Red fontmarks
the “similar layers”.

layers among images is quite limited. More than 90% of layers are
unique, and only less than 1% of layers are shared by more than 25
images [33]. Therefore, the potential of layer sharing remains to be
explored.

Based on layer sharing, deduplication at file granularity is lever-
aged to further save storage [32][34]. Redundant files are removed
and only unique files are stored in the registry. The metadata file
“recipe” records the files of each layer. However, the files would be
reconstructed into layers according to “recipe” and then delivered
to clients when requested. Clients are still required to download and
store all the unique layers with redundant files. Therefore, these
investigations help save storage for the registry yet cannot reduce
the network traffic or clients’ storage footprint.

While a minority of layers are shared among images, the enor-
mous identical files lead tomany similar layers [7]. Figure 1 presents
partial layers and files of the image java: 7u121-jdk-alpine and java:
8u111-jdk-alpine, where the red font marks the similar layers. Most
of the files across the two layers are duplicated, with only a few
files distinct. According to our measurement on the similarity with
2,200 images, we observe that 26,042 layer pairs have more than
80% identical files. Moreover, it is unearthed that the layer pairs in
the same repository are more similar than those across different
repositories.

Inspired by layer similarity, we propose image reconstruction
to economize storage and networking. We aim to maximize the
overlap between images by regrouping all the files to compose
new identical layers. Thus, both storage and networking benefit
from enhancing layer sharing. The following questions should be
tackled to fully explore the potential of image reconstruction: (1)
How many layers are in the reconstructed image? (2) Which layer
does a file belong to? (3) What is the order of layers?

Addressing these questions is challenging. First, image recon-
struction should keep the validity of images. Docker union mounts
each image layer to one directory and only provides a merged view
for the container. Altering the layer where the file locates affects the
merged result, which may lead the reconstructed image different
or unavailable. How to determine and present whether the layer
position of files can be altered is nontrivial, which is unsettled in
prior work [25]. Second, image reconstruction should trade off the
storage usage against the operation overhead. An intuitive idea is
to have one file per layer to make each file reusable by all images.
However, most of images have thousands of files and about 20%
of images have more than 10,000 files [33]. One-file-per-layer can

cause the number of layers and the size of metadata to explode.
Moreover, too many layers are not conducive to the operation on
containers, as a positive correlation between layer depth and oper-
ation latency is corroborated in our measurement.

To deal with the above challenges, we first demystify the layered
structure and define the commutativity to guarantee the correct
order of files and the validity of images. We then propose a mathe-
matical expression revealing the relation between operation latency
and image layer depth with a practical data-fitting approach. Corre-
spondingly, the operation cost of images is designed. We formulate
the image reconstruction as an integer nonlinear programming
(INLP) problem, aimed at minimizing the storage cost and oper-
ation cost. To combat the considerable metadata of images, we
propose a similarity-aware online image reconstruction algorithm
(SOIRA) to solve the INLP. SOIRA rearranges the committed layer
to make it be the same as the layer target. Atop the observation that
layers within the same repository are more similar, SOIRA selects
targets from the repository instead of the whole registry. Thus, the
execution time of the algorithm can be significantly reduced. We
conduct evaluations with a subset of Docker images, of which the
total number of unique files is 1,413,629, and the total size is roughly
60 GB. SOIRA yields about 10% storage saving with only a few more
layers compared with state of the art. Additionally, around 9.3% of
traffic is saved with each of 20 clients pulling 20 images. It can be in-
ferred that image reconstruction has significant potential for saving
both storage and networking in practical large-scale networks.

The main contributions of this paper are listed as follows.
• We explicitly clarify the optimization space of image sharing
by assessing the effectiveness of CAS and the redundancy of
files. We are the first to quantify and measure the similarity
of layers.
• We propose image reconstruction to enhance layer sharing
and thus save storage and networking. To our best knowl-
edge, we are the first to define commutativity to guarantee
the validity of images in image reconstruction.
• We formulate the image reconstruction as an INLP problem.
By exploiting the similarity in layers, we work out SOIRA to
combat the massive metadata of images.
• We conduct extensive evaluations driven by images from
Docker Hub. Images with 1,413,629 unique files are analyzed
to verify the performance of our model and algorithm.

2 BACKGROUND
2.1 Docker Overview
In this part, we introduce the Docker-related background [1] to
clarify the layer sharing achieved by CAS and elucidate the origins
of similar layers.

Repository and registry.Repository is regarded as the set of dif-
ferent versions of the same type of image. For example, “java:7u121-
jdk-alpine” and “java:8u111-jdk-alpine” both belong to the reposi-
tory “java”. Registry is a system for storage and content delivery of
docker images. It stores the layers as well as the metadata files (e.g,
manifest.json) of images in repositories.

Image delivery. Commands “pull” and “push” are the most two
frequently used for image delivery between clients and registries.
Docker runs a local daemon at each host. When command “pull” is

Commutativity-guaranteed Docker Image Reconstruction towards Effective Layer Sharing WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

(a) The “user” and “idconf” are
merged into the upper layer.

(b) The “idconf” in the upper layer would
cover the one from the lower layer.

Figure 2: The diagram of mount.

executed, Docker daemon fetches from the registry the manifest
which is a JSON file recording the configuration and the list of
layers to compose the image. Each layer is identified and referenced
by the digest, which is a content hash with SHA-256 algorithm [21].
Docker daemon checks if a layer is available in local storage based
on the layer digest and then solely download layers that are not
stored. Consequently, such a scheme known as CAS enables iden-
tical layer sharing among different images at one host. Command
“push” triggers the Docker daemon to upload new images and then
the manifest to the registry.

Image building. There are two methods to create a new image
and publish it to the registry: (1) from dockerfile; (2) or through the
“Docker commit”. Dockerfile is a text file describing the steps for
building an image. Each instruction creates a new layer based on
the intermediate image generated by previous instructions. “Docker
commit” is a command that triggers packaging the running con-
tainer with its environment to establish a new image. The same and
common libraries and packages are referenced in different images.
However, developers create and publish their images independently,
which possibly invoke libraries with different methods and instruc-
tions. As a result, the created layers can be distinct but with lots of
identical files.

2.2 Docker Storage Driver
Layer sharing empowered by CAS benefits from the layered struc-
ture of images, which is managed by the Docker storage driver.
Overlay [3] is a common and promising storage driver employed
on Docker. It is based on a union file system named overlayFS [28],
which has been written into linux kernel after version 3.18. Union
mounting in overlayFS mounts directories to provide a view of sin-
gle file system for container users. As shown in Figure 2(a), the files
and folders in the lower directory are merged into the upper one if
they are not exactly in the same path. As shown in Figure 2(b), the
files in the upper directory would cover the one with the same path
and name in the lower directory, whether the content is identical
or not. Copy on Write (CoW) [31] is applied on Overlay. Figure 3
illustrates common operations on the container file system with
CoW. Image layers below are read-only, and a writable layer named
container layer is initialized with the creation of the container. All
the operations are recorded on the container layer. Image layers
and the container layer are union mounted to present the container
mount view.

Figure 3: The diagram of overlay.

0 50 100 150

Repository number

0

5000

10000

L
a
y
e
r

n
u
m

b
e
r

CAS-prohibited images

CAS-enabled images

Figure 4: Layer number.

0 50 100 150

Repository number

0

200

400

L
a
y
e
r

s
to

ra
g
e
 (

G
B

) CAS-prohibited images

CAS-enabled images

Figure 5: Layer storage.

3 IMAGE ANALYSIS
In this section, we make empirical studies to motivate our work
and provide support for our solution.

Settings. The server is equipped with an eight-core Intel Xeon
processor running 2.5 GHzwith 11GB of RAM.We pull 2,200 images
being the most recently updated among 130 popular repositories
from Docker Hub.

CAS evaluation. Being different from the layer reference count
measurement in [33], we compare the layer number and storage of
CAS-prohibited images with CAS-enabled images to evaluate the
effectiveness of CAS. Figure 4 and Figure 5 show the variation of
two metrics versus repositories, respectively. With the increase of
repositories, the layer number and storage of images with CAS are
always less than without it, and the gap between them gradually
gets larger. For all images in our measurement, the storage of CAS-
enabled images is 316.5 GB, providing around 38.8% storage saving.

Image file redundancy. Layer sharing allows to store and trans-
mit unique layers, while data redundancy at file granularity still
exists. To reveal the file redundancy, we compute the file number
and storage of all unique layers and unique files for each repository.
The accumulated results are presented in Figure 6 and Figure 7. For
all unique layers in our measurement, the total number of files is
8,305,000, out of which 3,721,000 are unique. Around 55.2% of files
are duplicated. The least achievable storage of unique files is 204.8
GB, being less than the storage of unique layers around 35%. Layer
sharing enables partial files reused, while can not eliminate all the
file redundancy. There is still a large space for improvement in the
storage of images.

We observe that most of the libraries and packages related with
basic operations have formed a fixed layer and serve as a base for
other images. For example, application images are often based on

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Sisi Li, Ao Zhou, Xiao Ma, Mengwei Xu, Qingyuan Jiang, and Shangguang Wang

0 50 100 150

Repository number

0

2

4

6

8

F
ile

 n
u
m

b
e
r

10
6

Files of unique layers

Unique files

Figure 6: File number.

0 50 100 150

Repository number

0

100

200

300

F
ile

 s
to

ra
g
e
 (

G
B

) Files of unique layers

Unique files

Figure 7: File storage.

0 0.2 0.4 0.6 0.8 1

Jaccard index

0

0.2

0.4

0.6

0.8

1

C
D

F

All layers

Inter-repository layers

Intra-repository layers

Mean of all layers

Mean of inter-repository layers

Mean of intra-repository layers

Figure 8: CDF of Jaccard index.

operation system images. “ubuntu” is a base image for “ubuntu-
upstart”, “php-zendserver”. “iojs” and “node”, both belonging to
web framework, share the same five bottom layers. Other libraries
and packages that are closely related to the repository type, are
also typically called by images within the repository. Nevertheless,
these files may belong to different layers since developers do not
have uniform specifications for image building. This may be the
main reason for file redundancy among images.

Image layer similarity. Substantial identical files lie in different
layers, which we regard as similar layers. Now we evaluate the
similarity of layers. Two metrics are leveraged to demonstrate the
similarity of layers at file granularity. (1) Jaccard index. Jaccard index
[15] is a common metric for measuring the similarity of two sets.
With a range from 0 to 1, the larger value indicates higher similarity.
We use it to assess the similarity of layers in terms of file number.
We calculate it as the identical file number divided by the total file
number of two layers. (2) Deduplication ratio. Deduplication ratio
[11] is the measurement for data redundancy in terms of storage. It
is obtained through dividing the total storage of layer data by the
actual storage after deduplication. The value varies from 1 to 2. The
larger the ratio, the more storage redundant in the two layers. To the
best of our knowledge, this is the first work adopting mathematical
metrics to quantify and measure the similarity of image layers.

How many layers are similar? We compute the Jaccard index of
each layer pair, and the CDF of results is shown in Figure 8. For the
value of all the layer pairs in the image set, about 70% are 0 or close
to 0. These layer pairs have several or no identical files. The result
of layer pairs across repositories (inter-repository layer pairs) is
mostly distributed around 0. For the layer pairs within repositories
(intra-repository layer pairs), around 10 percent get the value of
Jaccard index more than 0.5, which means more than half of files
are the same between each of these layer pairs. Additionally, the
average Jaccard index of intra-repository layers is larger than the

0 0.5 1

Jaccard index

0

0.2

0.4

0.6

0.8

1

C
D

F

Intra-repository, Maximum

Intra-repository, Average

Inter-repository, Maximum

Inter-repository, Average

Figure 9: The comparison of
Jaccard index.

1 1.5 2

Deduplication ratio

0

0.2

0.4

0.6

0.8

1

C
D

F

Intra-repository, Maximum

Intra-repository, Average

Inter-repository, Maximum

Inter-repository, Average

Figure 10: The comparison
of deduplication ratio.

inter-repository layers as presented. In summary, not all two layers
have identical files. The layer pairs within the same repositories are
more similar than those across different repositories.

How much similar is the layer to layers within repositories and
across repositories? With a layer being fixed, we figure out its max-
imum and average Jaccard index/deduplication ratio with other
layers within the repository and across repositories. With all layers
fixed one by one, we present the CDF of results in Figure 9 and Fig-
ure 10. About 28% of layers get maximum Jaccard index more than
0.8 with other layers in the same repository, while the proportion
decreases to 21% when across repositories. The maximum dedupli-
cation ratio of around 30% of layers are more than 1.78 with intra-
repository layers and more than 1.4 with inter-repository layers.
Overall, the curve of maximum/average value of intra-repository
layers is below the curve of inter-repository layers.

The Jaccard index difference of a layer is obtained by subtract-
ing its maximum/average value with intra-repository layers from
the value with inter-repository layers. We calculate the difference
of all layers, and its CDF is shown as Figure 11. Around 68% of
the difference of maximum Jaccard index is non-negative, indicat-
ing that a higher Jaccard index is achieved within repositories for
these layers. In other words, there are 68% of layers can find the
most similar layer within its repository. As for the difference of
the average Jaccard index, about 75% of layers obtain non-negative
value. Figure 12 shows the difference of deduplication ratio between
the intra-repository value and inter-repository value. Around 63%
of the difference of maximum deduplication ratio is non-negative.
Around 80% of layers obtain the average deduplication within repos-
itories no less than across repositories. It demonstrates that the
file redundancy in layers within repositories is more serious than
layers across repositories. In general, the layers within the same
repositories are more similar and have more redundant storage than
layers across the repositories. This may attribute to the duplicated
library files closely related to the repository type. These files are
typically called by different versions of images in the repository,
while rarely appearing in images of other repositories.

4 SYSTEM MODEL
The problem of image reconstruction is modeled in this section. The
set of images is denoted as 𝐼 . We consider the files with identical
content (identified by hash value) and path as the same file, and we
denote the set of unique files of all images as 𝐾 . We denote the set
of unique layers by 𝐽 , and denote the association between existing
unique files and layers by 𝑦𝑘,𝑗 . For a newly pushed image 𝑖 , its file
set is indicated as𝑀 . In the reconstruction of image 𝑖 , we have to

Commutativity-guaranteed Docker Image Reconstruction towards Effective Layer Sharing WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

-1 -0.5 0 0.5 1

Jaccard index difference

0

0.2

0.4

0.6

0.8

1

C
D

F

Maximum

Average

Figure 11: The difference of
Jaccard index.

-1 -0.5 0 0.5 1

Deduplication ratio difference

0

0.2

0.4

0.6

0.8

1

C
D

F

Maximum

Average

Figure 12: The difference of
deduplication ratio.

2 4 6 8 10 12 14 16 18 20

Layer depth

0.024

0.026

0.028

0.03

0.032

0.034

L
a

te
n

c
y
 (

m
s
)

Latency (Measurement)

Latency (Model)

Figure 13: Operation latency with layer depth.

resolve the number of layers denoted as𝑁 , as well as the association
between files and recreated layers denoted as 𝜉𝑘,𝑛 . 𝜉𝑘,𝑛 = 1 if and
only if file 𝑘 is in 𝑛-th layer, i.e. layer 𝑛. It is envisioned to minimize
the weighted sum of operation cost and storage cost.

4.1 Operation Cost
It is beneficial to keep images shallow (small number of layers
per image) for operation performance reasons. A practical data-
fitting approach is conducted to evaluate the operation overhead.
We create 30 layers and compose with Overlay. 1,000 empty files
are contained in each layer. We randomly select 20 files to open
with cold cache and measure the latency. The result (an average
over 500 runs) is shown in Figure 13. The latency increase with the
growth of layer depth. We present the operation latency 𝐿 as the
function of layer depth 𝐷 , which is denoted as 𝜇 (·). Then we get:

𝐿 = 𝜇 (𝐷) = 𝑎 · 𝐷 + 𝑏, (1)

where a = 0.001526, b = 0.03087. We define the overall operation
cost of an image as the sum operation latency of each layer. With
the number of layers of image 𝑖 being 𝑁 , the operation cost denoted
by 𝐶𝑖𝑜 is calculated as:

𝐶𝑖𝑜 =

𝑁∑︁
𝐷=1

𝜇 (𝐷) =
𝑁∑︁
𝐷=1
(𝑎 · 𝐷 + 𝑏) = 𝑎 · 𝑁 (𝑁 + 1)

2
+ 𝑏 · 𝑁 . (2)

4.2 Storage Cost
We define the storage cost as the incremental storage caused by the
unique layers of image 𝑖 . If the layer 𝑛 in image 𝑖 is identical with
the layer 𝑗 ∈ 𝐽 , then the files contained in them are the same, i.e.,∑︁

𝑘∈𝑀∪𝐾
|𝜉𝑘,𝑛 − 𝑦𝑘,𝑗 | = 0. (3)

If there is an existing layer in the registry being identical with layer
𝑛, then, ∏

𝑗 ∈𝐽

∑︁
𝑘∈𝑀∪𝐾

|𝜉𝑘,𝑛 − 𝑦𝑘,𝑗 | = 0. (4)

Otherwise, if layer 𝑛 is unique to the registry, then,∏
𝑗 ∈𝐽

∑︁
𝑘∈𝑀∪𝐾

|𝜉𝑘,𝑛 − 𝑦𝑘,𝑗 | ≥ 1. (5)

Denote the size of file 𝑘 as 𝑆𝑘 , then the size of layer 𝑛 is given as∑
𝑘∈𝑀
(𝜉𝑘,𝑛 ·𝑆𝑘). Therefore, the incremental storage of the new unique

layer in image 𝑖 can be calculated with the formula as follows:

𝐶𝑖𝑠 =
∑︁
𝑛∈𝑁


∑︁
𝑘∈𝑀
(𝜉𝑘,𝑛 · 𝑆𝑘) ·𝑚𝑖𝑛(

∏
𝑗 ∈𝐽

∑︁
𝑘∈𝑀∪𝐾

|𝜉𝑘,𝑛 − 𝑦𝑘,𝑗 |, 1)
 . (6)

4.3 Commutativity Model
Due to the hierarchical storage and CoW, there exists order in files.
We define the order as the layer difference of files and we employ
𝛿𝑖
𝑘,𝑘
′ to denote the order of file 𝑘 and file 𝑘

′
in the image 𝑖 . We

first let 𝜃𝑖
𝑘
indicate which layer the file 𝑘 belongs to in the image

𝑖 before reconstruction. If file 𝑘 is in the lowest layer, i.e. the first
layer, then 𝜃𝑖

𝑘
= 1. If file 𝑘 is not in image 𝑖 , then 𝜃𝑖

𝑘
= 0. 𝛿𝑖

𝑘,𝑘
′ is

calculated with the difference of 𝜃𝑖
𝑘
and 𝜃𝑖

𝑘
′ as shown in (7), where

𝑠𝑔𝑛(·) is the sign function defined as (8). 𝛿𝑖
𝑘,𝑘
′ = 0 indicates that

file 𝑘 and file 𝑘
′
are in the same layer. 𝛿𝑖

𝑘,𝑘
′ > 0 and 𝛿𝑖

𝑘,𝑘
′ < 0 entail

that file 𝑘 is in the upper or lower layer than file 𝑘
′
respectively.

𝛿𝑖
𝑘,𝑘
′ = −𝛿𝑖

𝑘
′
,𝑘
can be derived. The order of some files can not be

changed. Cases are listed as follows:
• If file 𝐴 in the upper layer is the copy and modification of
file 𝐴 in the same path from the lower layer as shown in
Figure 3(b), then the order of them must be kept unchanged
in reconstruction.
• If file𝐵 is the reliance of file𝐴, then the layerwhere𝐵 belongs
to may be lower than the file 𝐴. It is envisioned to keep the
order of these two files.

We name this relation between files as commutativity. Boolean
variable 𝜆𝑖

𝑘,𝑘
′ is leveraged to represent whether file 𝑘 and file 𝑘

′

are commutative. 𝜆𝑖
𝑘,𝑘
′ = 0 means that there is no restriction on

the order of two files in image reconstruction, and file 𝑘 and file
𝑘
′
can be in the same or different layers. 𝜆𝑖

𝑘,𝑘
′ = 1 means that the

order of two files can not be changed. For the files in the same
layer, they must be commutative, i.e., if 𝛿𝑖

𝑘,𝑘
′ = 0, 𝜆𝑖

𝑘,𝑘
′ = 0. For the

files in the different layers, the 𝜆𝑖
𝑘,𝑘
′ could be 0 or 1 depending on

the file properties. In order to guarantee the validity of images, we
must maintain the order of noncommutative files. We denote the
order of files after reconstruction by 𝛿𝑖∗

𝑘,𝑘
′ , which is given as (9). For

files that are commutative, i.e. 𝜆𝑖
𝑘,𝑘
′ = 0, the value of 𝛿𝑖∗

𝑘,𝑘
′ can be

arbitrary. For two files where 𝜆𝑖
𝑘,𝑘
′ = 1, the order of layers must

keep consistent before and after the reconstruction. Namely, the
value of 𝛿𝑖

𝑘,𝑘
′ and 𝛿𝑖∗

𝑘,𝑘
′ must be equivalent. The constraint of 𝛿𝑖∗

𝑘,𝑘
′

for commutativity guaranty is summarized as (10).

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Sisi Li, Ao Zhou, Xiao Ma, Mengwei Xu, Qingyuan Jiang, and Shangguang Wang

𝛿𝑖
𝑘,𝑘
′ = 𝑠𝑔𝑛(𝜃𝑖𝑘 − 𝜃

𝑖

𝑘
′) . (7)

𝑠𝑔𝑛(𝑥) =


1, 𝑥 > 0
0, 𝑥 = 0
− 1, 𝑥 < 0

(8)

𝛿𝑖∗
𝑘,𝑘
′ = 𝑠𝑔𝑛(

𝑁∑︁
𝑛=1

𝑛𝜉𝑘,𝑛 −
𝑁∑︁
𝑛=1

𝑛𝜉𝑘′ ,𝑛). (9)

𝛿𝑖
𝑘,𝑘
′ · 𝜆𝑖

𝑘,𝑘
′ == 𝛿

𝑖∗
𝑘,𝑘
′ · 𝜆𝑖

𝑘,𝑘
′ ,∀𝑘, 𝑘

′
∈ 𝐾. (10)

4.4 Problem Formulation
We formulate the image reconstruction as the problem of weighted
cost minimization. It is described as follows:

P: min
𝑁,Ξ

𝐶 = 𝛼𝐶𝑖𝑜 + 𝛽𝐶𝑖𝑠 .

𝑠 .𝑡 . 𝐶1 : 𝑠𝑔𝑛(𝜃𝑖
𝑘
) =

𝑁∑
𝑛=1

𝜉𝑘,𝑛,∀𝑘 ∈ 𝑀 ∪ 𝐾.

𝐶2 : 𝛿𝑖
𝑘,𝑘′
· 𝜆𝑖
𝑘,𝑘′

= 𝑠𝑔𝑛(
𝑁∑
𝑛=1

𝑛𝜉𝑘,𝑛 −
𝑁∑
𝑛=1

𝑛𝜉𝑘′ ,𝑛) · 𝜆
𝑖0
𝑘,𝑘′

,

∀𝑘, 𝑘′ ∈ 𝑀.

(11)

𝐶1 entails that the files in image 𝑖 must be consistent before and
after reconstruction. 𝐶2 is obtained by substituting (9) into (10),
which guarantees the order of files.Ξ = {𝜉1,1, 𝜉2,1, ..., 𝜉𝑀,𝑁 } denotes
the decision profile for the file and layer association.

5 IMAGE RECONSTRUCTION ALGORITHM
P is an integer nonlinear programming problem. We make use of
the observed similarity between layers and propose the SOIRA to
regroup files for the committed images. The similarity between the
layer 𝑛 and the existing layer 𝑗 ∈ 𝐽 is denoted as𝑇𝑛,𝑗 and expressed
by the Jaccard index, of which the calculation is shown as (12). In
the order of the similarity 𝑇𝑛,𝑗 from high to low, we move files into
or out of the layer 𝑛 to make it be the same as the existing layer 𝑗 .
Since the intra-repository layers have higher similarity than the
inter-repository layers overall, only the similarity for layer 𝑛 with
other layers in the same repository is considered, rather than with
all layers in the registry. The number of layers in a repository is
far less than the number of all layers, which contributes to the
reduction of the algorithm execution time. The specific workflow
is shown in Algorithm 1. When the iteration times exceed the
threshold or the layer similarity decreases below the threshold, the
reconstruction is terminated.

𝑇𝑛,𝑗 =

∑
𝑘∈𝑀∩𝐾 (𝜉𝑘,𝑛 − 𝑦𝑘,𝑗)∑
𝑘∈𝑀∪𝐾 (𝜉𝑘,𝑛 − 𝑦𝑘,𝑗)

. (12)

6 EVALUATION
6.1 Setup
The algorithm can scale to hundreds of thousands of files in our
opinion. However, due to the limitation of network and computa-
tion, we only use a subset of images from Docker Hub to make the
evaluation. Very-large-scale tests can be done in our future work.
For each selected image, layers are addressed to obtain the file set,

Algorithm 1: SOIRA

Input: file information of image 𝑖0: 𝜃𝑖0𝑘 , 𝛿
𝑖0
𝑘,𝑘
′ , 𝜆𝑖0

𝑘,𝑘
′

Output: 𝑁 , Ξ
1 Initialize 𝑁 and Ξ0 based on the current image layers and

files; Set the iteration counter 𝑡 as 0 ;
2 Compute the current weighted cost denoted as 𝑐𝑜𝑠𝑡0 ;
3 Compute the layer difference 𝑇𝑛,𝑗 for each layer 𝑛 ;
4 Choose layers (𝑛∗, 𝑗∗) = 𝑎𝑟𝑔 max

𝑛∈𝑀,𝑗 ∈𝐽
𝑇𝑛,𝑗 ;

5 Calculate the cost after reconstruction denoted as 𝑐𝑜𝑠𝑡𝑅𝑒 ;
6 if 𝑐𝑜𝑠𝑡0 < 𝑐𝑜𝑠𝑡𝑅𝑒 then
7 Keep the image layer unchanged, set 𝐷𝑛,𝑗 = −∞ and

goto line 4 ;
8 else
9 Make layer reconstruction, set 𝑐𝑜𝑠𝑡0 = 𝑐𝑜𝑠𝑡𝑅𝑒 and goto

line 3 ;
10 end
11 𝑡 ← 𝑡 + 1 ;
12 if (𝑡 > 𝑡𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) or (max

𝑛∈𝑀,𝑗 ∈𝐽
𝑇𝑛,𝑗 ≤ 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) then

13 Return N, Ξ
14 end

the size, the position 𝜃𝑖
𝑘
and the order of files 𝛿𝑖

𝑘,𝑘
′ . The fingerprint

(Message-Digest Algorithm [22]) is computed to identify each file
in the layer. Since we still have no mature method to accurately
determine the commutativity of files just from the limited informa-
tion, we suppose all the files are noncommutative. We compare our
approach with the following benchmark schemes:
• Greedy Offline Image Reconstruction Algorithm (GOIRA).
For each file, it iterates all the images that require it, and
either picks an existing layer in the image or creates a new
one to join in.
• Layered Images from Docker Hub (LIDH). The layers of
images are decided by the developers independently.
• One-File-Per-Layer (OFPL). Each file is stored as a layer and
then compose the whole image.

6.2 Results
6.2.1 Storage and operation overhead. Figure 14 shows the accu-
mulated storage versus the number of images. Compared with the
current layering scheme LIDH, OFPL saves the most significant
storage. GOIRA provides storage saving around 1.3% when the
image number is 150. The gain of the GOIRA is limited, which
attributes to its inherent characteristic. For each unique file, GOIRA
iterates all the images that require it and make a decision according
to the storage cost and operation cost. The decisions of subsequent
images are largely affected by the decisions of previous images.
Although the current optimal choice has been made by each image
based on the former decision, it may not be the optimal choice
as a whole. The proposed approach SOIRA acts as an “inspector”,
which explores the similarity of layers and adjusts the submitted
layer to be the same as the existing layers in the registry. SOIRA
yields about 10% storage saving when the image number is 150.

Commutativity-guaranteed Docker Image Reconstruction towards Effective Layer Sharing WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

The proportion of storage saving can be further elevated in practice
since the number of images in Docker Hub is far more than 150.
We notice that the results of SOIRA and OFPL have a large gap.
However, this gap is almost impossible to eliminate in consideration
of operation overhead. Storing the images with OFPL is superior
in terms of storage while behaving extremely terribly in operation
performance. Figure 15 shows the accumulated layer number ver-
sus the number of images. The subtle storage saving by GOIRA is
at the cost of increasing layers. The number of layers with GOIRA
increases 7.3% compared with LIDH when the image number is 150.
SOIRA only has a few more layers than LIDH. The layer number
of OFPL grows rapidly in units of tens of thousands. It reaches
1,413,629 when the image number is 150, far more than the value
of LIDH. Additionally, we observe that around 25% of layers are
reconstructed, which confirms the feasibility of our approach.

0 50 100 150

The number of images

0

10

20

30

40

50

60

A
c
c
u
m

u
la

te
d
 s

to
ra

g
e
 (

G
B

)

SOIRA

GOIRA

LIDH

OFPL

Figure 14: Storage varia-
tion of baselines.

0 50 100 150

The number of images

0

100

200

300

400

500

600

700

10000

810000

1.61e+06

A
c
c
u
m

u
la

te
d
 l
a
y
e
rs

// //

SOIRA

GOIRA

LIDH

OFPL

140 145 150
520

540

560

Figure 15: Layer number vari-
ation of baselines.

Figure 16 presents the accumulated storage of unique layers
versus the number of images for each set of 𝛼 and 𝛽 . The ratio of
𝛼 and 𝛽 is set to vary from 10 : 1 to 1 : 10. Only the results with
distinguishable differences are presented, and others are omitted.
As the increase of 𝛼

𝛽
, SOIRA prefers to make image reconstruction

to strive for lower storage consumption. With 𝛼
𝛽
being 1 : 8, the

storage performance of SOIRA is almost the same as LIDH, which
entails the images have hardly been altered. When the number of
the image is 150, SOIRA achieves around 6.6% storage saving with
𝛼
𝛽
being 1 : 6. It enables to save around 8.3% storage when the 𝛼

𝛽

grows to 1 : 2. Figure 17 presents the layer number variation for
each set of 𝛼 and 𝛽 . With a fixed image number, the layer count
increase with larger 𝛼

𝛽
. When the image number is 150, the sum

number of unique layers of LIDH is 559. SOIRA with 𝛼
𝛽
being 4 : 1

make the layer count increase around 5.3%. Only a few more layers
are added when the 𝛼

𝛽
is 1 : 4.

6.2.2 Network traffic and client storage. We argue that image re-
construction enables to save both storage and traffic resources. The
metric related to traffic is absent in the optimization cost though, it
can be reduced by enhanced layer sharing. Since only layers that
are not stored at local would be transmitted, the network traffic
of image pulling is the same amount as incremental client storage
of images. We suppose 10 clients to randomly download images
and the results of network traffic consumption versus the number
of images are shown in Figure 18. The network saving of SOIRA
compared with GIORA and LIDH increases with the number of
images. When the number of images is 50, the network traffic sav-
ing is about 8.3% compared with GOIRA and 8.8% compared with

40 60 80 100 120 140

The number of images

10

20

30

40

50

60

70

A
c
c
u
m

u
la

te
d
 s

to
ra

g
e
 (

G
B

)

LIDH

SOIRA (: = 1:2)

SOIRA (: = 1:4)

SOIRA (: = 1:6)

SOIRA (: = 1:8)

140 150
54

56

58

60

Figure 16: Storage varia-
tion of SOIRA.

40 60 80 100 120 140

The number of images

100

200

300

400

500

600

A
c
c
u
m

u
la

te
d
 l
a
y
e
rs

LIDH

SOIRA (: = 4:1)

SOIRA (: = 2:1)

SOIRA (: = 1:1)

SOIRA (: = 1:2)

SOIRA (: = 1:4)

130 150

500

550

600

Figure 17: Layer number
variation of SOIRA.

LIDH. We then make each client download 20 images and scale
the number of clients from 0 to 20. The results of network traffic
(client storage) are shown in Figure 19. When the number of clients
is 20, the network traffic saving achieved by SOIRA is about 9.3%.
The difference of traffic consumption between SOIRA and LIDH
increases as the number of images or clients increases, which infers
the signification of image reconstruction on saving network traffic
in large-scale networks.

10 20 30 40 50

The number of images

0

100

200

300

400

500

N
e

tw
o

rk
 t

ra
ff

ic
/C

lie
n

t
s
to

ra
g

e
 (

G
B

)

SOIRA

GOIRA

LIDH

Figure 18: Network traf-
fic/Client storage vs. the
number of images.

5 10 15 20

The number of clients

0

100

200

300

400

500

N
e

tw
o

rk
 t

ra
ff

ic
/C

lie
n

t
s
to

ra
g

e
 (

G
B

)

SOIRA

GOIRA

LIDH

Figure 19: Network traf-
fic/Client storage vs. the
number of clients.

6.2.3 Storage and operation overhead trade-off. In the problem
formulation, we utilize the weight metrics 𝛼 and 𝛽 to trade off the
storage cost against the operation cost. With a fixed image set and
various sets of weight metrics, we obtain the optimal weighted cost
with SIORA and GIORA respectively. The corresponding storage
and layer number against different metrics are presented in Figure
20. The value of storage cost and operation cost obviously run in
the opposite direction, which indicates that the improvement of one
metric may lead to the decline of the another. Less number of layers
require more files in each layer, making it hard to enable all files
identical in the layer of different images. While more layers in the
image result in fewer files of each layer, increasing the probability of
layers being the same. The storage of LIDH is 6.4381×1010 bytes and
the unique layer count is 559. The storage of SOIRA is 5.8772×1010
bytes when 𝛼

𝛽
is 1 : 1, saving around 9% in storage compared with

LIDH. While the unique layer count is 563, only increasing around
0.7%. The curve near the markers approximates the Pareto curve.
The Pareto curve of GOIRA is at the upper right of the curve of
SOIRA, which means SOIRA achieves less storage consumption
than GOIRAwith the same layer count. Overall, an improved Pareto
frontier is formed and better performance is obtained by SIORA.

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Sisi Li, Ao Zhou, Xiao Ma, Mengwei Xu, Qingyuan Jiang, and Shangguang Wang

SIORA (: = 4:1)

SOIRA (: = 2:1)

SOIRA (: = 1:1)

SOIRA (: = 1:2)

SOIRA (: = 1:4)

SOIRA (: = 1:6)

GOIRA (: = 2:1)

GOIRA (: = 1:1)

GOIRA (: = 1:3)

GOIRA (: = 1:4)

GOIRA (: = 1:5)

LIDH

550 560 570 580 590 600 610 620 630 640 650

Layer count

S
to

ra
g
e
 (

G
B

)

54.5

55

55.5

56

59.5

60

60.5

Figure 20: Trade-off between storage and layer count.

0 500 1000

The number of images

0

0.02

0.04

0.06

A
v
e

ra
g

e
 r

e
c
o

n
s
tr

u
c
ti
o

n
 t

im
e

 (
s
)

Time (Measurement)

Time (Model)

Figure 21: Average image
reconstruction time.

0 0.2 0.4 0.6 0.8 1

Image reconstruction time (s)

0

0.2

0.4

0.6

0.8

1

C
D

F

Figure 22: The CDF of image
reconstruction time.

6.2.4 Image reconstruction time. We conduct image reconstruction
with 1,250 images and analyze the reconstruction time here. Figure
21 demonstrates the average reconstruction time per image with
the increase of images. The average time is 0.012s when 100 images
are conducted. The value increases to 0.047s with 1,250 images. The
image reconstruction time goes through a slight and tolerable in-
crease with the expansion of the image number. Figure 22 shows the
distribution of reconstruction time with the total number of images
being 1,250. Around 80% images have consumed reconstruction
time less than 0.05s. It is worth mentioning that our design is easy
to scale with more CPU/GPU resources since the reconstruction of
each layer is independent.

7 RELATEDWORK
Containers arewidely researched for design and deployment. Slacker
[16] develops lazy fetching where the critical packages for startup
are prioritized and launched while others are loaded lazily. Dragon-
fly employs P2P to speed up image pulling. Firecracker [4] makes
prone for containers to accelerate the startup. Checkpoint/restore
[10][30] and fork [5][20] are exploited to skip the identical execu-
tion procedure. Multi-layer caching [6] is designed for the registry
that stores the small layers in memory and large layer in SSD, which
speeds up the IO operation and reduces the startup time. For reduc-
ing the cold-start executions, a hybrid histogram policy is proposed
in [24] to decide the size of pre-warming window and keep-alive
window. Large-scale analysis is made in [33] to provide guidance
for storage systems. The observations about the Docker images and
storage offer the inspiration for our work. All the works mentioned
above are prospective while being orthogonal to our work in this
paper. The researches focusing on exploring the layered structure
and layer sharing are classified into three aspects.

Caching and scheduling.Considering the layer sharing, caching
images cooperatively in edge networks is investigated for saving the

storage consumption [9]. The fine-planned storage allows more ser-
vices to be deployed in resource-constrained edge networks, which
reduces the retrieval time of images. Microservice placement and
request scheduling problem within the layer sharing context is con-
sidered in [14][13] to maximize the edge throughput. Joint caching
and scheduling strategies enable to save resource consumption on
storage and networking. Nevertheless, massive resource wasting
by redundancy in layers still exists as only a small proportion of
layers are identical and can be shared.

Deduplication for registry. To catch the redundant data in
layers, deduplication is an effective method. It enables to save near
23 TB storage occupation from 47 TB unique layer data [33]. Slim-
mer [34] is proposed to deduplicate registry at file granularity.
More complete designing for registry deduplication by them is
implemented in DupHunter [32]. Unique files are cached in stor-
age clusters with a metadata database providing the index and
recipe mapping files and layers. Pre-fetching and pre-constructing
are leveraged by observing user access patterns to mitigate the
negative impact of image mapping. Registry deduplication avoids
wasting storage resources on duplicated files or data blocks though,
it can not reduce the network traffic or client storage footprint.

Image restructure. An empirical study on chunk-based image
storage comparedwith layer-based is introduced in [18]. Random se-
lected 10 versions of images are downloaded to calculate the storage
space increment for each version in Docker and Casync (chunk-
based image manager), respectively. With variable-size chunking,
Casync benefits from the incremental changes and deduplicated
files while performing worse than Docker in variation-sensitive
cases. Content defined variable sized chunking method enables
to determine the identical data blocks and save storage in special
cases. While the superiority of layer sharing is abandoned in chunk-
based image storage. It is envisioned to reserve the advantages of
layer-based images. Researchers from IBM argue to restructure the
images, where files are reorganized to compose the layers [25]. A
greedy algorithm is leveraged due to the large decision space and
evaluations are conducted with the scale of 100 images. However,
it is agnostic to the layer reordering, which possibly leads to the
alteration and invalidation of images.

8 CONCLUSION
In this paper, we propose a novel image reconstruction model and
solution aimed at saving storage and networking. We first make
the measurement study to demonstrate the motivation. The effec-
tiveness of layer sharing is evaluated and the file redundancy is
revealed. We regard the layers with identical files as similar layers
and exploit the similarity with Jaccard index and deduplication ratio.
We model the image reconstruction as an INLP problem, of which
the storage cost and operation cost are minimized. Driven by the
similarity in layers, a similarity-aware online image reconstruction
approach is proposed. The experiment results illustrate that our
approach achieves better Pareto frontier and overall performance
than state of the art.

9 ACKNOWLEDGMENTS
This work was supported in part by National Key R&D Program of
China (2020YFB1805502), NSFC (61922017, 61921003, andU21B2016).

Commutativity-guaranteed Docker Image Reconstruction towards Effective Layer Sharing WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

REFERENCES
[1] 2021. Docker. https://www.docker.com/.
[2] 2021. Docker Hub. https://hub.docker.com/.
[3] 2021. How the overlay2 driver works. https://docs.docker.com/storage/

storagedriver/overlayfs-driver/#how-the-overlay2-driver-works.
[4] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf

Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020. Firecracker: Lightweight
virtualization for serverless applications. In 17th usenix symposium on networked
systems design and implementation (nsdi 20). 419–434.

[5] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke,
Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND: Towards High-
Performance Serverless Computing. In 2018 Usenix Annual Technical Conference
(USENIX ATC 18). 923–935.

[6] Ali Anwar, MohamedMohamed, Vasily Tarasov,Michael Littley, Lukas Rupprecht,
Yue Cheng, Nannan Zhao, Dimitrios Skourtis, Amit S Warke, Heiko Ludwig, et al.
2018. Improving docker registry design based on production workload analysis.
In 16th USENIX Conference on File and Storage Technologies (FAST 18). 265–278.

[7] Ali Anwar, Lukas Rupprecht, Dimitris Skourtis, and Vasily Tarasov. 2019. Chal-
lenges in Storing Docker Images. login Usenix Mag. 44, 3 (2019).

[8] Eric A Brewer. 2015. Kubernetes and the path to cloud native. In Proceedings of
the sixth ACM symposium on cloud computing. 167–167.

[9] Jad Darrous, Thomas Lambert, and Shadi Ibrahim. 2019. On the importance of
container image placement for service provisioning in the edge. In 2019 28th
International Conference on Computer Communication and Networks (ICCCN).
IEEE, 1–9.

[10] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang Qin, Qix-
uan Wu, and Haibo Chen. 2020. Catalyzer: Sub-millisecond startup for serverless
computing with initialization-less booting. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and
Operating Systems. 467–481.

[11] Mike Dutch. 2008. Understanding data deduplication ratios. In SNIA Data Man-
agement Forum, Vol. 7.

[12] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. 2015. An updated
performance comparison of virtual machines and linux containers. In 2015 IEEE
international symposium on performance analysis of systems and software (ISPASS).
171–172.

[13] Lin Gu, Deze Zeng, Jie Hu, Hai Jin, Song Guo, and Albert Y Zomaya. 2021. Ex-
ploring Layered Container Structure for Cost Efficient Microservice Deployment.
IEEE INFOCOM 2021-IEEE Conference on Computer Communications (2021), 1–9.

[14] Lin Gu, Deze Zeng, Jie Hu, Bo Li, and Hai Jin. 2021. Layer Aware Microser-
vice Placement and Request Scheduling at the Edge. IEEE INFOCOM 2021-IEEE
Conference on Computer Communications (2021), 1–9.

[15] Lieve Hamers et al. 1989. Similarity measures in scientometric research: The
Jaccard index versus Salton’s cosine formula. Information Processing and Man-
agement 25, 3 (1989), 315–18.

[16] Tyler Harter, Brandon Salmon, Rose Liu, Andrea C Arpaci-Dusseau, and Remzi H
Arpaci-Dusseau. 2016. Slacker: Fast distribution with lazy docker containers. In
14th USENIX Conference on File and Storage Technologies (FAST 16). 181–195.

[17] Devki Nandan Jha, Michael Nee, Zhenyu Wen, Albert Zomaya, and Rajiv Ranjan.
2019. SmartDBO: smart docker benchmarking orchestrator for web-application.
In The World Wide Web Conference. 3555–3559.

[18] Yan Li, Bo An, Junming Ma, and Donggang Cao. 2019. Comparison between
Chunk-Based and Layer-Based Container Image Storage Approaches: an Em-
pirical Study. In 2019 IEEE International Conference on Service-Oriented System
Engineering (SOSE). IEEE, 197–1975.

[19] Paul B Menage. 2007. Adding generic process containers to the linux kernel. In
Proceedings of the Linux symposium, Vol. 2. 45–57.

[20] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter, Andrea
Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2018. SOCK: Rapid task provi-
sioning with serverless-optimized containers. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18). 57–70.

[21] Dian Rachmawati, JT Tarigan, and ABC Ginting. 2018. A comparative study of
Message Digest 5 (MD5) and SHA256 algorithm. In Journal of Physics: Conference
Series, Vol. 978. IOP Publishing, 012116.

[22] Ronald Rivest and S Dusse. 1992. The MD5 message-digest algorithm.
[23] Mendel Rosenblum and Tal Garfinkel. 2005. Virtual machine monitors: Current

technology and future trends. Computer 38, 5 (2005), 39–47.
[24] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar Chaudhry, Paul Ba-

tum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and
Ricardo Bianchini. 2020. Serverless in the wild: Characterizing and optimizing the
serverless workload at a large cloud provider. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). 205–218.

[25] Dimitris Skourtis, Lukas Rupprecht, Vasily Tarasov, and Nimrod Megiddo. 2019.
Carving perfect layers out of docker images. In 11th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud 19).

[26] Piet Smet, Bart Dhoedt, and Pieter Simoens. 2018. Docker layer placement for
on-demand provisioning of services on edge clouds. IEEE Transactions on Network

and Service Management 15, 3 (2018), 1161–1174.
[27] Gaetano Somma, Constantine Ayimba, Paolo Casari, Simon Pietro Romano, and

Vincenzo Mancuso. 2020. When Less is More: Core-Restricted Container Provi-
sioning for Serverless Computing. In IEEE INFOCOM 2020-IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS). IEEE, 1153–1159.

[28] Vasily Tarasov, Lukas Rupprecht, Dimitris Skourtis, Amit Warke, Dean Hilde-
brand, Mohamed Mohamed, Nagapramod Mandagere, Wenji Li, Raju Ran-
gaswami, and Ming Zhao. 2017. In search of the ideal storage configuration
for Docker containers. In 2017 IEEE 2nd International Workshops on Foundations
and Applications of Self* Systems (FAS* W). IEEE, 199–206.

[29] Niraj Tolia, Michael Kozuch, Mahadev Satyanarayanan, Brad Karp, Thomas C
Bressoud, and Adrian Perrig. 2003. Opportunistic Use of Content Addressable
Storage for Distributed File Systems.. In USENIX Annual Technical Conference,
General Track, Vol. 3. 127–140.

[30] Kai-Ting Amy Wang, Rayson Ho, and Peng Wu. 2019. Replayable execution
optimized for page sharing for a managed runtime environment. In Proceedings
of the Fourteenth EuroSys Conference 2019. 1–16.

[31] Frank Zhao, Kevin Xu, and Randy Shain. 2016. Improving copy-on-write perfor-
mance in container storage drivers. In Storage Developers Conference.

[32] Nannan Zhao, Hadeel Albahar, Subil Abraham, Keren Chen, Vasily Tarasov,
Dimitrios Skourtis, Lukas Rupprecht, Ali Anwar, and Ali R Butt. 2020. Duphunter:
Flexible high-performance deduplication for docker registries. In 2020 USENIX
Annual Technical Conference (USENIX ATC 20). 769–783.

[33] Nannan Zhao, Vasily Tarasov, Hadeel Albahar, Ali Anwar, Lukas Rupprecht,
Dimitrios Skourtis, Arnab K Paul, Keren Chen, and Ali R Butt. 2020. Large-
Scale Analysis of Docker Images and Performance Implications for Container
Storage Systems. IEEE Transactions on Parallel and Distributed Systems 32, 4
(2020), 918–930.

[34] Nannan Zhao, Vasily Tarasov, Ali Anwar, Lukas Rupprecht, Dimitrios Skourtis,
Amit Warke, Mohamed Mohamed, and Ali Butt. 2019. Slimmer: Weight loss
secrets for docker registries. In 2019 IEEE 12th International Conference on Cloud
Computing (CLOUD). IEEE, 517–519.

https://www.docker.com/
https://hub.docker.com/
 https://docs.docker.com/storage/storagedriver/overlayfs-driver/##how-the-overlay2-driver-works
 https://docs.docker.com/storage/storagedriver/overlayfs-driver/##how-the-overlay2-driver-works

	Abstract
	1 Introduction
	2 Background
	2.1 Docker Overview
	2.2 Docker Storage Driver

	3 Image Analysis
	4 System Model
	4.1 Operation Cost
	4.2 Storage Cost
	4.3 Commutativity Model
	4.4 Problem Formulation

	5 Image Reconstruction Algorithm
	6 Evaluation
	6.1 Setup
	6.2 Results

	7 Related Work
	8 Conclusion
	9 Acknowledgments
	References

