

通向泛在学习的系统软件之路 The Way towards Ubiquitous Learning: a System Perspective

Mengwei Xu(徐梦炜)@ CS Dept of BUPT

"The most profound techniques are those that disappear. They weave themselves into the fabric of everyday life until they are indistinguishable from it."

- Mark Weiser

Is AI ubiquitous now...?

• DL apps are increasing rapidly

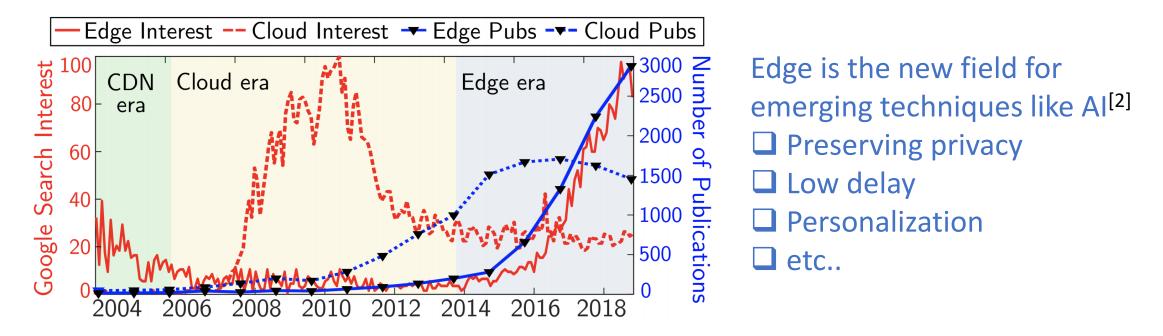
<mark>166/</mark> 16,500 1.0%		<u>↑260%</u> 760/16,500 4.6%
Jun. 2018	Sep. 2018	Mar. 2021

700 600 500 500 500 500 500 500 100 0

800

Jun. 2018 Sep. 2018 Feb. 2021

- DL apps are popular apps
 - Contributing to billions of downloads


[1] Mengwei Xu, et al. "A First Look at Deep Learning Apps on Smartphones" In the Web Conference (WWW) 2019

Some trends

 Edge devices (smartphones, IoTs, etc) are becoming important computing platforms, not just user equipment^[1].

[1] Mengwei Xu, et al. "A case for camera-as-a-service", IEEE Pervasive Computing, 2021.[2] N. Mohan, et al. "Pruning Edge Research with Latency Shears." HotNets, 2020.

Some trends

 Edge devices (smartphones, IoTs, etc) are becoming important computing platforms, not just user equipment^[1].

Framework	Owner	Target Platforms	Release Year
TensorFlow Lite	Google	Android, iOS, Microcontroller	2017
ncnn	Tencent	Android, iOS	2017
MNN	Alibaba	Android, iOS	2019
PaddleLite	Baidu	Android, iOS	2018
MACE	Xiaomi	Android, iOS	2018
MindSpore Lite	Huawei	Android, iOS, LiteOS	2020
SNPE	Qualcomm	Snapdragon CPU, Adreno GPU, Hexagon DSP	2017
PytorchMobile	Facebook	Android, iOS	2019
ComputeLibrary	ARM	Arm Cortex CPU, Arm Mali GPU	2017
MegEngine	Megvii	Android, iOS	2020
tengine	Open Al Lab	Android, iOS	2018
Core ML	Apple	iOS	2017
CMSIS-NN	ARM	Cortex-M Microcontroller	2018

Not enough!

Only inference (static deployment); no training (learning from environments)

Mengwei Xu (徐梦炜) @ CS Dept of BUPT

面向泛在学习的机器学习系统

TO POSIS AND TO POSIS

中國計算機學會通訊 第17卷 第10期 2021年10月

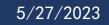
关键词:人工智能 终端设备 系统软件

徐梦炜¹ 黄 康² 刘譞哲³ ¹北京邮电大学 ²领规科技 ³北京大学

Ubiquitous Learning

The devices can learn from the environments at anywhere and anytime

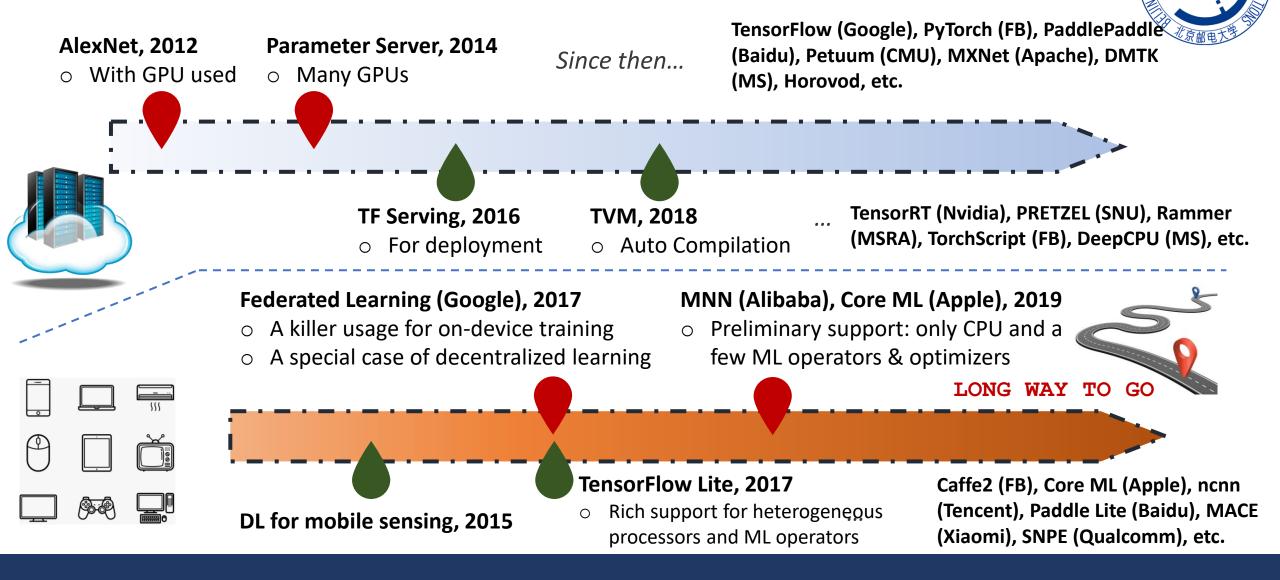
- Autonomous: on-device transfer learning / personalization / ...
- **Cooperative**: federated learning / split learning / ...


A review of DL system evolution on cloud/edge AlexNet, 2012 • With GPU used Parameter Server, 2014 • Many GPUs Since then...

TVM, 2018

• Auto Compilation

TF Serving, 2016


• For deployment

TensorRT (Nvidia), PRETZEL (SNU), Rammer

(MSRA), TorchScript (FB), DeepCPU (MS), etc.

A review of DL system evolution on cloud/edge

A review of DL system evolution on cloud/edge

AlexNet, 2012

Parameter Server, 2 o Many GPUs

Since then...

TensorFlow (Google), PyTorch (FB), PaddlePaddle (Baidu), Petuum (CMU), MXNet (Apache), DMTK (MS), Horovod, etc.

TF Serving, 2016 o For deployment [WWW'21] The first[MobiCom'22] Mandheling:Heterogeneity-aware FL platformmixed-precision training on SoC

[UbiComp'18] DeepType: The first attempt of on-device training for input prediction personalization

Many attemps at on-device inference: [WWW'22] DL lib Benchmark [USENIX ATC'21] ZC2 [MobiSys'20] Elf [WWW'19] An empirical study [TMC'19] DeepWear [MobiCom'18] DeepCache [MobiSys'22] Melon: breaking memory wall for on-device training

Rich support for heterogeneous processors and ML operators Caffe2 (FB), Core ML (Apple), ncnn (Tencent), Paddle Lite (Baidu), MACE (Xiaomi), SNPE (Qualcomm), etc.

More to

come...

...

Key incentives to UL

Federated learning, differential privacy, homomorphic encryption, secure aggregation, etc..

Amortized training cost

On-device transfer learning, personalized model, etc..

Key research questions in UL

- 1. Training data is limited, non-IID, or even not labelled
 - Model accuracy heavily relies on data!

- 2. Devices have constrained hardware resources
 - Training a ML model is notoriously resource-hungry!

2 Key research questions in UL

- 1. Training data is limited, non-IID, or even not labelled
 - Model accuracy heavily relies on data!

- 2. Devices have constrained hardware resources
 - Training a ML model is notoriously resource-hungry!

- A measurement study of on-device training
 - EMDL'20
- Memory optimization of on-device training
 - MobiSys'21
- Mixed-precision training with on-chip offloading
 - MobiCom'22

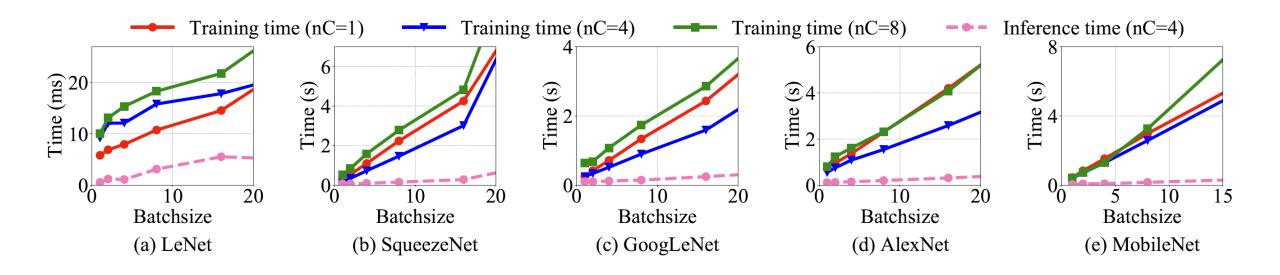
- A measurement study of on-device training
 - EMDL'20
- Memory optimization of on-device training
 - MobiSys'21
- Mixed-precision training with on-chip offloading
 - MobiCom'22

On-device training: a measurement study

- Target library: MNN^[1] by Alibaba
- 6 Android devices
- 5 classic CNN models
 - LeNet, AlexNet, MobileNetv2, SqueezeNet, GoogLeNet
- CPU by default

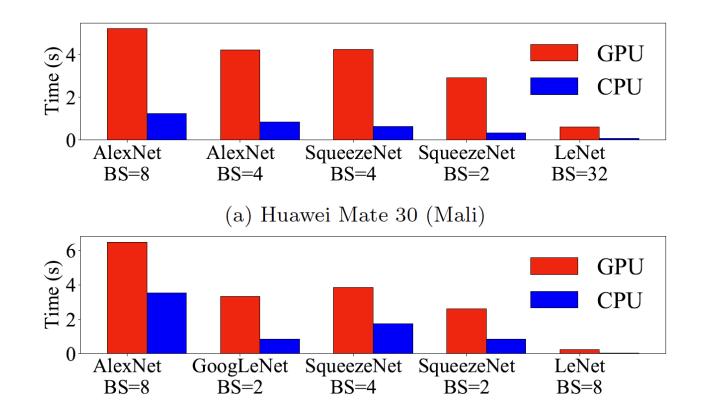
Testing	Training	Training time (ms)		
platform	library	BS = 1	BS=2	BS=4
Samsung	MNN	516	812	1365
Note 10	DL4J	3,032	$6,\!129$	OOM
	MNN	6698	$10,\!651$	OOM
RPI 3B+	TensorFlow	10,468	$14,\!157$	$27,\!574$
	PyTorch	48,274	$79,\!097$	OOM

Device	Specifications	Yr.
Redmi Note 9 Pro	Snapdragon 720G, 6GB RAM	2020
Xiaomi MI 9	Snapdragon 855, 6GB RAM	2019
Huawei Mate 30	Kirin 990, 8GB RAM	2019
Meizu 16T	Snapdragon 855, 6GB RAM	2019
Samsung S8+	Snapdragon 835, 6GB RAM	2017
Huawei Honor 8	Kirin 950, 3GB RAM	2016


[1] https://github.com/alibaba/MNN

5/27/2023

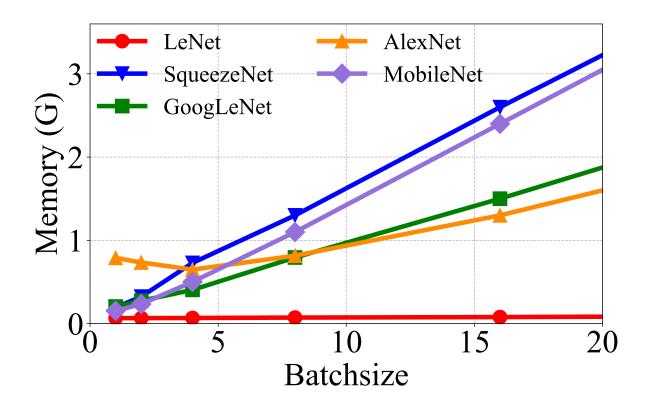
Training time


- Training takes much more time than inference
 - Up to 17.8x gap, much larger than the FLOPs-gap

Training time

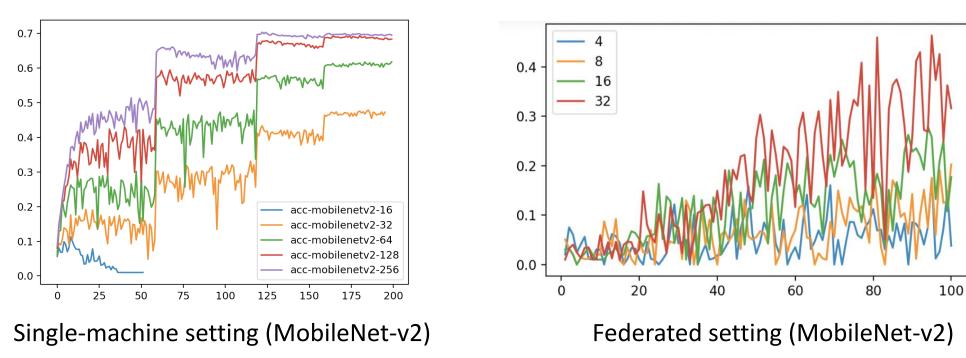
- Training takes much more time than inference
- GPU cannot speedup

Training time



- Training takes much more time than inference
- GPU cannot speedup
- Why?
 - The training support of MNN is still at very preliminary stage
 - Training is far more complex than inference: much more operators, dynamic weights update, variable batch size, etc...

Memory footprint


- Training is very memory-intensive
 - 16-32 is typically the max batch size supported by a high-end device (6~8 GBs)

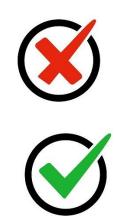
Memory footprint


- Training is very memory-intensive
 - 16-32 is typically the max batch size supported by a high-end device
 - Enough for a good convergence? NO!

[1] Smith, Samuel L., et al. "Don't decay the learning rate, increase the batch size." arXiv preprint arXiv:1711.00489 (2017).

Memory footprint

- Training is very memory-intensive
 - 16-32 is typically the max batch size supported by a high-end device
 - Enough for a good convergence? NO!



- A measurement study of on-device training
 - EMDL'20
- Memory optimization of on-device training
 - MobiSys'21
- Mixed-precision training with on-chip offloading
 - MobiCom'22

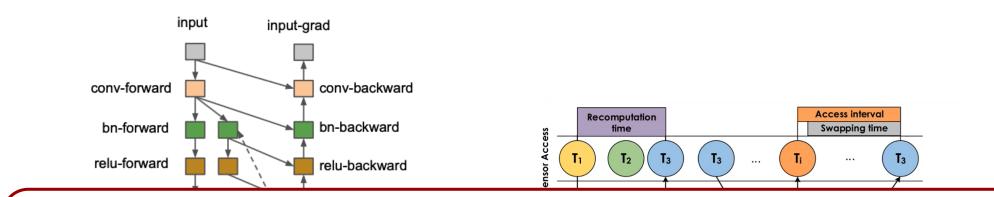
Design goals and principles

- Goal: supporting larger batch size training with given upper bound of peak memory usage
- Borrowed wisdoms
 - Model & gradients compression
 - Host-device memory swapping
 - Splitting mini-batch to micro-batch
 - Activation recomputation

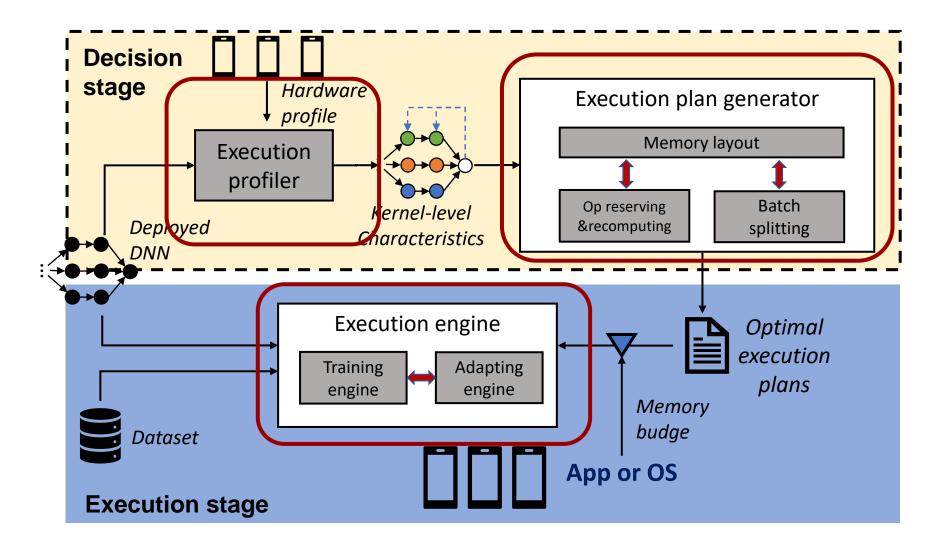
Design goals and principles

• Goal: supporting larger batch size training with given upper bound of peak memory usage

Challenge#1: efficient memory management


Memory pool is widely adopted – severe fragmentation

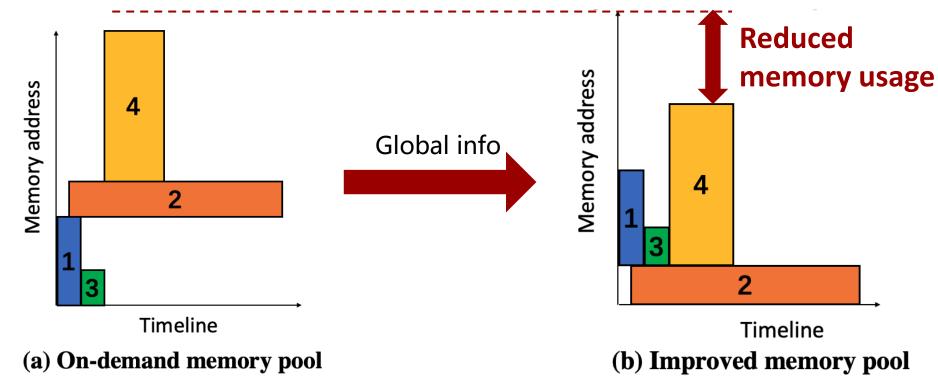
Challenge#2: efficient recomputation



Current recomputation ignores impact of memory pool

How to recompute efficiently based on DNN training specific memory pool?

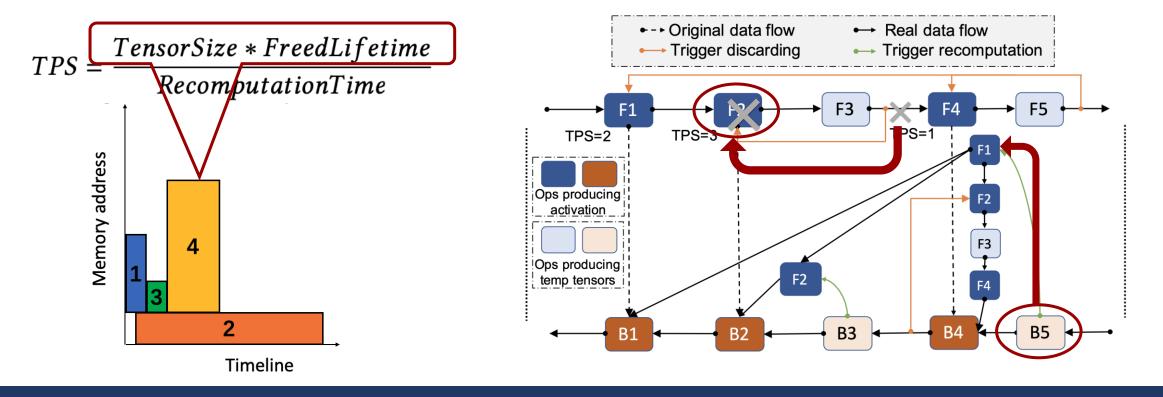
Melon: design overview



Tensor lifetime-aware memory pool

TOT POSTS AND TOTAL AND TOTAL AND TOTAL AND TOTAL TOTAL AND TOTAL AND TOTAL AND TOTAL AND TOTAL AND TOTAL TOTAL AND TOTALA

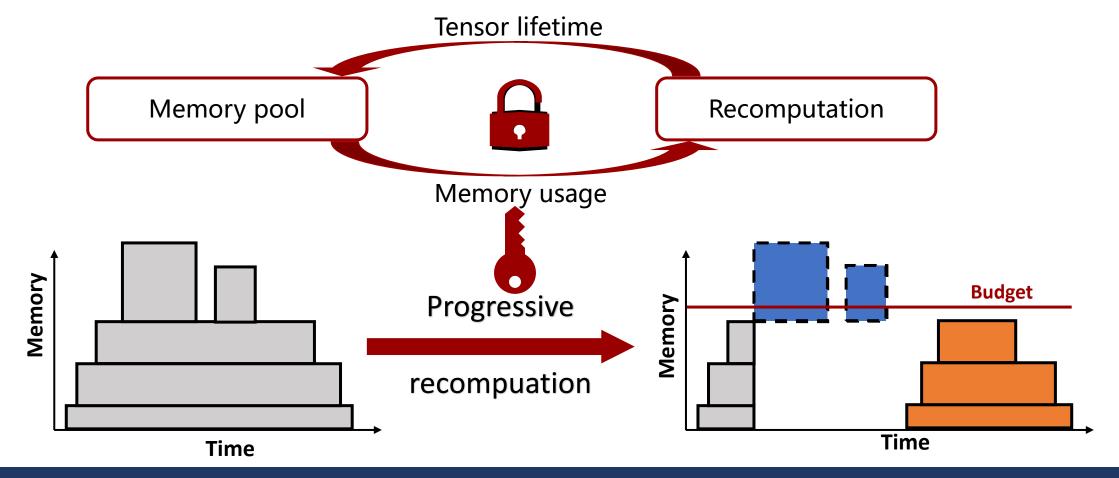
Heuristics


- Memory access pattern of DNN training is fixed
- Tensors allocated earlier are released later

Memory-calibrated progressive recomputation

Recomputation mechanism

- Evict tensor when exceeding memory budget
- Recompute tensor when it is not appeared

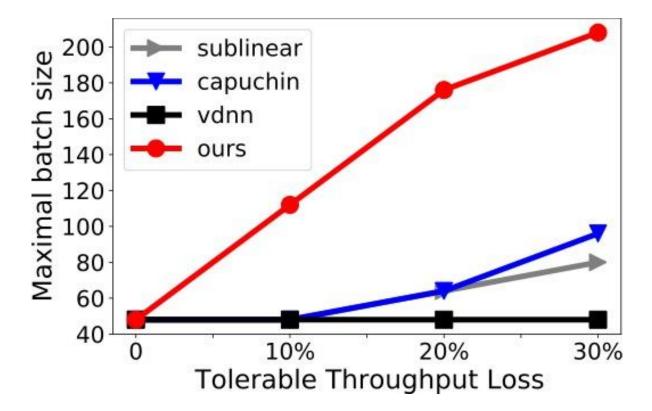


Memory-calibrated progressive recomputation

Take memory pool into consideration

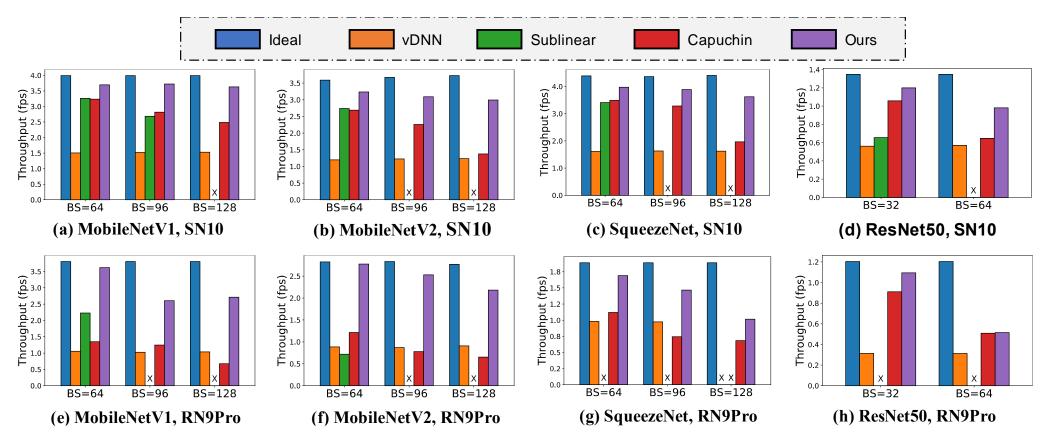
- The only paper with 3 AE badges in MobiSys'22
- Implemented atop MNN.
- 4 CNN models and 3 Android devices.

Device	SoC	Memory	Model	Params	FLOPs
Samsung Note10	SD 855	8 GB	MobileNetV1	3.3M	45.5M
Vivo IQOO Neo3	SD 865	6 GB	MobileNetV2	2.4M	67.6M
Redmi Note9 Pro	SD 720	6 GB	SqueezeNet	0.8M	34.4M
Redmi Note8	SD 655	4 GB	ResNet50	23.8M	1336.3M


Baselines:

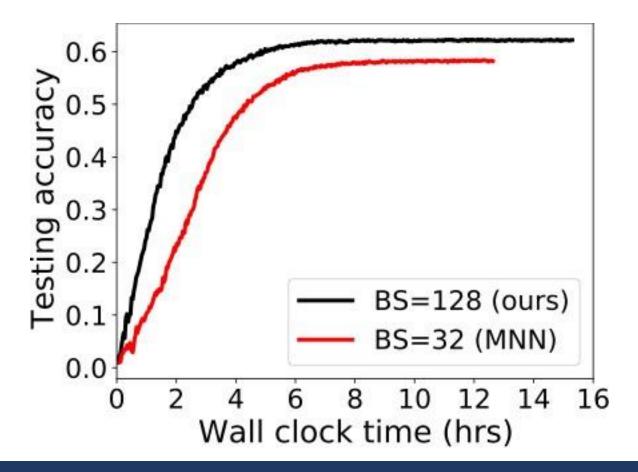
- *Ideal*: the upper bound
- [Micro'16] vDNN: memory swapping
- [arxiv'16] *Sublinear*: recompute
- [ASPLOS'20] Capuchin: recompute + swapping

Highlighted results

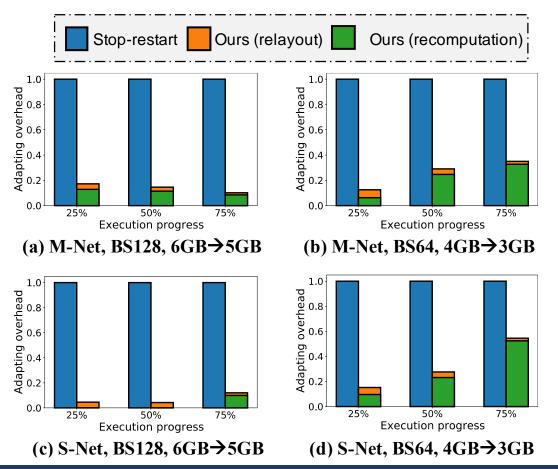

• Our system supports much larger batch size

34

Highlighted results



Highlighted results


Our system improves federated learning from end to end

Highlighted results

• Our system incurs much less overhead during memory adapting

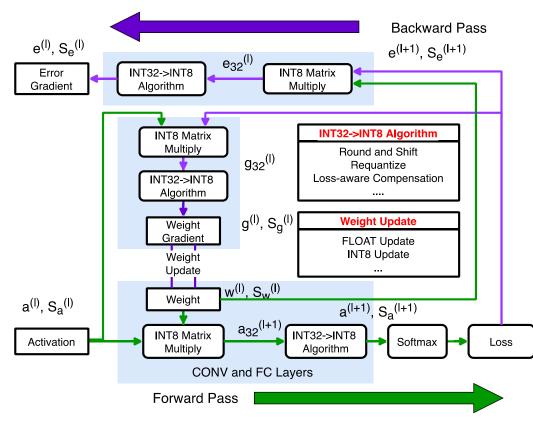
- A measurement study of on-device training
 - EMDL'20
- Memory optimization of on-device training
 - MobiSys'21
- Mixed-precision training with on-chip offloading
 - MobiCom'22

Motivation

- Mixed-precision training is emerging
 - INT8, INT16, FP16, etc...
- Mobile DSP is both ubiquitous and powerful
 - vs. CPU/GPU/NPU
 - Good at integer-based processing

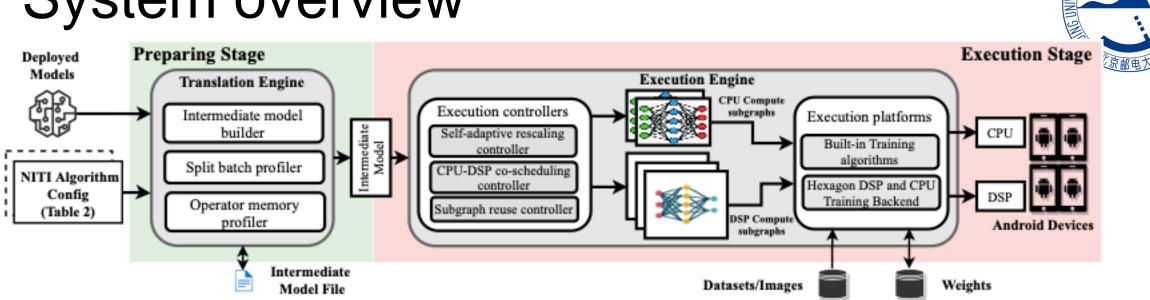
Motivation

- Mixed-precision training is emerging
 - INT8, INT16, FP16, etc...
- Mobile DSP is both ubiquitous and powerful
 - vs. CPU/GPU/NPU
 - Good at integer-based processing



Mandheling

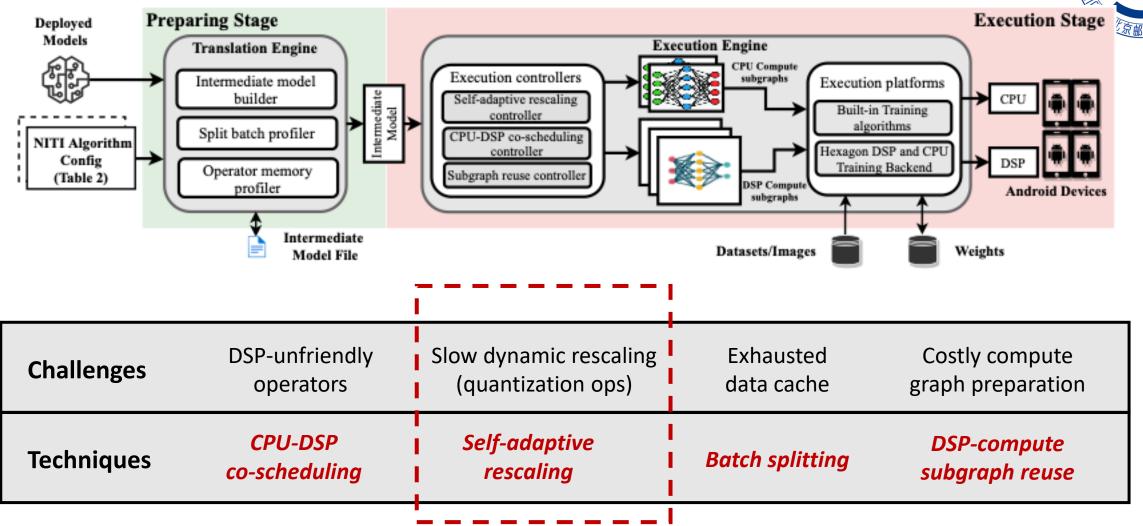
An abstraction


 Making Mandheling a unified framework for various mixed-precision training algorithms – through a few configurations

Mixed-precision algo.			W	Α	G	WU	support	
NITI [67]			INT8	INT8	INT8	INT8	\checkmark	
Octo [82]		INT8	INT8	INT8	INT8	\checkmark		
Adaptive Fixed-Point [79]		INT8/INT16	INT8	INT8	FP32	\checkmark		
WAGEUBN [74]		INT8	INT8	INT8	FP24	\checkmark		
MLS Format [81]			INT8	INT8	INT8	FP32	\checkmark	
Chunk-based [68]			FP8	FP8	FP8	FP16	×	
Unified	A (C	ontent	8	K		
"W", "A	Attribute		key		value			
	Translation	FP32 Conv		INT8	INT8 Conv+ReduceMax+Shift			
	Tansiation	FP32 MaxPool			INT8 MaxPool			
	Backprop	FP32 Conv Error Grad.		l.	INT8 Deconv			
	Backprop.		FP32 Conv Weight Grad.		INT8 ConvBackpropFilter			
			Initializer		Xavier_			
	Weight		Туре		INT8			
			Update		IN			
Optimizer –		Loss			Cross Entropy			
		Optimizer			SGD			
Table 2: A typical NITI algorithm training config								

Table 2: A typical NITI algorithm training config.

System overview

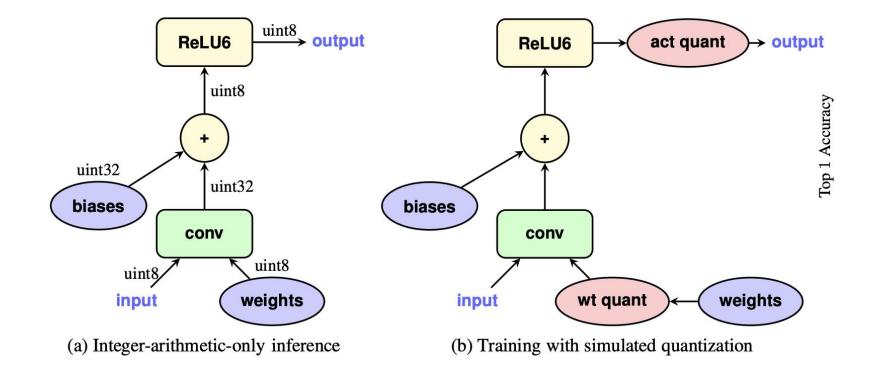


Challenges	DSP-unfriendly operators	Slow dynamic rescaling (quantization ops)	Exhausted data cache	Costly compute graph preparation
Techniques	CPU-DSP co-scheduling	Self-adaptive rescaling	Batch splitting	DSP-compute subgraph reuse

POSTS AN

DMMUNICATI

System overview



DINSTS

JMMUNICAT

• Scaling factor (n) needs to be dynamically adjusted.

- Scaling factor (n) needs to be dynamically adjusted.
- It runs slow on DSP, and it appears in every layer_
 - Memory-intensive

int scale = 0;	scale = 0		
/* Calculate INT32 temporal results */	2		
for(int i = 0; i < length; i++) {	loop0:		
Tensor x = input[i];	v0 = vmem ptr_i		
Tensor w = weight[i];	v1 = vmem ptr_w		
// CONV or matrix multiply	5		
Tensor temp_result = x * w;	v2 = vrmpy v0, v1		
// count leading zero	3		
Tensor $clz = clz(temp_result);$	$v_3 = vclz v_2$		
int tscale = $32 - \max(clz) - 7;$ 1	tscale = vmax v3		
<pre>scale = scale > tscale ? scale : 1</pre>	scale = mux scale >		
tscale ;	tscale , scale ,		
<pre>temp_output[i] = temp_result;</pre>	tscale		
}	vmem ptr_t, v2		
/* Cast the INT32 to INT8 values */ 1	end loop0		
for(int i = 0; i < length; i++) { 1	loop1:		
Tensor temp = temp_output[i]; 1	v0 = vmem ptr_t		
// Downscale 1	5		
Tensor int8_result = temp / scale ; 1	v3 = vmpye v0, scale		
result [i] = int8_result ; 1	vmem ptr_v, v3		
}	end loop1		
Listing 1: Key C code snippet of	Listing 2: Asm code		
	version		
	<pre>/* Calculate INT32 temporal results */ for(int i = 0; i < length; i++) { Tensor x = input[i]; Tensor w = weight[i]; // CONV or matrix multiply Tensor temp_result = x * w; // count leading zero Tensor clz = clz(temp_result); int tscale = 32 - max(clz) - 7; scale = scale > tscale? scale: tscale; temp_output[i] = temp_result; } /* Cast the INT32 to INT8 values */ 11 for(int i = 0; i < length; i++) { Tensor temp = temp_output[i]; // Downscale Tensor int8_result = temp / scale; // Downscale // Scale = temp / scale; // Downscale // Scale = temp / scale; // Scale = temp / scale = temp / scale = temp / scale; // Scale = temp / scale = tem</pre>		

- Scaling factor (n) needs to be dynamically adjusted.
- It runs slow on DSP, and it appears in every layer
- Opportunity
 - Very few candidates of n
 - Changing frequency is low

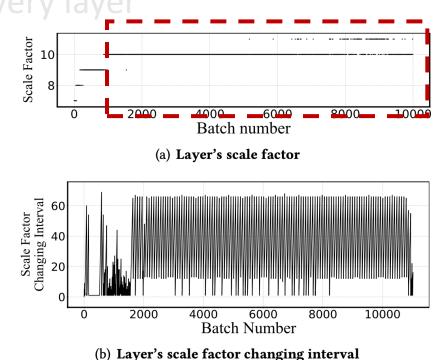


Figure 4: The scale factor and its changing interval of the first CONV layer in training VGG11 model (batch size = 64) on CIFAR-10 dataset.

- Scaling factor (n) needs to be dynamically adjusted.
- It runs slow on DSP, and it appears in every layer
- Opportunity
 - Very few candidates of n
 - Changing frequency is low
- Solution: self-adaptive instead of every batch
 - Determining the adapting frequency based on historical traces

Highlighted Results

- Implementation
 - 15k LoC in C/C++ and 800 LoC in assembly
 - Reuse ops on CPU from MNN
- Setups
 - 3 devices
 - 6 models
 - 2 datasets (CIFAR-10 & ImageNet)
- Baselines
 - 1. TFLite-FP32
 - 2. MNN-FP32
 - 3. MNN-INT8
 - 4. MNN-INT8-GPU
- Algorithm: NITI^[1]

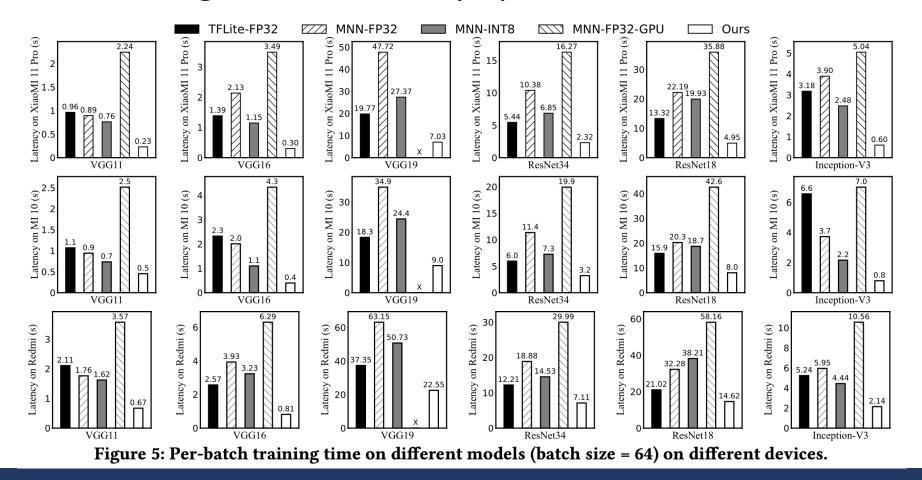
Devices CPU GPU DSP 2.84GHz Cortex-X1 XiaoMI 11 Pro Hexagon 780 DSP Adreno 660 GPU 3× 2.4GHz Cortex A78 Snapdragon 888 700MHz 500MHz 4× 1.8GHz Cortex A55 2.84GHz A77 XiaoMI 10 Adreno 650 GPU Hexagon 698 DSP 3× 2.4GHz Cortex A77 Snapdragon 865 587MHz 500MHz 4× 1.8GHz Cortex A55 Redmi Note9 Pro 2× 2.2GHz Cortex A77 Adreno 619 GPU Hexagon 694 DSP Snapdragon 750G 6×1.8 GHz Cortex A55 950MHz 500MHz

Table 5: Devices used in the experiments.

Model	Input Data	FLOPs	# of CONVs
VGG-11 [60]	CIFAR-10	914 M	8
VGG-16 [60]	CIFAR-10	1.35 G	13
VGG-19 [60]	ImageNet	26.92 G	16
ResNet-34 [29]	CIFAR-10	7.26 G	36
ResNet-18 [29]	ImageNet	11.66 G	20
InceptionV3 [62]	CIFAR-10	2.43 G	16

Table 6: DNN models used in the experiments.

[1] Wang, Maolin, et al. "Niti: Training integer neural networks using integer-only arithmetic." IEEE Transactions on Parallel and Distributed Systems (2022).


5/27/2023

Mengwei Xu (徐梦炜) @ CS Dept of BUPT

48

• Per-batch training time reduced by up to 8.3x.

Highlighted Results

Highlighted Results

• Per-batch energy consumption reduced by up to 12.5x.

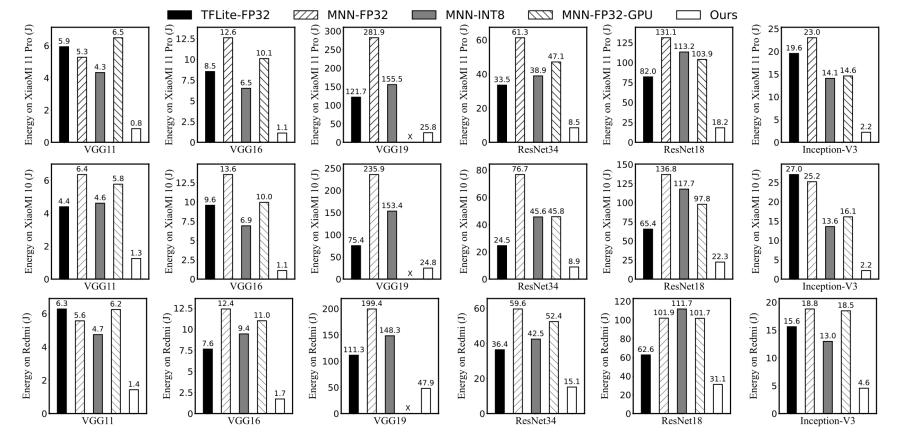


Figure 6: Per-batch energy consumption on different models (batch size = 64) on different devices.

Highlighted Results

TRUSTS AND TRUSTS AND

- In end-to-end convergence tasks
 - Time reduced by 5.7x on average
 - Energy consumption reduced by 7.8x on average
 - 19.%--2.7% accuracy loss

Dataset	Model	Methods	s Acc.	Training Cost to Convergence			
Dataset		Methous		Round number	Clock Hours	Energy (WH)	
Centralized CIFAR-10	VGG11	MNN-FP32	89.87%	150	29.13	187.01	
		MNN-INT8	87.17%	150	24.77	153.33	
		Ours	87.17%	150	7.50	31.39	
Controlined	ResNet18	MNN-FP32	92.49%	150	223.55	1,435.19	
Centralized CIFAR-10		MNN-INT8	90.62%	150	135.71	840.04	
CIFAR-10		Ours	90.62%	150	35.68	149.32	
Federated	LeNet	MNN-FP32	84.18%	990	0.97	0.00057	
FEMNIST		MNN-INT8	82.04%	4,960	0.39	0.00029	
FEMINIS I		Ours	82.04%	4,960	0.19	0.00007	
Federated	VGG16	MNN-FP32	71.15%	1,960	8.35	2.74	
		MNN-INT8	68.42%	2,200	1.56	1.26	
CIFAR-100		Ours	68.42%	2,200	0.78	0.21	

Table 8: A summary of end-to-end training cost till convergence under different training scenarios.

- Machine (deep) learning is happening everywhere at anytime
- The system support for such ubiquitous learning is still at very preliminary stage so many open problems!
- Open to discussion and collaboration on UL

Our code ⇒ https://github.com/UbiquitousLearning