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Being ubiquitous means…
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“The most profound techniques are those that
disappear. They weave themselves into the
fabric of everyday life until they are
indistinguishable from it.”

- Mark Weiser



Is AI ubiquitous now…?
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• DL apps are increasing rapidly

• DL apps are popular apps
• Contributing to billions of downloads

Jun. 2018 Sep. 2018 Mar. 2021

↑27%
211/16,500

1.3%
166/16,500

1.0%

↑260%
760/16,500

4.6%

0

100

200

300

400

500

600

700

800

Jun. 2018 Sep. 2018 Feb. 2021

#
o

f
D

L
ap

p
s

d
et

ec
te

d

[1] Mengwei Xu, et al. “A First Look at Deep Learning Apps on Smartphones” In the Web Conference
(WWW) 2019



Some trends

• Edge devices (smartphones, IoTs, etc) are becoming important
computing platforms, not just user equipment [1].
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[1] Mengwei Xu, et al. “A case for camera-as-a-service”, IEEE Pervasive Computing, 2021.
[2] N. Mohan, et al. "Pruning Edge Research with Latency Shears." HotNets, 2020.

Edge is the new field for
emerging techniques like AI[2]

❑ Preserving privacy
❑ Low delay
❑ Personalization
❑ etc..
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Not enough!

Only inference (static deployment); no training (learning from environments)
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Ubiquitous Learning
The devices can learn from the environments

at anywhere and anytime

• Autonomous: on-device transfer learning / personalization / …
• Cooperative: federated learning / split learning / …



A review of DL system evolution on cloud/edge
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AlexNet, 2012
o With GPU used

Parameter Server, 2014
o Many GPUs

Since then…
TensorFlow (Google), PyTorch (FB), PaddlePaddle
(Baidu), Petuum (CMU), MXNet (Apache), DMTK
(MS), Horovod, etc.

TF Serving, 2016
o For deployment

TVM, 2018
o Auto Compilation

… TensorRT (Nvidia), PRETZEL (SNU), Rammer
(MSRA), TorchScript (FB), DeepCPU (MS), etc.
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AlexNet, 2012
o With GPU used

Parameter Server, 2014
o Many GPUs

Since then…
TensorFlow (Google), PyTorch (FB), PaddlePaddle
(Baidu), Petuum (CMU), MXNet (Apache), DMTK
(MS), Horovod, etc.

TF Serving, 2016
o For deployment

TVM, 2018
o Auto Compilation

… TensorRT (Nvidia), PRETZEL (SNU), Rammer
(MSRA), TorchScript (FB), DeepCPU (MS), etc.

DL for mobile sensing, 2015

TensorFlow Lite, 2017
o Rich support for heterogeneous

processors and ML operators
…

Caffe2 (FB), Core ML (Apple), ncnn
(Tencent), Paddle Lite (Baidu), MACE
(Xiaomi), SNPE (Qualcomm), etc.

MNN (Alibaba), Core ML (Apple), 2019
o Preliminary support: only CPU and a

few ML operators & optimizers

Federated Learning (Google), 2017
o A killer usage for on-device training
o A special case of decentralized learning

LONG WAY TO GO



A review of DL system evolution on cloud/edge

5/27/2023 10Mengwei Xu (徐梦炜) @ CS Dept of BUPT

AlexNet, 2012
o With GPU used

Parameter Server, 2014
o Many GPUs

Since then…
TensorFlow (Google), PyTorch (FB), PaddlePaddle
(Baidu), Petuum (CMU), MXNet (Apache), DMTK
(MS), Horovod, etc.

TF Serving, 2016
o For deployment

TVM, 2018
o Auto Compilation

… TensorRT (Nvidia), PRETZEL (SNU), Rammer
(MSRA), TorchScript (FB), DeepCPU (MS), etc.

DL for mobile sensing, 2015

TensorFlow Lite, 2017
o Rich support for heterogeneous

processors and ML operators
…

Caffe2 (FB), Core ML (Apple), ncnn
(Tencent), Paddle Lite (Baidu), MACE
(Xiaomi), SNPE (Qualcomm), etc.

MNN (Alibaba), Core ML (Apple), 2019
o Preliminary support: only CPU and a

few ML operators & optimizers

Federated Learning (Google), 2017
o A killer usage for on-device training
o A special case of decentralized learning

LONG WAY TO GOMore to

come…Many attemps at on-device inference:
[WWW’22] DL lib Benchmark
[USENIX ATC’21] ZC2
[MobiSys’20] Elf
[WWW’19] An empirical study
[TMC’19] DeepWear
[MobiCom’18] DeepCache
…

[UbiComp’18] DeepType: The
first attempt of on-device
training for input prediction
personalization

[MobiSys’22] Melon: breaking
memory wall for on-device training

[WWW’21] The first
Heterogeneity-aware FL platform

[MobiCom’22] Mandheling:
mixed-precision training on SoC



Key incentives to UL
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Data Privacy

Amortized 
training cost

Federated learning, differential privacy,
homomorphic encryption, secure
aggregation, etc..

On-device transfer learning, personalized
model, etc..



Key research questions in UL

1. Training data is limited, non-IID, or even not labelled
• Model accuracy heavily relies on data!

2. Devices have constrained hardware resources
• Training a ML model is notoriously resource-hungry!
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We need a system-algorithm co-design



Outline
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• A measurement study of on-device training

- EMDL’20

• Memory optimization of on-device training

- MobiSys’21

• Mixed-precision training with on-chip offloading

- MobiCom’22



Outline
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On-device training: a measurement study

• Target library: MNN[1] by Alibaba

• 6 Android devices

• 5 classic CNN models
• LeNet, AlexNet, MobileNetv2,

SqueezeNet, GoogLeNet

• CPU by default
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[1] https://github.com/alibaba/MNN



Training time

• Training takes much more time than inference
• Up to 17.8x gap, much larger than the FLOPs-gap
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Training time

• Training takes much more time than inference

• GPU cannot speedup
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Training time

• Training takes much more time than inference

• GPU cannot speedup

• Why?
• The training support of MNN is still at very preliminary stage

• Training is far more complex than inference: much more operators, dynamic
weights update, variable batch size, etc…
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Memory footprint

• Training is very memory-intensive
• 16-32 is typically the max batch size supported by a high-end device (6~8 GBs)
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Memory footprint

• Training is very memory-intensive
• 16-32 is typically the max batch size supported by a high-end device

• Enough for a good convergence? NO!
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Single-machine setting (MobileNet-v2) Federated setting (MobileNet-v2)
[1] Smith, Samuel L., et al. "Don't decay the learning rate, increase the batch size." arXiv preprint arXiv:1711.00489 (2017).



Memory footprint

• Training is very memory-intensive
• 16-32 is typically the max batch size supported by a high-end device

• Enough for a good convergence? NO!
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A ”clean” environment.
In practice? NO!



Outline
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• A measurement study of on-device training

- EMDL’20

• Memory optimization of on-device training

- MobiSys’21

• Mixed-precision training with on-chip offloading

- MobiCom’22



Design goals and principles

• Goal: supporting larger batch size training with given upper
bound of peak memory usage

• Borrowed wisdoms
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• Model & gradients compression 

• Host-device memory swapping

• Splitting mini-batch to micro-batch

• Activation recomputation



Design goals and principles

• Goal: supporting larger batch size training with given upper
bound of peak memory usage
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Challenge#1: efficient memory management

Memory pool is widely adopted – severe fragmentation

How to manage memory pool 
efficiently for DNN training?
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Current recomputation ignores impact of memory pool

How to recompute efficiently based on DNN 
training specific memory pool?
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Challenge#2: efficient recomputation



Melon: design overview

Execution
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Kernel-level
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…

…

Execution plan generator
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Hardware
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Heuristics

• Memory access pattern of DNN training is fixed

• Tensors allocated earlier are released later

Reduced
memory usage

Global info

Tensor lifetime-aware memory pool  
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Recomputation mechanism

• Evict tensor when exceeding memory budget

• Recompute tensor when it is not appeared

Memory-calibrated progressive recomputation 

❌❌
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Take memory pool into consideration
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Evaluation

• Implemented atop MNN.

• 4 CNN models and 3 Android devices.

• Baselines:
• Ideal: the upper bound

• [Micro’16] vDNN: memory swapping

• [arxiv’16] Sublinear: recompute

• [ASPLOS’20] Capuchin: recompute + swapping
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The only paper with 3 AE badges inMobiSys’22



Highlighted results

• Our system supports much larger batch size
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Highlighted results

• Our system incurs much less performance loss
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(a) MobileNetV1, SN10 (b) MobileNetV2, SN10 (c) SqueezeNet, SN10 (d) ResNet50, SN10

(e) MobileNetV1, RN9Pro (f) MobileNetV2, RN9Pro (g) SqueezeNet, RN9Pro (h) ResNet50, RN9Pro

Ideal vDNN Sublinear Capuchin Ours



Highlighted results

• Our system improves federated learning from end to end
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Highlighted results

• Our system incurs much less overhead during memory adapting
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(a) M-Net, BS128, 6GBà5GB (b) M-Net, BS64, 4GBà3GB

(c) S-Net, BS128, 6GBà5GB (d) S-Net, BS64, 4GBà3GB

Stop-restart Ours (relayout) Ours (recomputation)



Outline

5/27/2023 37Mengwei Xu (徐梦炜) @ CS Dept of BUPT

• A measurement study of on-device training

- EMDL’20

• Memory optimization of on-device training

- MobiSys’21

• Mixed-precision training with on-chip offloading

- MobiCom’22



Motivation

• Mixed-precision training is emerging
• INT8, INT16, FP16, etc…

• Mobile DSP is both ubiquitous and powerful
• vs. CPU/GPU/NPU

• Good at integer-based processing
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Mandheling



An abstraction

• Making Mandheling a unified framework for various mixed-precision
training algorithms – through a few configurations
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System overview
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Challenges

Techniques

DSP-unfriendly
operators

Slow dynamic rescaling
(quantization ops)

Exhausted
data cache

Costly compute
graph preparation

CPU-DSP
co-scheduling

Self-adaptive
rescaling Batch splitting

DSP-compute
subgraph reuse



System overview

5/27/2023 42Mengwei Xu (徐梦炜) @ CS Dept of BUPT

Challenges

Techniques

DSP-unfriendly
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Slow dynamic rescaling
(quantization ops)

Exhausted
data cache

Costly compute
graph preparation

CPU-DSP
co-scheduling

Self-adaptive
rescaling Batch splitting

DSP-compute
subgraph reuse



Self-adaptive rescaling

• Scaling factor (n) needs to be dynamically adjusted.
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Self-adaptive rescaling

• Scaling factor (n) needs to be dynamically adjusted.

• It runs slow on DSP, and it appears in every layer
• Memory-intensive
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Self-adaptive rescaling

• Scaling factor (n) needs to be dynamically adjusted.

• It runs slow on DSP, and it appears in every layer

• Opportunity
• Very few candidates of n

• Changing frequency is low
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Self-adaptive rescaling

• Scaling factor (n) needs to be dynamically adjusted.

• It runs slow on DSP, and it appears in every layer

• Opportunity
• Very few candidates of n

• Changing frequency is low

• Solution: self-adaptive instead of every batch
• Determining the adapting frequency based on historical traces
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Highlighted Results

• Implementation
• 15k LoC in C/C++ and 800 LoC in assembly

• Reuse ops on CPU from MNN

• Setups
• 3 devices

• 6 models

• 2 datasets (CIFAR-10 & ImageNet)

• Baselines
1. TFLite-FP32

2. MNN-FP32

3. MNN-INT8

4. MNN-INT8-GPU

• Algorithm: NITI[1]
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[1] Wang, Maolin, et al. "Niti: Training integer neural networks using integer-only arithmetic." IEEE Transactions on 
Parallel and Distributed Systems (2022).



Highlighted Results

• Per-batch training time reduced by up to 8.3x.

5/27/2023 48Mengwei Xu (徐梦炜) @ CS Dept of BUPT



Highlighted Results

• Per-batch energy consumption reduced by up to 12.5x.
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Highlighted Results

• In end-to-end convergence tasks
• Time reduced by 5.7x on average

• Energy consumption reduced by
7.8x on average

• 19.%--2.7% accuracy loss
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Takeaways

• Machine (deep) learning is happening everywhere at anytime

• The system support for such ubiquitous learning is still at very
preliminary stage – so many open problems!

• Open to discussion and collaboration on UL
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Our code ⇒ https://github.com/UbiquitousLearning


