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• “ChatGPT is just a smarter chatbot”
§ As a product, yes

- But think about it: Moss is also a chatbot; robots/humans are chat bots
with physical ability

§ As a research, hell no
- It is a generative model that theoretically knows everything on Internet
and can accomplish any NLP tasks

§ It’s also
- a series of papers cited by 10,000 times
- a startup company worthy of 30,000,000,000 dollars.

§ It’s also the one who opens the Pandora’s box

What ChatGPT means to AI..
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Some trends
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• DNN-embedded apps are increasing rapidly

• DNN-embedded apps are popular apps
• Contribu)ng to billions of downloads
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[1] Mengwei Xu, et al. “A First Look at Deep Learning Apps on Smartphones” In the Web Conference (WWW) 2019
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Ubiquitous Learning
The devices can learn from the environments

at anywhere and anytime

• Autonomous: on-device transfer learning / personalization / …
• Cooperative: federated learning / split learning / …
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Outline – (Federated) Training on Devices
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[MobiCom’22] Mandheling

[MobiSys’22] Melo

Training 
on edge

R Simulation integrity

Fine-tuning 
LLM on edge

[MobiCom’23] FedAdapter

[MobiCom’23] FedFSL

[INFOCOM’23] FLScheduler

[WWW’21] FLBench

[Going-on] ForwardFL

R Time & energy

R memory

R privacy

R Network & speed

R Label scarcity

R Time & energy & scalability & etc..

Making on-device 
training (FL) practical!
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Motivation
• Mobile NPUs are

increasingly powerful
• More than 10x speedup
over mobile CPU
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Motivation
• NPUs are becoming ubiquitous on mobile SoCs, can we use them to

accelerate training?
o The key issue: mobile NPUs oLen operate on low-precision formats
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Vendor Supported data formats SDK
Qualcomm/AIP 
(HTA/HTP)

INT8 (Since Snapdragon 855，HTA、HTP)
FP16 (Since Snapdragon 8Gen1，HTP)
INT4 (Since 8Gen2，HTP)

SNPE (Snapdragon Neural 
Processing Engine)

Huawei/Kirin NPU FP16 HiAI Foundation，

MediaTek APU INT8 NeuroPilot SDK

Google Edge TPU INT8 (both 1.0 and 2.0)
FP16 (both 1.0 and 2.0, highly optimized in 2.0)

TFLite delegate

Rockchip NPU INT8/INT16 (mostly)
FP16 (Only RK3588)

RockChip SDK
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An abstraction
• Making Mandheling a unified framework for various mixed-precision

training algorithms – through a few configurations
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INT32->INT8 Algorithm
Round and Shift 

Requantize
Loss-aware Compensation 

....

a32(l+1)INT8 Matrix
Multiply

INT32->INT8  
Algorithm

Weight

CONV and FC Layers

Softmax Loss

Weight 
Gradient

INT8 Matrix
Multiply

INT32->INT8  
Algorithm

INT8 Matrix
Multiply

INT32->INT8
Algorithm

Forward Pass

Backward Pass

Weight
Update

Weight Update
FLOAT Update 
INT8 Update 

...

a(l), Sa(l)
w(l), Sw(l)

Activation

a(l+1), Sa(l+1)

e(l+1), Se(l+1)e(l), Se(l)
e32(l)

g32(l)

g(l), Sg(l)

Error 
Gradient 
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System overview

CCFSys南昌-20230804

Challenges

Techniques

DSP-unfriendly
operators

Slow dynamic rescaling
(quantization ops)

Exhausted
data cache

Costly compute
graph prepara_on

CPU-DSP
co-scheduling

Self-adaptive
rescaling Batch splitting

DSP-compute
subgraph reuse
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Self-adaptive rescaling
• Scaling factor (n) needs to be dynamically adjusted.
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Self-adaptive rescaling
• Scaling factor (n) needs to be dynamically adjusted.
• It runs slow on DSP, and it appears in every layer
• Memory-intensive
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Self-adaptive rescaling
• Scaling factor (n) needs to be dynamically adjusted.
• It runs slow on DSP, and it appears in every layer
• Opportunity
• Very few candidates of n
• Changing frequency is low
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Self-adaptive rescaling
• Scaling factor (n) needs to be dynamically adjusted.
• It runs slow on DSP, and it appears in every layer
• Opportunity
• Very few candidates of n
• Changing frequency is low

• Solution: self-adaptive instead of every batch
• Determining the adapting frequency based on historical traces
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Highlighted results
• Implementation

• 15k LoC in C/C++ and 800 LoC in assembly
• Reuse ops on CPU from MNN

• Setups
• 3 devices
• 6 models
• 2 datasets (CIFAR-10 & ImageNet)

• Baselines
1. TFLite-FP32
2. MNN-FP32
3. MNN-INT8
4. MNN-INT8-GPU

• Algorithm: NITI[1]

CCFSys南昌-20230804

[1] Wang, Maolin, et al. "Niti: Training integer neural networks using integer-only arithmetic." IEEE Transactions on 
Parallel and Distributed Systems (2022).
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Highlighted results
• Per-batch training Nme reduced by up to 8.3x.
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Highlighted results
• Per-batch energy consumption reduced by up to 12.5x.
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Highlighted results
• In end-to-end convergence tasks

• Time reduced by 5.7x on average
• Energy consumption reduced by
7.8x on average
• 19.%--2.7% accuracy loss
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Outline – (Federated) Training on Devices
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Background
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Pre-training
Fine-tuning

Fine-tuning

Fine-tuning

…

Text Clssification.

Seq. Tagging

Text Generation.

Deployment

…

Public, centralized

Private, geo-distributed

BERT,
DistilBERT,
BART, GPT, etc

…

Cloud Cloud&Clients Clients

FedNLP: focus of this work
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Background
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Pre-training
Fine-tuning

Fine-tuning

Fine-tuning

…

Text Clssification.

Seq. Tagging

Text Generation.

Deployment

…

Public, centralized

Private, geo-distributed

BERT, DistilBERT,
BART, GPT, etc

…

Cloud Cloud&Clients Clients

FedNLP: focus of this work

Is FedNLP practical on 
todays’ mobile platforms?
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Challenges
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LLM training on mobile platforms:
• Transformer-based NLP models are highly costly.
• Network transmission dominates the training delay.

0 20 40 60 80 100
Training time breakd %n (%)

Jets n TX2

Jets n Nan 

RPI 4B

C mp. C mm.
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Key building block: pluggable adapters
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Model Method Training Time Updated Paras.

BERT Full Fine-tuning 1.86 sec 110.01 x 106
Adapter 1.14 sec 0.61 x 106

DistilBERT Full Fine-tuning 0.91 sec 67 x 106
Adapter 0.56 sec 0.32 x 106

Table 1: Computation and communication cost
of inserting adapters into each transformer block
(width=32) and full-model tuning on Jetson TX2.
than freezing the bottom transformer layers without revising
the model structure? We reason it with two insights from
our experiments and related literature [57, 66].
First, adapters allow modifying a model’s hidden state

at a low cost. By keeping the whole original model as it
is, adapters can maximally preserve the knowledge learned
from the pre-training dataset. The pluggable adapters are
only used to encode task-speci�c representations in inter-
mediate layers of the shared model. While in �ne-tuning
scenario, the downstream tasks mostly share low-level fea-
ture representation with the pre-training task, it’s still ben-
e�cial to adjust the low and middle-level feature extractor.
Second, we observe that using adapters stabilizes the con-
vergence process, while �ne-tuning on the full model easily
goes to over�tting. Though the over�tting can be remedied
by carefully tuning the hyper-parameters, it also requires
non-trivial e�orts for each separated �ne-tuning task.

Network cost analysis The trainable parameter number
per adapter is 2<=+=+<. Clients only send those parameters
and last-layer classi�er parameters after on-device training
to the aggregator. Therefore the network transmission per
round is reduced to⇡⇥ (2<=+=+<)+=⇥#;014;B , where⇡ is
the total number of transformer blocks of the NLP model. As
shown in Table 1, compared to �ne-tuning the whole BERT
model, the network saving could be more than 99%.

Compute cost analysis The computation FLOPs of each
adapter in forward pass is 2 ⇥< ⇥ = ⇥ B4@;4= (normalized
to single data sample), where B4@;4= is the sequence length
(default 256 in BERT). This incurred overhead is trivial com-
pared to the original model complexity, e.g., less than 1%
on BERT. On the other hand, since all other parameters are
�xed during training, calculating the gradients of those �xed
weights can be avoided in backward propagation. Table 1
shows adapter brings around 40% training time reduction.

3.2 The Con�guration Challenge
A unique challenge raised by adapters is its sensitivity to the
con�gurations (explained below). Di�erent con�gurations re-
sult in a variety of convergence delays, up to 4.7⇥ gap. Choos-
ing an “optimal” con�guration towards fast convergence is
fundamentally challenging for the following reasons.
Large adapter con�guration space There are two critical
parameters of adapters to be determined: depth and width.
(1) Similar to the idea of layer freezing, adapters are not

Model Datasets
Optimal adapter con�guration (depth, width)

towards di�erent target accuracy

BERT

99% 95% 90% 80% 70%
20news (2,64) (2,32) (2,8) (2,8) (2,8)
agnews (3,16) (2,16) (2,8) (0,8) (0,8)
semeval (10,8) (6,8) (6,8) (2,8) (2,8)
ontonotes (12, 32) (12, 32) (10, 32) (0, 16) (0, 16)

Table 2: The optimal adapter con�guration (i.e., best
time-to-accuracy) for di�erent target accuracy (ratio
to the full convergence) and di�erent datasets.

necessarily inserted into each transformer block. Reducing
the number of adapters inserted into the top blocks (namely
tuning depth) can e�ectively reduce the network cost and on-
device training time. (2) Apart from the depth, the bottleneck
size (tuning width), i.e., the target projection dimension of
input needs to be carefully set as well. A small width might
not su�ce to encode the latent features for �ne-tuning tasks
and thus incurs high accuracy degradation. Yet, a too wide
adapter incurs high resource costs and therefore slows down
the training (i.e., increased time to accuracy). Overall, the
candidate depth spans from 0 to the number of transformer
layers even if we only consider inserting adapters at top
K consecutive layers, i.e., 12 in BERT, and the valid widths
range from 8 to 64 according to our experiments. That results
in hundreds of di�erent alternative con�gurations.
Another dimension of design space is that the con�gu-

ration can be switched across FL rounds during a training
session. §3.3 elaborates how such switching could be realized
with the knowledge learned by the old adapter con�guration
well preserved. But within a round, clients better use the
same con�guration to facilitate the model aggregation.
Decisions must be online Making a good decision o�ine
is di�cult without pre-knowledge about the training dataset
– a common setup in �ne-tuning scenarios. Even with the
same task, with the data distribution drifting over time, the
resultant model structure could di�er tremendously [33, 46].
No silver bullet con�guration A key observation we
made from extensive experiments is that there is no silver-
bullet con�guration for FedNLP tasks. Rather, the optimal con-
�guration depends on many factors: the speci�c NLP tasks,
the target accuracy, and client resources such as network
bandwidth and local execution speed. Even with a given
pre-trained model, there are many factors that a�ect which
con�guration shall be picked for the fastest convergence.
• Targeted accuracy. Within a training session, di�erent tar-
get accuracy favors di�erent con�gurations. As shown in
Figure 4 (a), to achieve the best accuracy possible, using an
adapter with depth 6 and width 16 is the best option. If 80%
relative accuracy is satisfactory, the adapter with depth 2
and width 8 is 2⇥ faster than the previous con�guration.
• Targeted NLP tasks. Across di�erent FedNLP tasks, the
optimal adapter con�guration varies. As shown in Figure

5
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Key building block: pluggable adapters
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BERT Full Fine-tuning 1.86 sec 110.01 x 106
Adapter 1.14 sec 0.61 x 106

DistilBERT Full Fine-tuning 0.91 sec 67 x 106
Adapter 0.56 sec 0.32 x 106

Table 1: Computation and communication cost
of inserting adapters into each transformer block
(width=32) and full-model tuning on Jetson TX2.
than freezing the bottom transformer layers without revising
the model structure? We reason it with two insights from
our experiments and related literature [57, 66].
First, adapters allow modifying a model’s hidden state

at a low cost. By keeping the whole original model as it
is, adapters can maximally preserve the knowledge learned
from the pre-training dataset. The pluggable adapters are
only used to encode task-speci�c representations in inter-
mediate layers of the shared model. While in �ne-tuning
scenario, the downstream tasks mostly share low-level fea-
ture representation with the pre-training task, it’s still ben-
e�cial to adjust the low and middle-level feature extractor.
Second, we observe that using adapters stabilizes the con-
vergence process, while �ne-tuning on the full model easily
goes to over�tting. Though the over�tting can be remedied
by carefully tuning the hyper-parameters, it also requires
non-trivial e�orts for each separated �ne-tuning task.

Network cost analysis The trainable parameter number
per adapter is 2<=+=+<. Clients only send those parameters
and last-layer classi�er parameters after on-device training
to the aggregator. Therefore the network transmission per
round is reduced to⇡⇥ (2<=+=+<)+=⇥#;014;B , where⇡ is
the total number of transformer blocks of the NLP model. As
shown in Table 1, compared to �ne-tuning the whole BERT
model, the network saving could be more than 99%.

Compute cost analysis The computation FLOPs of each
adapter in forward pass is 2 ⇥< ⇥ = ⇥ B4@;4= (normalized
to single data sample), where B4@;4= is the sequence length
(default 256 in BERT). This incurred overhead is trivial com-
pared to the original model complexity, e.g., less than 1%
on BERT. On the other hand, since all other parameters are
�xed during training, calculating the gradients of those �xed
weights can be avoided in backward propagation. Table 1
shows adapter brings around 40% training time reduction.

3.2 The Con�guration Challenge
A unique challenge raised by adapters is its sensitivity to the
con�gurations (explained below). Di�erent con�gurations re-
sult in a variety of convergence delays, up to 4.7⇥ gap. Choos-
ing an “optimal” con�guration towards fast convergence is
fundamentally challenging for the following reasons.
Large adapter con�guration space There are two critical
parameters of adapters to be determined: depth and width.
(1) Similar to the idea of layer freezing, adapters are not

Model Datasets
Optimal adapter con�guration (depth, width)

towards di�erent target accuracy

BERT

99% 95% 90% 80% 70%
20news (2,64) (2,32) (2,8) (2,8) (2,8)
agnews (3,16) (2,16) (2,8) (0,8) (0,8)
semeval (10,8) (6,8) (6,8) (2,8) (2,8)
ontonotes (12, 32) (12, 32) (10, 32) (0, 16) (0, 16)

Table 2: The optimal adapter con�guration (i.e., best
time-to-accuracy) for di�erent target accuracy (ratio
to the full convergence) and di�erent datasets.

necessarily inserted into each transformer block. Reducing
the number of adapters inserted into the top blocks (namely
tuning depth) can e�ectively reduce the network cost and on-
device training time. (2) Apart from the depth, the bottleneck
size (tuning width), i.e., the target projection dimension of
input needs to be carefully set as well. A small width might
not su�ce to encode the latent features for �ne-tuning tasks
and thus incurs high accuracy degradation. Yet, a too wide
adapter incurs high resource costs and therefore slows down
the training (i.e., increased time to accuracy). Overall, the
candidate depth spans from 0 to the number of transformer
layers even if we only consider inserting adapters at top
K consecutive layers, i.e., 12 in BERT, and the valid widths
range from 8 to 64 according to our experiments. That results
in hundreds of di�erent alternative con�gurations.
Another dimension of design space is that the con�gu-

ration can be switched across FL rounds during a training
session. §3.3 elaborates how such switching could be realized
with the knowledge learned by the old adapter con�guration
well preserved. But within a round, clients better use the
same con�guration to facilitate the model aggregation.
Decisions must be online Making a good decision o�ine
is di�cult without pre-knowledge about the training dataset
– a common setup in �ne-tuning scenarios. Even with the
same task, with the data distribution drifting over time, the
resultant model structure could di�er tremendously [33, 46].
No silver bullet con�guration A key observation we
made from extensive experiments is that there is no silver-
bullet con�guration for FedNLP tasks. Rather, the optimal con-
�guration depends on many factors: the speci�c NLP tasks,
the target accuracy, and client resources such as network
bandwidth and local execution speed. Even with a given
pre-trained model, there are many factors that a�ect which
con�guration shall be picked for the fastest convergence.
• Targeted accuracy. Within a training session, di�erent tar-
get accuracy favors di�erent con�gurations. As shown in
Figure 4 (a), to achieve the best accuracy possible, using an
adapter with depth 6 and width 16 is the best option. If 80%
relative accuracy is satisfactory, the adapter with depth 2
and width 8 is 2⇥ faster than the previous con�guration.
• Targeted NLP tasks. Across di�erent FedNLP tasks, the
optimal adapter con�guration varies. As shown in Figure

5

How to find an “optimal” adapter towards fast 
convergence? (It’s not like AutoML/NAS!)
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Adapter configuration challenges
• Large adapter configuration space
• Design must be online
• No silver bullet configuration
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Model Method Training Time Updated Paras.

BERT Full Fine-tuning 1.86 sec 110.01 x 106
Adapter 1.14 sec 0.61 x 106

DistilBERT Full Fine-tuning 0.91 sec 67 x 106
Adapter 0.56 sec 0.32 x 106

Table 1: Computation and communication cost
of inserting adapters into each transformer block
(width=32) and full-model tuning on Jetson TX2.
than freezing the bottom transformer layers without revising
the model structure? We reason it with two insights from
our experiments and related literature [57, 66].
First, adapters allow modifying a model’s hidden state

at a low cost. By keeping the whole original model as it
is, adapters can maximally preserve the knowledge learned
from the pre-training dataset. The pluggable adapters are
only used to encode task-speci�c representations in inter-
mediate layers of the shared model. While in �ne-tuning
scenario, the downstream tasks mostly share low-level fea-
ture representation with the pre-training task, it’s still ben-
e�cial to adjust the low and middle-level feature extractor.
Second, we observe that using adapters stabilizes the con-
vergence process, while �ne-tuning on the full model easily
goes to over�tting. Though the over�tting can be remedied
by carefully tuning the hyper-parameters, it also requires
non-trivial e�orts for each separated �ne-tuning task.

Network cost analysis The trainable parameter number
per adapter is 2<=+=+<. Clients only send those parameters
and last-layer classi�er parameters after on-device training
to the aggregator. Therefore the network transmission per
round is reduced to⇡⇥ (2<=+=+<)+=⇥#;014;B , where⇡ is
the total number of transformer blocks of the NLP model. As
shown in Table 1, compared to �ne-tuning the whole BERT
model, the network saving could be more than 99%.

Compute cost analysis The computation FLOPs of each
adapter in forward pass is 2 ⇥< ⇥ = ⇥ B4@;4= (normalized
to single data sample), where B4@;4= is the sequence length
(default 256 in BERT). This incurred overhead is trivial com-
pared to the original model complexity, e.g., less than 1%
on BERT. On the other hand, since all other parameters are
�xed during training, calculating the gradients of those �xed
weights can be avoided in backward propagation. Table 1
shows adapter brings around 40% training time reduction.

3.2 The Con�guration Challenge
A unique challenge raised by adapters is its sensitivity to the
con�gurations (explained below). Di�erent con�gurations re-
sult in a variety of convergence delays, up to 4.7⇥ gap. Choos-
ing an “optimal” con�guration towards fast convergence is
fundamentally challenging for the following reasons.
Large adapter con�guration space There are two critical
parameters of adapters to be determined: depth and width.
(1) Similar to the idea of layer freezing, adapters are not

Model Datasets
Optimal adapter con�guration (depth, width)

towards di�erent target accuracy

BERT

99% 95% 90% 80% 70%
20news (2,64) (2,32) (2,8) (2,8) (2,8)
agnews (3,16) (2,16) (2,8) (0,8) (0,8)
semeval (10,8) (6,8) (6,8) (2,8) (2,8)
ontonotes (12, 32) (12, 32) (10, 32) (0, 16) (0, 16)

Table 2: The optimal adapter con�guration (i.e., best
time-to-accuracy) for di�erent target accuracy (ratio
to the full convergence) and di�erent datasets.

necessarily inserted into each transformer block. Reducing
the number of adapters inserted into the top blocks (namely
tuning depth) can e�ectively reduce the network cost and on-
device training time. (2) Apart from the depth, the bottleneck
size (tuning width), i.e., the target projection dimension of
input needs to be carefully set as well. A small width might
not su�ce to encode the latent features for �ne-tuning tasks
and thus incurs high accuracy degradation. Yet, a too wide
adapter incurs high resource costs and therefore slows down
the training (i.e., increased time to accuracy). Overall, the
candidate depth spans from 0 to the number of transformer
layers even if we only consider inserting adapters at top
K consecutive layers, i.e., 12 in BERT, and the valid widths
range from 8 to 64 according to our experiments. That results
in hundreds of di�erent alternative con�gurations.
Another dimension of design space is that the con�gu-

ration can be switched across FL rounds during a training
session. §3.3 elaborates how such switching could be realized
with the knowledge learned by the old adapter con�guration
well preserved. But within a round, clients better use the
same con�guration to facilitate the model aggregation.
Decisions must be online Making a good decision o�ine
is di�cult without pre-knowledge about the training dataset
– a common setup in �ne-tuning scenarios. Even with the
same task, with the data distribution drifting over time, the
resultant model structure could di�er tremendously [33, 46].
No silver bullet con�guration A key observation we
made from extensive experiments is that there is no silver-
bullet con�guration for FedNLP tasks. Rather, the optimal con-
�guration depends on many factors: the speci�c NLP tasks,
the target accuracy, and client resources such as network
bandwidth and local execution speed. Even with a given
pre-trained model, there are many factors that a�ect which
con�guration shall be picked for the fastest convergence.
• Targeted accuracy. Within a training session, di�erent tar-
get accuracy favors di�erent con�gurations. As shown in
Figure 4 (a), to achieve the best accuracy possible, using an
adapter with depth 6 and width 16 is the best option. If 80%
relative accuracy is satisfactory, the adapter with depth 2
and width 8 is 2⇥ faster than the previous con�guration.
• Targeted NLP tasks. Across di�erent FedNLP tasks, the
optimal adapter con�guration varies. As shown in Figure
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Figure 4: Across di�erent target accuracy and FedNLP
tasks, the optimal adapter con�guration (depth,
width) varies. Tested with BERT and Jetson TX2.
4, using depth 2 and width 8 leads to fast convergence to
80% accuracy on 20NEWS [44]. However, on SEMEVAL [31],
the same con�guration results in 10% lower convergence
accuracy as compared to a more complex con�guration.
• Client resources. Local clients’ training speed and network
capacity also make a di�erence in adapter selection. This is
due to the disparate impacts of adapter depth/width on the
computation and communication reduction. For instance, a
larger tuning depth linearly ampli�es the communication
and computation cost, while a larger tuning width linearly
increases the communication cost but only adds negligible
computation cost according to the analysis in §3.1.
Why prior work is inadequate A closely related tech-
nique is neural architecture search (NAS) [22], which au-
tomatically looks for the best model structures but with a
totally di�erent design goal. Essentially, NAS sacri�ces the
time for good training accuracy, e.g., days to train a single
model in a centralized manner [83]. Instead, we pursue fast
time-to-accuracy, which is a more practical and a�ordable
setting for FedNLP developers.

3.3 The Online Con�gurator
We build a con�gurator that automatically adjusts the tuning
depth and width throughout a training session. The goal is
fast model convergence: achieving the target model accuracy
in the shortest time. Our key ideas are twofold:

• Progressive training. The �rst key idea is, to begin with
a shallow tuning con�guration (i.e., small depth and width)
to quickly boost the model accuracy. When it encounters
a “choke point” where more rounds of training no longer
provide enough accuracy pro�t, it “upgrades” to a more
complex con�guration, i.e., either deeper or wider.
Such upgrading mechanism is inspired by curriculum

learning [11], a learning strategy that trains a model be-
ginning from easier data samples to harder ones. Instead of
altering the training samples, we propose to alter the model
structure. In the beginning, a simpler adapter con�guration
can learn fast. This is because, by focusing on fewer com-
pact trainable parameters closer to the model output, the

model can rapidly learn the coarse-grained domain-speci�c
knowledge for the downstream tasks, such as new class la-
bels [65]. For simple downstream tasks, �ne-tuning with-
out re-learning deep features is enough to obtain satisfac-
tory model accuracy, e.g., depth 2 and width 64 for 20NEWS
dataset [44]. As the training proceeds, the model encounters
a “choke point” where the learning curve becomes gentle.
It demands deeper or wider adapters to learn new features.
The experiment results in Table 2 attests to our claim that a
higher target accuracy favors deeper and wider adapters.

• Identifying timing and direction to upgrade con�guration
through sideline trials. The learning curve is fundamentally
challenging to be estimated or predicted ahead of time. How
can a system possibly know the timing and towhich direction
to upgrade? In this work, we propose an intuitive approach
based on the concept of sideline trials. Its key idea is to ask
extra participant clients to attempt di�erent con�gurations,
and make a decision on whether and where to upgrade based
on the tested accuracy of di�erent directions. In federated
settings, such “extra clients” are common because the client-
level parallelism of existing FL algorithms is notoriously
low. That is, limited by the learning theory [39], a small
number of clients (i.e., 5 for 20NEWS) is enough to saturate
the convergence performance (both accuracy and speed) and
allocating more clients gives a negligible return. As will be
shown in §6.2, using those extra clients for trial is much
more bene�cial than asking them to participate in training.
Con�gurator algorithm indetail Algorithm 1 shows how
AdaFL progressively upgrades the con�guration of adapters
during a training session. Unlike the traditional FL scheme
where only one global model with a �xed structure under-
goes the training, in AdaFL the cloud aggregator periodically
dispatches the global model to three groups of clients: one is
to train with the current con�guration, one with a deeper
one and the other with a wider one (line 2–5, 23-26). After a
few rounds of parallel training (line 27, 19–22, 7–10, 18), the
aggregator server checks the accuracy of three global models
and re-starts the process on the model with the highest accu-
racy (line 12–15). Note that when the aggregator checks the
accuracy, the three global models undergo di�erent numbers
of global rounds because the per-round training time and
network time depend on the adapter con�guration (§3.1).
Therefore, the training speed of di�erent tuning depth/width
is considered in this mechanism. Except that, the clients and
aggregator follow the common FL process in local training
(line 19–22) and model aggregation (line 8–9).

As described in Algorithm 1 (line 23–27), the models dis-
patched to di�erent groups are with di�erent model con�g-
urations. Group )A80;0 inherits the learned adapter from the
previous winner track whereas)A80;1 and)A80;2 also inherit
the old adapters but add extra depth and width, respectively.
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Our design: trial-and-error
A. Progressive training; B. Identifying timing and direction to upgrade 
configuration through sideline trails.
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• ImplementaWon

• FedNLP[1]

• AdapterHub[2]

• Setups
• 3 devices
• 2 models (BERT & Dis\lBERT)
• 4 datasets

• Baselines
1. Vanilla Fine-Tuning (FT)
2. FineTuning-Quan\zed (FTQ)
3. LayerFreeze-Oracle (LF𝑜𝑟𝑎𝑐𝑙𝑒 )
4. LayerFreeze-Quan\zed-Oracle

(LFQ𝑜𝑟𝑎𝑐𝑙𝑒 )
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Device Processor Per-batch
Latency (s)

Jetson TX2 [1] 256-core NVIDIA Pascal™ GPU. 0.88
Jetson Nano [2] 128-core NVIDIA CUDA® GPU. 1.89

RPI 4B [3] Broadcom BCM2711B0 quad-core
A72 64-bit @ 1.5GHz CPU. 18.27

Table 3: Development boards used in experiments.

Computation and storage cost analysis Using activa-
tion caching reduces the computations by 3B?;8C/⇡ at the for-
ward pass. Yet it also takes extra storage, i.e., B4@;4= ⇥= ⇥⌫(
per batch, where = is the transformer’s internal feature size
(default 768), and ⌫( is the batch size (default 4). The cache is
reloaded from disk per minibatch, taking no more than tens
of ms on embedded �ash and incurs less than 2% overhead.
The total cache size is also proportional to the number of
batches samples per client (typically dozens). Assuming 100
training samples, the storage cost is calculated to be around
100MB. Such cost is no more than 1% of the storage of a
modern mobile/embedded device, e.g., tens to hundreds of
GBs. The cache can be cleared once the FL process �nishes.

5 IMPLEMENTATION AND SETUPS
Wehave fully implemented the AdaFL prototype atop FedNLP
[50] (the SOTA framework to evaluate FL methods on NLP
tasks) and Adapterhub [58] (a library that facilitates the
integration of pre-trained adapters for di�erent tasks). As
prior work [13], we adopt the parameter server (PS) architec-
ture among the clients and central server. At the server side,
once job is submitted by the developer, the server initial-
izes the pluggable meta adapter to be trained (through the
API of Adapterhub) into the pre-trained model. The server
also splits the initialized meta adapter into three branches:
normal, wider and deeper. The wider branch will stack a
few meta adapters parallel to expand the bottleneck size of
adapter in single layer. The deeper branch will insert the
meta adapter into one more deeper layer. A client selector
will sample 3N clients from available devices and shu�e
them into 3 groups. We now employ a random client selec-
tor (default in most FL literature) but more advanced selec-
tion strategies [43, 46–48, 55, 81, 86, 93] can be plugged into
our implementation as well. Then, the server sends three
branches of adapters to three groups separately via MPI (in
standalone mode) or WLAN/Cellular (in distributed mode).
Once receiving the adapters, the clients insert the adapter
into their local pre-trained model. They �ne-tune the model
with their own private data. The trained adapters will be col-
lected in the central server and aggregated through FedAvg
algorithm [54]. All clients run in synchronized mode [32].

Metrics We mainly report the time-to-accuracy metric.
We divide the dataset of each device for training (80%) and

Task Dataset # of Clients Labels Non-IID Samples

TC 20NEWS [44] 100 20 / 18.8k
TC AGNEWS [92] 1,000 4 a=10 127.6k
TC SEMEVAL [31] 100 19 a=100 10.7k
ST ONTONOTES [60] 600 37 a=10 5.5k

Table 4: Datasets and settings used in experiments for
Text Classi�cation and Sequence Tagging. “a” is a pa-
rameter that controls the datasets’ non-IID level [50].

testing (20%). For clarity, we pay attention to a few typi-
cal accuracy targets, e.g., 99%, 95%, 90% of the full conver-
gence accuracy achievable by the baseline that �ne-tunes the
whole model. We refer to those accuracy numbers as relative
target accuracy. For example, the 100% relative target accu-
racy of BERT is 0.8 (accuracy) for 20NEWS; 0.9 (accuracy) for
AGNews; 0.8 (accuracy) for SEMEVAL; and 0.75 (token-F1) for
ONTONOTES. We also report the resource cost in an FL process,
including the total energy consumption on data transmitting
and training computation on each client; the total amount
of network tra�c; and the peak memory usage.

HardwareAs prior FL literature [43, 46, 48, 50, 70], our ex-
periments are carried out in an emulation manner on a GPU
server with 8x NVIDIA A40. The on-device training time is
obtained on 3 development boards with similar hardware
capacity to mainstream mobile devices, i.e., Jetson TX2 [1],
Jetson Nano [2], and Raspberry Pi 4B [3]. The numbers are
then plugged into the emulation framework to calculate the
elapsed time. The default network bandwidth between clients
and server is set to 1MB/s, a typical setting for mobile and
IoT devices [4, 25]. Note that while home/o�ce WiFi down-
link could be faster, the uplink bandwidth is often bound
by the broadband backbone [37]. In §6.1, we will also quan-
tify the performance of AdaFL under various hardware and
bandwidth settings (100KB/s–10MB/s).

Models We use two representative models for FedNLP
tasks: BERT [21] (default) and its varient DistilBERT [67].
BERT and DistilBERT are composed of 12 and 6 transformer
blocks, respectively. DistilBERT leverages knowledge distil-
lation during the pre-training phase and reduces the size of a
BERT model by 40%, while retaining 97% of its language un-
derstanding capabilities and being 60% faster. We use BERT
for most of our experiments, as all BERT-based variants de-
rive from it. The pre-trained weights of both models are
downloaded directly from Hugging Face [84].

Tasks and datasets We evaluate AdaFL on 4 classic NLP
downstream datasets as shown in Table 4. We follow the
approach in [50] to build the non-IID datasets. (1) 20NEWS
(IID) [44] dataset is a collection of approximately 20,000 news-
group documents. (2) AGNEWS (non-IID) [92] is a collection
of 127.6K news articles gathered from more than 2,000 news
sources. (3) SEMEVAL (non-IID) [31] is a relation classi�ca-
tion datasets which assigns prede�ned relation labels to the
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Jetson Nano [2] 128-core NVIDIA CUDA® GPU. 1.89

RPI 4B [3] Broadcom BCM2711B0 quad-core
A72 64-bit @ 1.5GHz CPU. 18.27

Table 3: Development boards used in experiments.

Computation and storage cost analysis Using activa-
tion caching reduces the computations by 3B?;8C/⇡ at the for-
ward pass. Yet it also takes extra storage, i.e., B4@;4= ⇥= ⇥⌫(
per batch, where = is the transformer’s internal feature size
(default 768), and ⌫( is the batch size (default 4). The cache is
reloaded from disk per minibatch, taking no more than tens
of ms on embedded �ash and incurs less than 2% overhead.
The total cache size is also proportional to the number of
batches samples per client (typically dozens). Assuming 100
training samples, the storage cost is calculated to be around
100MB. Such cost is no more than 1% of the storage of a
modern mobile/embedded device, e.g., tens to hundreds of
GBs. The cache can be cleared once the FL process �nishes.

5 IMPLEMENTATION AND SETUPS
Wehave fully implemented the AdaFL prototype atop FedNLP
[50] (the SOTA framework to evaluate FL methods on NLP
tasks) and Adapterhub [58] (a library that facilitates the
integration of pre-trained adapters for di�erent tasks). As
prior work [13], we adopt the parameter server (PS) architec-
ture among the clients and central server. At the server side,
once job is submitted by the developer, the server initial-
izes the pluggable meta adapter to be trained (through the
API of Adapterhub) into the pre-trained model. The server
also splits the initialized meta adapter into three branches:
normal, wider and deeper. The wider branch will stack a
few meta adapters parallel to expand the bottleneck size of
adapter in single layer. The deeper branch will insert the
meta adapter into one more deeper layer. A client selector
will sample 3N clients from available devices and shu�e
them into 3 groups. We now employ a random client selec-
tor (default in most FL literature) but more advanced selec-
tion strategies [43, 46–48, 55, 81, 86, 93] can be plugged into
our implementation as well. Then, the server sends three
branches of adapters to three groups separately via MPI (in
standalone mode) or WLAN/Cellular (in distributed mode).
Once receiving the adapters, the clients insert the adapter
into their local pre-trained model. They �ne-tune the model
with their own private data. The trained adapters will be col-
lected in the central server and aggregated through FedAvg
algorithm [54]. All clients run in synchronized mode [32].

Metrics We mainly report the time-to-accuracy metric.
We divide the dataset of each device for training (80%) and

Task Dataset # of Clients Labels Non-IID Samples

TC 20NEWS [44] 100 20 / 18.8k
TC AGNEWS [92] 1,000 4 a=10 127.6k
TC SEMEVAL [31] 100 19 a=100 10.7k
ST ONTONOTES [60] 600 37 a=10 5.5k

Table 4: Datasets and settings used in experiments for
Text Classi�cation and Sequence Tagging. “a” is a pa-
rameter that controls the datasets’ non-IID level [50].

testing (20%). For clarity, we pay attention to a few typi-
cal accuracy targets, e.g., 99%, 95%, 90% of the full conver-
gence accuracy achievable by the baseline that �ne-tunes the
whole model. We refer to those accuracy numbers as relative
target accuracy. For example, the 100% relative target accu-
racy of BERT is 0.8 (accuracy) for 20NEWS; 0.9 (accuracy) for
AGNews; 0.8 (accuracy) for SEMEVAL; and 0.75 (token-F1) for
ONTONOTES. We also report the resource cost in an FL process,
including the total energy consumption on data transmitting
and training computation on each client; the total amount
of network tra�c; and the peak memory usage.

HardwareAs prior FL literature [43, 46, 48, 50, 70], our ex-
periments are carried out in an emulation manner on a GPU
server with 8x NVIDIA A40. The on-device training time is
obtained on 3 development boards with similar hardware
capacity to mainstream mobile devices, i.e., Jetson TX2 [1],
Jetson Nano [2], and Raspberry Pi 4B [3]. The numbers are
then plugged into the emulation framework to calculate the
elapsed time. The default network bandwidth between clients
and server is set to 1MB/s, a typical setting for mobile and
IoT devices [4, 25]. Note that while home/o�ce WiFi down-
link could be faster, the uplink bandwidth is often bound
by the broadband backbone [37]. In §6.1, we will also quan-
tify the performance of AdaFL under various hardware and
bandwidth settings (100KB/s–10MB/s).

Models We use two representative models for FedNLP
tasks: BERT [21] (default) and its varient DistilBERT [67].
BERT and DistilBERT are composed of 12 and 6 transformer
blocks, respectively. DistilBERT leverages knowledge distil-
lation during the pre-training phase and reduces the size of a
BERT model by 40%, while retaining 97% of its language un-
derstanding capabilities and being 60% faster. We use BERT
for most of our experiments, as all BERT-based variants de-
rive from it. The pre-trained weights of both models are
downloaded directly from Hugging Face [84].

Tasks and datasets We evaluate AdaFL on 4 classic NLP
downstream datasets as shown in Table 4. We follow the
approach in [50] to build the non-IID datasets. (1) 20NEWS
(IID) [44] dataset is a collection of approximately 20,000 news-
group documents. (2) AGNEWS (non-IID) [92] is a collection
of 127.6K news articles gathered from more than 2,000 news
sources. (3) SEMEVAL (non-IID) [31] is a relation classi�ca-
tion datasets which assigns prede�ned relation labels to the
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Highlighted results
• AdaFL reduces model convergence delays significantly.
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Figure 5: Time-to-accuracy throughout a training session. AdaFL speeds up model convergence signi�cantly.
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Figure 6: AdaFL outperforms baselines under all net-
work bandwidths with 99% target accuracy.

is common [86]. AdaFL enables a stable �ne-tuning process
and paves the way for the fundamental solution to stragglers
or other possible communication problems [64, 81] that will
drag the NLP �ne-tuning slow.

AdaFL outperforms baselines on various client hard-
ware. AdaFL also consistently outperforms other baselines
with di�erent device capacity as shown in Figure 7. On GPU-
powered high-end embedded devices like Jetson TX2 and
Jetson Nano, AdaFL reaches the 99% relative target accuracy
up tp 32.8⇥ and 79.2⇥ faster than the VanilaFT on 20NEWS

and SEMEVAL, respectively. On a much wimpy device RPI 4B,
the speedup degrades to 3.8⇥ and 7.0⇥, respectively. This is

(a) 20NEWS

(b) SEMEVAL
Figure 7: Convergence delays with a variety of client
hardware. Training targets 99% relative target accu-
racy. “Heterogeneous” means the device capacity is
uniformly distributed between three boards.

because AdaFL reduces two orders of magnitude in communi-
cation cost, but only one order of magnitude in computation
cost. Nevertheless, AdaFL can still bring remarkable improve-
ment on the wimpy devices. For example, on dataset 20NEWS,
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Highlighted results
• AdaFL outperforms baselines in various network environments and 

on various client hardware.
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Outline – (Federated) Training on Devices

CCFSys南昌-20230804

[MobiCom’22] Mandheling

[MobiSys’22] Melo

Training 
on edge

R Simulation integrity

Fine-tuning 
LLM on edge

[MobiCom’23] FedAdapter

[MobiCom’23] FedFSL

[INFOCOM’23] FLScheduler

[WWW’21] FLBench

[Going-on] ForwardFL

R Time & energy

R memory

R privacy

R Network & speed

R Label scarcity

R Time & energy & scalability & etc..
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Time to retire backprop. in FedLLM
• Those optimizations are good, but NOT good enough to bring FedLLM

to real world

CCFSys南昌-20230804 36Mengwei Xu (徐梦炜) @ CS Dept of BUPT

Huge Memory Footprint

NPU-unfriendly Operators

Low Client Scalability



Forward gradient: guess-then-verify
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Forward gradient: guess-then-verify
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Okay, forward gradient can
be traced back to 1980s
(also called weight
perturbation methods), but
it never goes real?
- Because of its increased
demand of computing/data with
the trainable parameter size



Some early results
• Delivers about 2 orders of magnitudes speedup

- By leveraging NPU and more clients

• Enables federated learning of LLaMA-7B over real smartphones
- For the very first time
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A few thoughts on
mobile/edge LLM..
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• Since iPhone 2007..
• The next long-term goal of mobile research: ChatGPT on smartphone
• Takes ~5 years

o maybe LLaMA-2-65B in 1 year first?
• Takes collective efforts from hardware/architecture, mobile system, ML
algorithm communities

• Old stories: data privacy, low delay, low power consumption, etc..
• New techniques: memory-bounded LLMs, foundation model +

adapters, generative and augoregressive, MoE, etc..

The Golden Era for Mobile/Edge Research
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• For LLMs deployed on cloud –
- How to protect data privacy?

• For LLMs deployed on devices –
- How to efficiently scale the model size?

• A hybrid mode, e.g., a cascade –
- How to split the workloads?

The Golden Era for Mobile/Edge Research
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• Users interact with LLM, while LLM manages/uNlizes old-Nme
apps/OS and hardware

LLM is the new Operating System

HW

OS

APPs

User Interactions

HW

OS

APPs

LLMs

User Interactions

ɑ β

ɑ+β -> 0
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• Users interact with LLM, while LLM manages/utilizes old-time
apps/OS and hardware

• LLaMA wants to be (or already is) the new Android?
- Think about its ecosystem: LLaMA.cpp, various LoRa adapters..

LLM is the new Operating System
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• Another way to go: build systems for LLM, or build systems with LLM
• When a software layer is finalized, most research/industry

opportunities go above
• Very very few system researchers rebuild OS now
• Very very few network researchers rebuild network stacks now

Exploration atop or below LLM?

LLMs

Auto-GPT, Agent-GPT, babyAGI, HuggingGPT,
Web LLM, CAMEL, GPTRGB, PandaGPT..

GPTQ, Mixture-of-Experts, [EuroSys’23] Tabi,
[MLSys’23] Flex, [OSDI’22] Orca, [ATC’22] PetS..

Easier to handle, potentially high impacts,
but more crowded and competitive

More fundamental, potentially extremely-high
impacts but technically/financially challenging
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Takeaways
• Machine (deep) learning is happening everywhere at anytime

• The system support for edge intelligence is still at very preliminary
stage – so many open problems!

• LLMs bring new challenges and opportunities

• Open to discussion and collaboration!
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