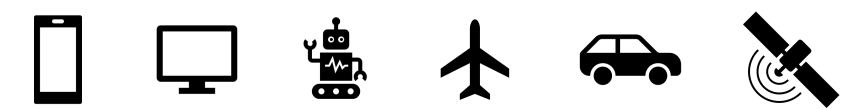


# LLM Making Mobile Devices Smart at Next Level

### Mengwei Xu (徐梦炜) Beijing University of Posts and Telecommunications https://xumengwei.github.io



Mengwei Xu @ BUPT

## Aren't they smart.. Already?

#### • Yes, to a certain extent.



DNN-embedded mobile apps

- Increased by almost [0x (2018 to 2021)<sup>[1,2]</sup>
- Downloaded billions of times in one year
- Include almost every high-popularity app
- Up to 200+ DNNs in a single app<sup>[3]</sup>

Mengwei Xu, et al. "A First Look at Deep Learning Apps on Smartphones". In the Web Conference (WWW) 2019
Mario Almeida, et al. "Smart at what cost? Characterising Mobile Deep Neural Networks in the wild". In IMC 2021.
Through offline communication with application developers.

## Aren't they smart.. Already?

#### • Yes, to a certain extent.

• Yet, not even close to our expectation.

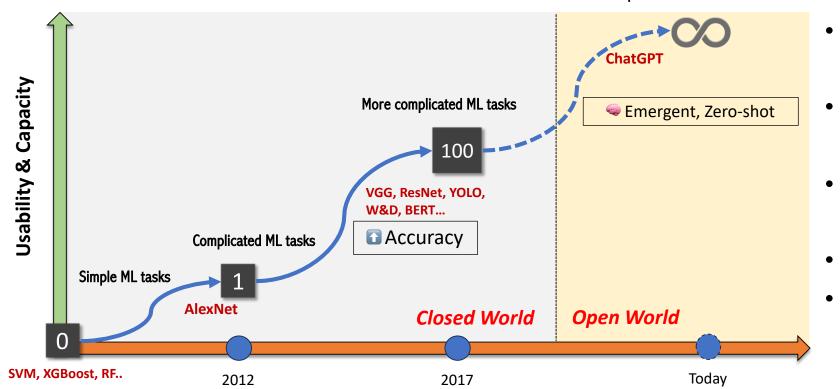


We expect a smart device to

- Understand open-vocabulary human language
- Operate/control itself accurately as humans do
- Action to human tasks in endto-end manner

# (Multimodal) LLM is an opportunity

• To bring mobile devices the "next-level" intelligence

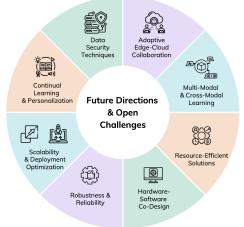


Unseen complicated ML tasks

- Comprehend human language
- Zero-shot & in-context learning
- Multimodal alignment and input/output
- Reasoning & Planning
- Long context

### **On-device LLM is crucial**

- On-device LLMs handle language tasks in a way that is ..
  - ✓ **cost-efficient** (important, obviously)
  - ✓ more available (even w/o network)
  - ✓ faster (not always)

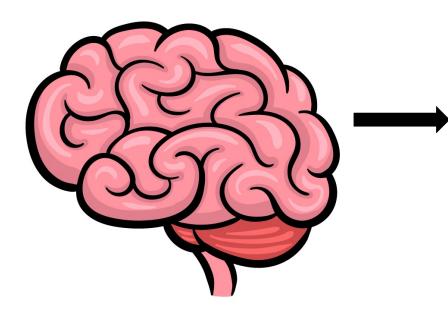


- Privacy-preserving (very important, LLMs can leverage almost every bits of local data)
- LLMs on devices does not obviate mega-scale LLMs on clouds!
  - Creating music/poetry, solving math problems, etc.

[1] Jiajun Xu, et al. "On-Device Language Models: A Comprehensive Review". In preprint'24.

### **On-device LLM is crucial**

• We already have a mobile device that can function with high intelligence!



A *mobile device* that can comprehend, reason, and plan without a cloud!

### The fundamental differences for integrating LLM into mobile devices (compared to traditional DNN-powered apps)

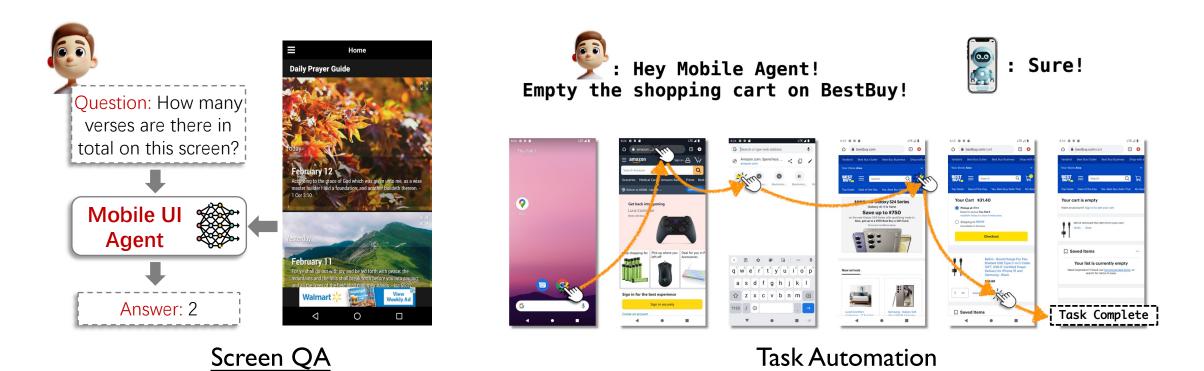
Workload: Agent

OS: LLM-native

Hardware: **DSA** 

### Fundamental diffs in LLM Era<sup>(1/3)</sup>

• An all-in-one killer app: personal agent (assistant)



Freeing us from tedious work; making electronic devices benefit more people

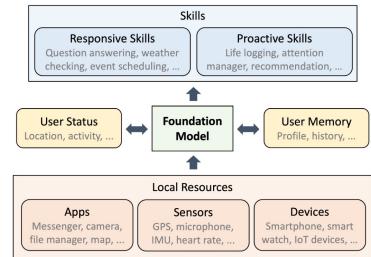
Mengwei Xu @ BUPT

### Fundamental diffs in LLM Era<sup>(1/3)</sup>

• An all-in-one killer app: personal agent (assistant)

#### With following unique and exciting features:

- I. End-to-end: instruction in, response out
- 2. Context-aware, personalized, and stateful
  - Long prompt (prefill time often dominates)
  - Can leverage almost every bit of data. Privacy!
- 3. No longer event-driven (only), but also proactively sense and plan when device is not in use



[1] Yuanchun Li, et al. "Personal LLM Agents: Insights and Survey about the Capability, Efficiency, and Security". In preprint'24.

### Fundamental diffs in LLM Era<sup>(1/3)</sup>

### • An all-in-one killer app: personal agent (assistant)

|                                     | 1980s                                                   | 0s 2000s 2010s                                     |                                                        | 2020s                                |      | 2016~2017                        | 2018~2020                                              | 2021~2022                      | 2023                         | 2024~                         |
|-------------------------------------|---------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------|--------------------------------------|------|----------------------------------|--------------------------------------------------------|--------------------------------|------------------------------|-------------------------------|
|                                     | PC Era                                                  | Internet Era                                       | Mobile Era                                             | Al Era                               |      | 开启Mobile Al时代                    | 个人终端AI化                                                | 全场景设备AI化                       | AI大模型赋能终端                    | 全新原生智能OS                      |
| Software<br>Paradigm                | Computer Programs                                       | Websites                                           | Smartphone Apps                                        | Personal LLM Agents                  |      | 搭載神经网络处理单元<br>AI智慧影像<br>AI翻译     | 智慧语音<br>智慧识屏<br>智慧视觉                                   | 智能座舱<br>语音助手覆盖全场景设备<br>小艺建议    | 接入大模型的全新小艺<br>高阶智能驾驶<br>智慧搜图 | 统一AI系统底座<br>小艺超级智能体<br>原生智能应用 |
| Key E<br>Characteristic<br>Examples | Efficient GUI-based<br>user interaction<br>Word, Excel, | Convenient<br>information access<br>Google, Yahoo, | Always-connected<br>personalized services<br>WeChat, U | Ubiquitous intelligent<br>automation |      | AI島銀识物<br>AI自拍<br>AI高倍变焦<br>AI引擎 | HiAI能力开放<br>情景智能<br>AI隔空操控<br>AI智感支付<br>AI信息保护<br>AI字幕 | 智慧屏智能座船可视可说<br>多设备协同唤醒         | 文档编要<br>照片AI云增强              | 全面开放AI生态                      |
|                                     | 5 <b>多模态模型 Ferr</b>                                     |                                                    | L UI 任务超越 GP                                           | Hype or<br><sup>⊤_4∨</sup>           |      | ·剑,国产首                           | 款AI Ager                                               | nt手机跑赢苹                        | 『果! 手机学                      | ዸ会「自动驾                        |
|                                     |                                                         |                                                    | 让日常生活开持                                                | ŧ                                    | 让AI儋 | 象人类一                             | 样操作                                                    | 善手机,¹                          | 华为也做                         | 如出来了                          |
| ±± \#38 \                           |                                                         | 7人人口知此法                                            | ·····································                  | 57                                   | 机器之心 | 2024年1                           | 0月25日                                                  | 17:29 北京                       |                              |                               |
|                                     | gicOS 9.0米」<br>注AI智能体的 机器之                              |                                                    | <b>、AI手机方向</b> 妥<br>3 20:21 北京                         | εſ                                   |      |                                  |                                                        | 、 <b>都能造,得</b><br>26日 12:19 北京 |                              | mniParser                     |

[1] Yuanchun Li, et al. "Personal LLM Agents: Insights and Survey about the Capability, Efficiency, and Security". In preprint'24. [2] 华为. "AI终端白皮书: AI与人协作、服务于人". 2024.

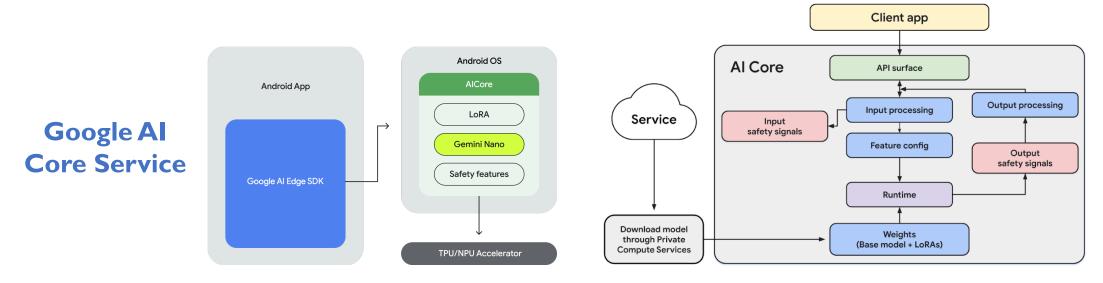
2024/11/16

Mengwei Xu @ BUPT

### Fundamental diffs in LLM Era<sup>(2/3)</sup>

• LLM integrated into OS as a system service (LLMaaS)

- -Scales to infinite number of tasks
- -Hardware-design-friendly
- -OS gains full visibility into LLM requests



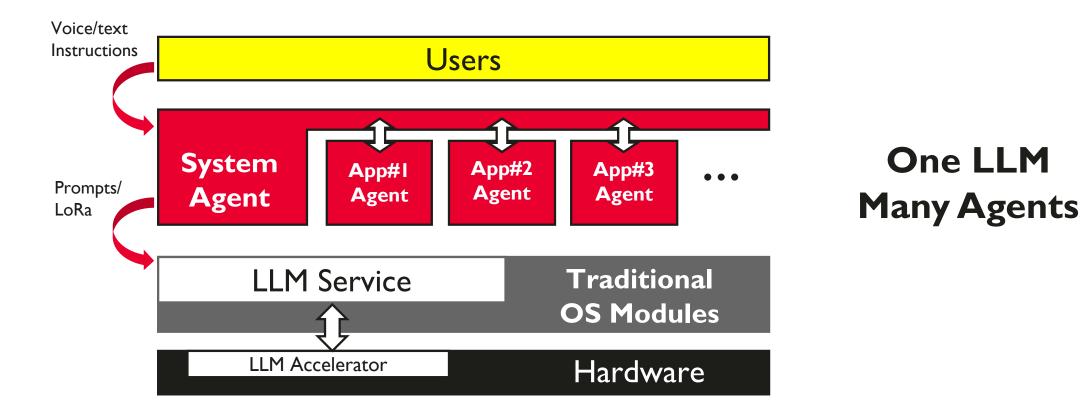
[1] Source: https://developer.android.com/ai/gemini-nano

### Fundamental diffs in LLM Era<sup>(2/3)</sup>

- LLM integrated into OS as a system service (LLMaaS)
  - -Scales to infinite number of tasks
  - -Hardware-design-friendly
  - -OS gains full visibility into LLM requests
- Opening new research opportunities and challenges
  - Efficiency: how to schedule, batch, and cache-reuse system-wise LLM requests? How to manage the LLM context states across apps?
  - Security: how to protect app-owned LoRa? How to isolate cross-app requests?
  - Usability: how to upgrade LLM? How to design LLMaaS interface?
  - Etc..

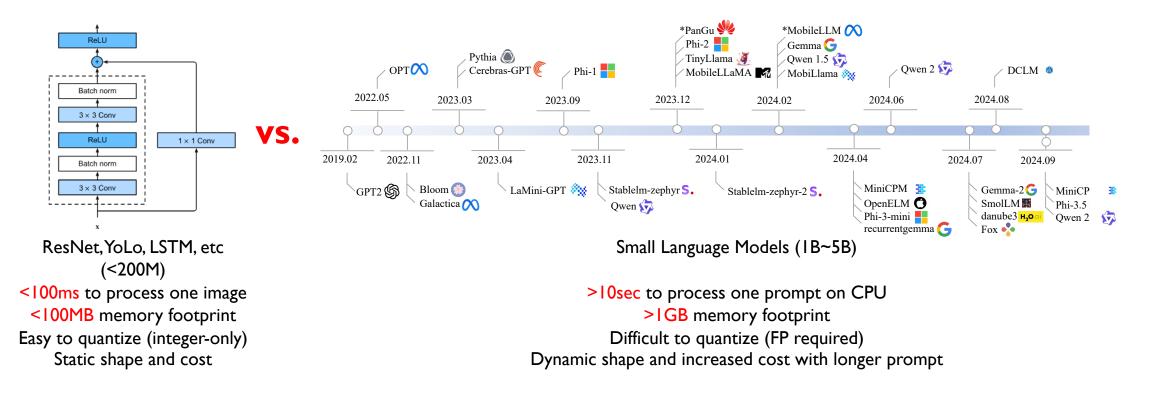
### Fundamental diffs in LLM Era<sup>(2/3)</sup>

• LLM integrated into OS as a system service (LLMaaS)



### Fundamental diffs in LLM Era<sup>(3/3)</sup>

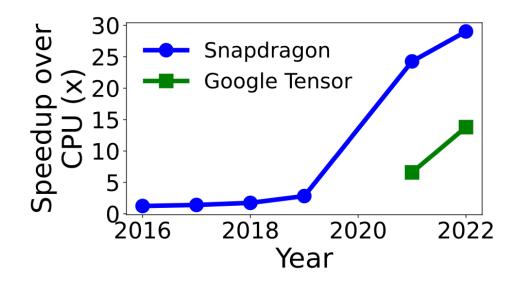
• On-device **resource scarcity** further exacerbated.



[1] Zhenyan Lu, et al. "Small Language Models: Survey, Measurements, and Insights". In preprint'24.

### Fundamental diffs in LLM Era<sup>(3/3)</sup>

- On-device resource scarcity further exacerbated.
- DSA (NPU) is the answer to practical on-device LLM.

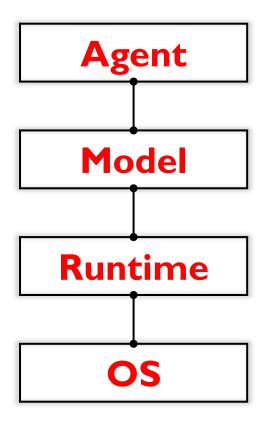


- The gap between CPU/GPU and NPU increases over time
- Moore's law still stands for NPU

[1] Jinliang Yuan. "Mobile Foundation Model as Firmware". In MobiCom'24.

### Call for full-stack design and opts

### • Our response: **agent-model-runtime-OS** co-design



Device control and GUI agents **testbed** <sup>[LlamaTouch, UIST'24]</sup>, **datasets** <sup>[PhoneLM, preprint'24]</sup>, and **privacy enhancements** <sup>[SILENCE, NeurIPS'24]</sup>

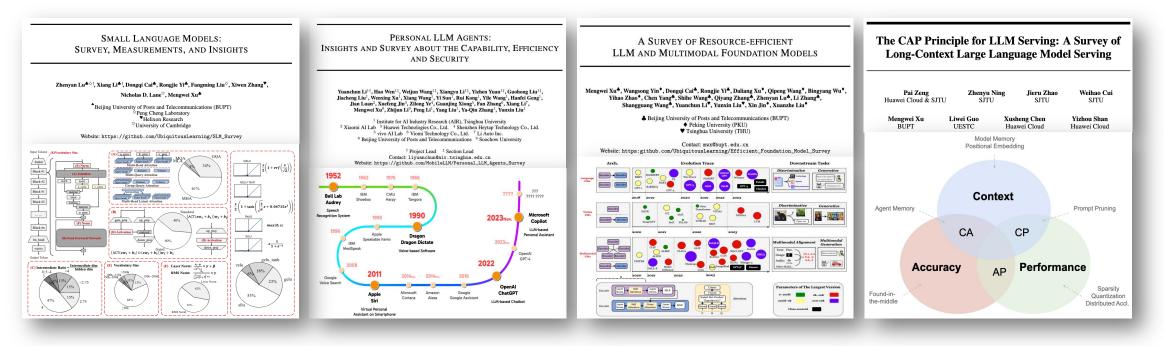
A training-from-scratch, fully-reproducible **SLM family** [PhoneLM, preprint'24], Any-to-any modality **mobile foundation model** [M4, MobiCom'24], and **Federated LLM** techniques [FwdLLM, ATC'24][AdaFL, MobiCom'23] [FeS, MobiCom'23]

Acceleration through **NPU** <sup>[llm.npu, ASPLOS'25]</sup>, **SpecDecoding** <sup>[LLMCad, preprint'23]</sup>, **Sparsity** <sup>[EdgeMoE, preprint'23]</sup>, **Early Exiting** <sup>[Recall, preprint'24]</sup>, etc

LLMaaS Context Management [LLMS, preprint'24] and QoS [ELMS, preprint'24]

## Call for full-stack design and opts

### • Our response: agent-model-runtime-OS co-design



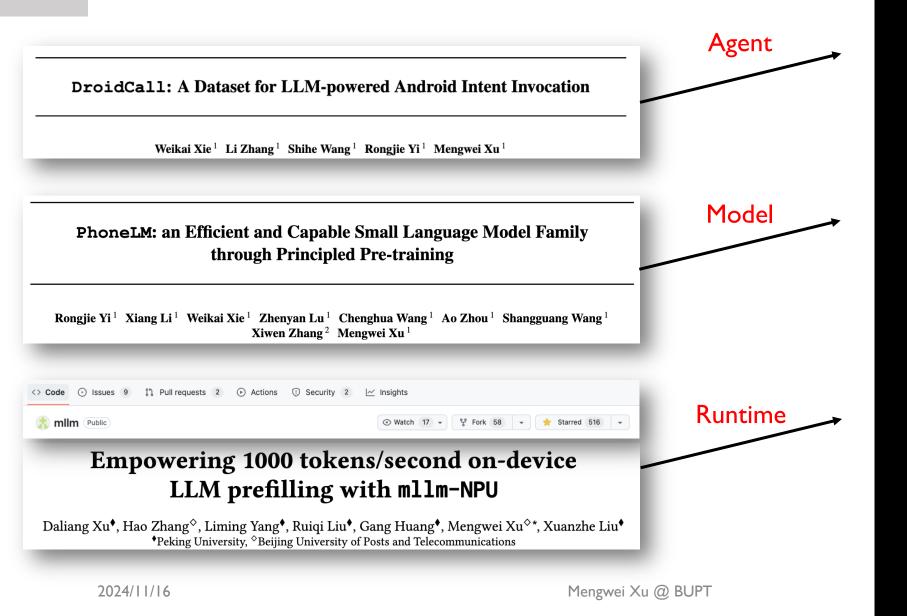
[1] "Small Language Models: Survey, Measurements, and Insights", Zhenyan Lu, et al.

[2] "Personal LLM Agents: Insights and Survey about the Capability, Efficiency and Security", Yuanchun Li, et al.

[3] "A Survey of Resource-efficient LLM and Multimodal Foundation Models", Mengwei Xu, et al.

[4] "The CAP Principle for LLM Serving: A Survey of Long-Context Large Language Model Serving", Pai Zeng, et al.

### An e2e demo

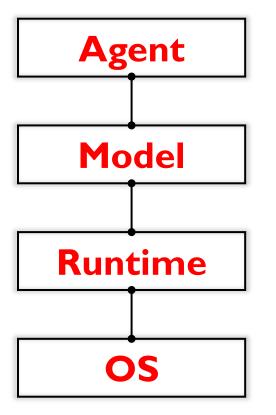


A Demo of using PhoneLM-1.5B-cal and mllm to control Redmi K7O Pro (no cloud involved)

> https://github.com/ UbiquitoueLearning/mlli

### Call for full-stack design and opts

### • Our response: **agent-model-runtime-OS** co-design



Device control and GUI agents testbed <sup>[LlamaTouch, UIST'24]</sup>, datasets <sup>[PhoneLM, preprint'24]</sup>[DroidCall, preprint'24], and privacy enhancements<sup>[SILENCE, NeurIPS'24]</sup>

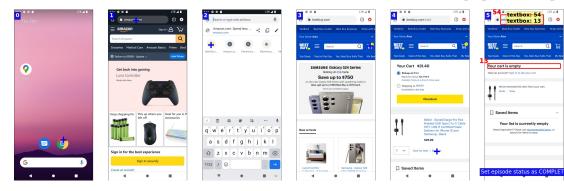
A training-from-scratch, fully-reproducible **SLM family** <sup>[PhoneLM, preprint'24]</sup>, Any-to-any modality **mobile foundation model** <sup>[M4, MobiCom'24]</sup>, and **Federated LLM** techniques <sup>[FwdLLM, ATC'24][AdaFL, MobiCom'23]</sup> <sup>[FeS, MobiCom'23]</sup>

Acceleration through NPU <sup>[llm.npu, ASPLOS'25]</sup>, SpecDecoding <sup>[LLMCad, preprint'23]</sup>, Sparsity <sup>[EdgeMoE, preprint'23]</sup>, Early Exiting <sup>[Recall, preprint'24]</sup>, etc

LLMaaS Context Management [LLMS, preprint'24] and QoS [ELMS, preprint'24]

# Prefilling stage is the bottleneck

• On-device LLM tasks demand long prompt (context)



• Mobile LLMs can support long context

| Model          | Max Context | Year    | Model          | Max Context | Year    |
|----------------|-------------|---------|----------------|-------------|---------|
| Opt-1.3B       | 2K          | 2022.5  | TinyLLaMA-1.1B | 2K          | 2023.9  |
| StableLLM-3B   | 4K          | 2023.10 | phi-2-2.7B     | 2K          | 2023.12 |
| Gemma-2B       | 8K          | 2024.2  | Qwen1.5-1.8B   | 32K         | 2024.2  |
| Phi3-mini-3.8B | 128K        | 2024.5  | Qwen2-1.5B     | 32K         | 2024.6  |

From 2K to 128K

Each UI is hundreds to thousands of tokens

(either as image or view hierarchy)

• Mobile Processors (CPU/GPU) do not support high parallelism as A100

#### So, prefilling dominates the end-to-end LLM inference delay (>90% in most cases)

#### Almost every smartphone has NPU

| Vendor   | Latest NPU            | SDK              | Open | Group | INT8 Perf. |
|----------|-----------------------|------------------|------|-------|------------|
| Qualcomm | Hexagon NPU [15]      | QNN [23]         | ×    | ×     | 73 TOPS    |
| Google   | Edge TPU [17]         | Edge TPU API [7] | ×    | ×     | 4 TOPS     |
| MediaTek | MediaTek APU 790 [11] | NeuroPilot [13]  | ×    | N/A   | 60 TOPS    |
| Huawei   | Ascend NPU [6]        | HiAI [9]         | ×    | ×     | 16 TOPS    |

Up to 73 TOPS, way more

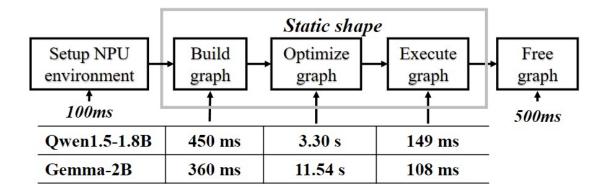
powerful than CPU/GPU

"Open": Open-source?; "Group": Support per-group quantization MatMul? "N/A": No available documents for public; "INT8 Perf.": Int8 performance.

- Almost every smartphone has NPU
- But, none of existing LLM systems support mobile NPU.

#### I) NPU supports only static shape

- 2) NPU is good at Integer Ops (INT8), but bad at FP Ops
- 3) NPU vendor libs do not support group-level quantization



Re-building NPU execution graph is too costly!

- Almost every smartphone has NPU
- But, none of existing LLM systems support mobile NPU.

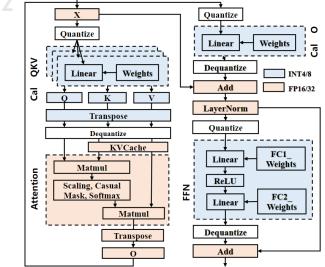
#### ) NPU supports only static shape

- 2) NPU is good at Integer Ops (INT8), but bad at FP Ops
- 3) NPU vendor libs do not support group-level quantiz

| Quantization     | Туре       | Acc. | Cal QKV | Atten. | Cal O | Norm. | FFN  |
|------------------|------------|------|---------|--------|-------|-------|------|
| K-Quant [54]     | Per-Group  | Low  | INT8    | FP16   | INT8  | FP16  | INT8 |
| GPTQ [33]        | Per-Group  | High | FP16    | FP16   | FP16  | FP16  | FP16 |
| AWQ [52]         | Per-Group  | High | FP16    | FP16   | FP16  | FP16  | FP16 |
| SmoothQuant [77] | Per-tensor | Low  | INT8    | FP16   | INT8  | FP16  | INT8 |

"Atten.": Attention; "Norm.": Normalization.

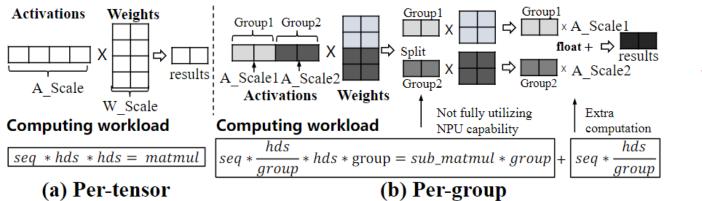
#### FP operations cannot be eliminated!



- Almost every smartphone has NPU
- But, none of existing LLM systems support mobile NPU.

NPU supports only static shape
NPU is good at Integer Ops (INT8), but bad at FP Ops

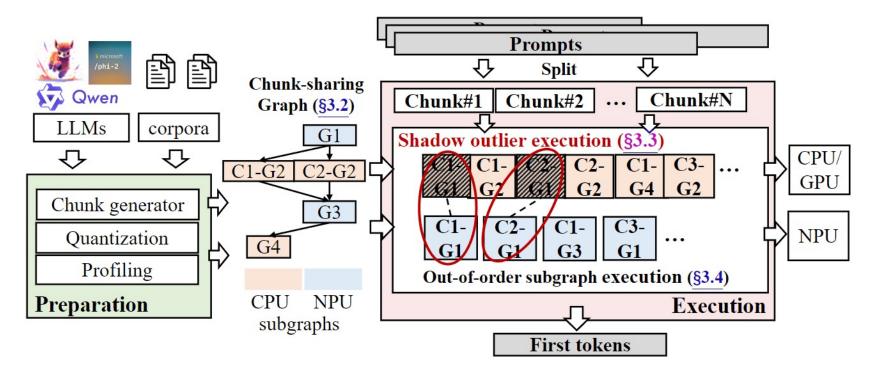
3) NPU vendor libs do not support group-level quantization



Why group-level quantization,

not tensor-level? Outliers!

 Overall idea: split the prompts to fixed-sized chunk; offloading FP Ops and outlier execution to CPU/GPU; properly scheduling them across NPU and CPU/GPU.



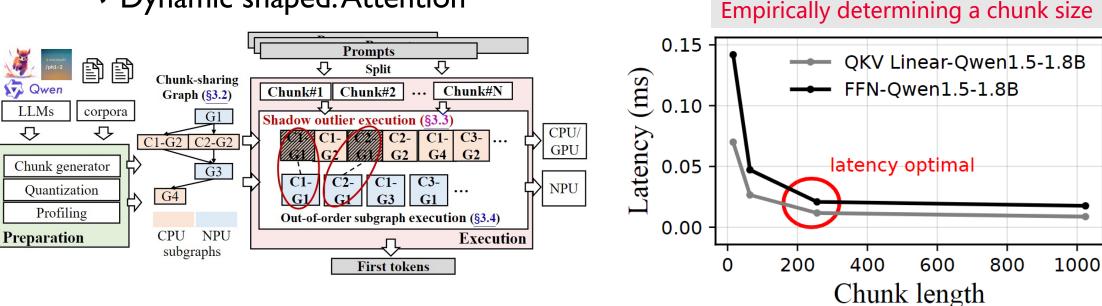
• Key Technique #1: chunk-sharing graph execution

- Challenge: too many subgraphs

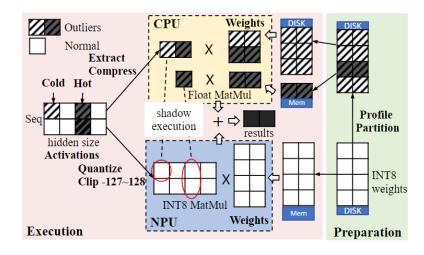
-Solution: shared static-shaped Ops across chunks; 75% memory saved.

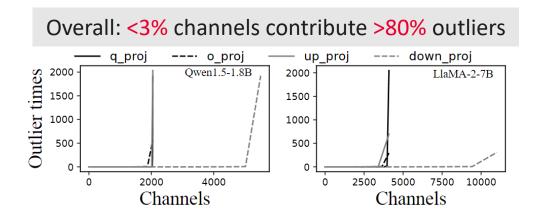
✓ Static shaped: Linear, LayerNorm, etc

✓ Dynamic shaped: Attention



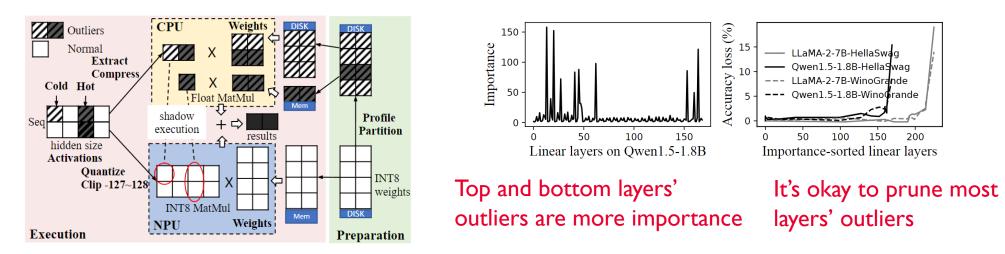
- Key Technique #2: shadow outlier execution
  - Challenge(1/2): weights memory doubled since NPU and CPU do not share memory space
  - -Solution: keep only hot weights channels (needed by outlier execution) in CPU memory space, and retrieve others from disk on demand.



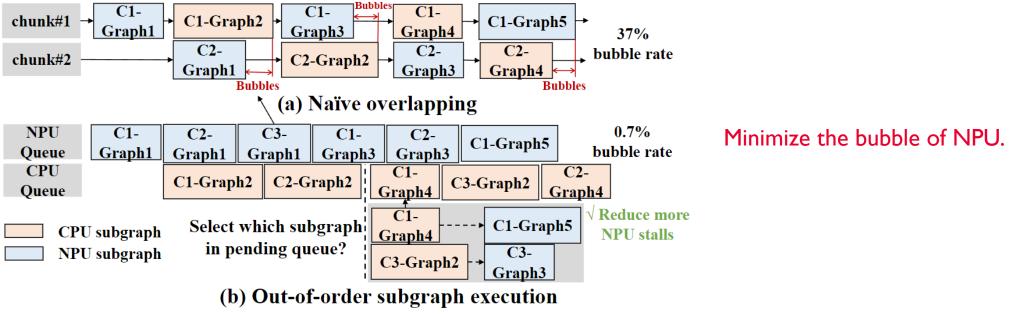


- Key Technique #2: shadow outlier execution
  - Challenge(2/2): while outlier exec. is fast, its synchronization with CPU incurs non-trivial overhead
  - -Solution: outlier pruning.

✓>85% layers' outliers can be pruned without compromising accuracy

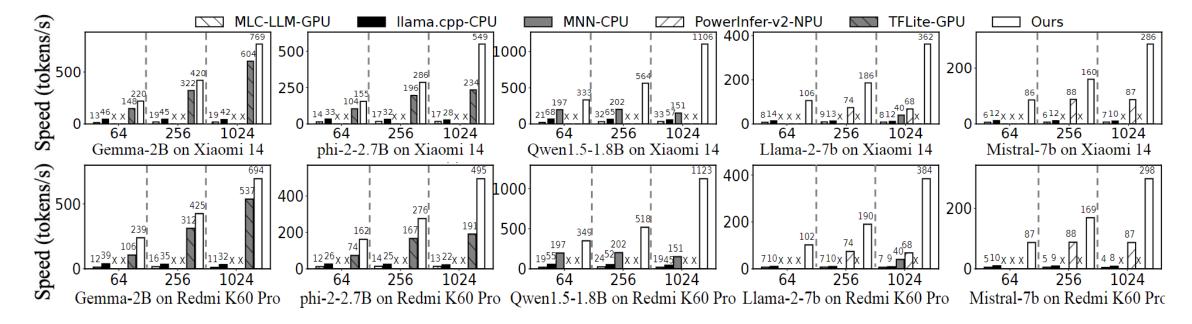


- Key Technique #3: out-of-order subgraph execution
  - Challenge: low HW utilization; NP-hard complexity
  - Solution: out-of-order execution (dependency-aware); a heuristic scheduling algorithm.



# **Highlighted results**

**Prefill speed** under different prompt lengths on different devices (datasets: Longbench-2wiki-Multi-doc QA) Baselines: MLC-LLM (GPU), llama.cpp (CPU), MNN (CPU), PowerInfer-v2 (NPU), TFLite (GPU)



7.3×-18.4×faster than baselines on CPU, and 1.3×-43.6× on GPU with prompt length of 1024 Achieves >1000 tokens/second on Qwen1.5-1.8B (for the first time)

# **Highlighted results**

**End-to-end latency** comparison across different frameworks using real mobile applications execution on Xiaomi 14 Baselines: MLC-LLM (GPU), Ilama.cpp (CPU), MNN (CPU), PowerInfer-v2 (NPU), TFLite (GPU)

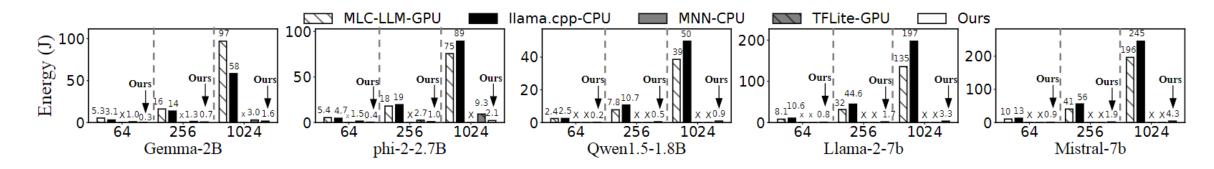
| LLM                                    | Datasets                            | MLC                  | LCPP                 | MNN             | PI           | TFLite             | Ours              | Speedup                             | Datasets                                     | MLC                  | LCPP                | MNN             | PI                  | TFLite             | Ours               | Speedup                             |
|----------------------------------------|-------------------------------------|----------------------|----------------------|-----------------|--------------|--------------------|-------------------|-------------------------------------|----------------------------------------------|----------------------|---------------------|-----------------|---------------------|--------------------|--------------------|-------------------------------------|
| Qwen1.5-1.8B                           | Longbench: 2wiki                    | 45.6                 | 26.7                 | 10.6            | -            | -                  | 1.7               | 6.2-26.8×                           | Longbench:                                   | 46.0                 | 27.0                | 11.2            | -                   | -                  | 2.0                | 5.6-23.0×                           |
| Gemma-2B                               | -Multi-doc QA                       | 78.4                 | 34.6                 | -               | -            | 2.6                | 1.9               | $1.4-41.3 \times$                   | TriviaQA                                     | 81.8                 | 36.2                | -               | -                   | 2.8                | 2.2                | 1.3-37.2×                           |
| Phi-2-2.7B                             | ~                                   | 87.0                 | 53.3                 | 13.0            | -            | 6.3                | 3.1               | $2.0-28.1 \times$                   | ~                                            | 91.4                 | 56.3                | 14.7            | -                   | 6.8                | 3.6                | 1.9-25.4×                           |
| LlaMA-2-7B                             | (prompt length:<br>1500 tokens)     | 184.7                | 146.0                | 22.4            | 19.8         | -                  | 5.3               | 3.7-34.8×                           | (prompt length:<br>1500 tokens)              | 197.3                | 156.2               | 23.8            | 21.8                | -                  | 6.2                | 3.5-31.8×                           |
| Mistral-7b                             | 1500 tokens)                        | 254.2                | 200.2                |                 | 20.0         | -                  | 5.5               | 3.6-46.2×                           | 1500 tokens)                                 | 266.2                | 210.0               | -               | 21.5                | -                  | 6.4                | 3.4-41.6×                           |
| Geo-mean (speedup)                     |                                     | 34.7×                | $21.8 \times$        | $4.8 \times$    | $3.7 \times$ | $1.7 \times$       | -                 |                                     |                                              | 31.0×                | 19.6×               | $4.4 \times$    | $3.4 \times$        | 1.6×               | -                  |                                     |
| 7736                                   |                                     | 2 4 7 0              |                      |                 |              |                    | 0                 | a 1                                 |                                              | 2.67.0               | LODD                |                 |                     |                    | ~                  | a 1                                 |
| LLM                                    | Datasets                            | MLC                  | LCPP                 | MNN             | PI           | TFLite             | Ours              | Speedup                             | Datasets                                     | MLC                  | LCPP                | MNN             | PI                  | TFLite             | Ours               | Speedup                             |
| Qwen1.5-1.8B                           | Datasets                            | MLC<br>21.0          | LCPP<br>10.4         | MNN<br>3.9      | -            | TFLite<br>-        | Ours<br>1.4       | Speedup<br>2.8-15.0×                |                                              | MLC<br>16.2          | LCPP<br>8.1         | MNN<br>3.1      | -                   | TFLite<br>-        | Ours<br>1.1        | Speedup<br>2.8-14.7×                |
|                                        | Datasets<br>DroidTask: clock        |                      |                      |                 | - PI         | TFLite<br>-<br>2.5 |                   | <u> </u>                            | DroidTask:                                   |                      |                     |                 | - PI                | TFLite<br>-<br>1.9 | Ours<br>1.1<br>0.9 |                                     |
| Qwen1.5-1.8B                           |                                     | 21.0                 | 10.4                 |                 | -<br>-<br>-  | -                  | 1.4               | 2.8-15.0×                           | DroidTask:<br>applauncher                    | 16.2                 | 8.1                 | 3.1             | -<br>-<br>-         | -                  | 1.1                | 2.8-14.7×                           |
| Qwen1.5-1.8B<br>Gemma-2B               | DroidTask: clock                    | 21.0<br>39.4         | 10.4<br>16.5         | 3.9             | -            | - 2.5              | 1.4<br>1.2        | 2.8-15.0×<br>2.1-32.8×              | DroidTask:<br>applauncher<br>(prompt length: | 16.2<br>29.4         | 8.1<br>12.3         | 3.1             | PI<br>-<br>-<br>8.2 | -<br>1.9           | 1.1<br>0.9         | 2.8-14.7×<br>2.1-32.7×              |
| Qwen1.5-1.8B<br>Gemma-2B<br>Phi-2-2.7B | DroidTask: clock<br>(prompt length: | 21.0<br>39.4<br>46.6 | 10.4<br>16.5<br>25.0 | 3.9<br>-<br>7.4 | -            | 2.5<br>4.2         | 1.4<br>1.2<br>3.1 | 2.8-15.0×<br>2.1-32.8×<br>1.4-15.0× | DroidTask:<br>applauncher                    | 16.2<br>29.4<br>35.4 | 8.1<br>12.3<br>19.0 | 3.1<br>-<br>5.9 | -                   | -<br>1.9<br>3.2    | 1.1<br>0.9<br>2.4  | 2.8-14.7×<br>2.1-32.7×<br>1.3-14.8× |

\*LCPP and PI in the first row represent llama.cpp and PowerInfer-V2, respectively.

#### 23.0-46.2× over llama.cpp-CPU, 16.5-36.4×over MLC-LLM-GPU, 4.08-4.19× over MNN-CPU, 3.51-3.73×over PowerInfer-V2-NPU, and 1.27-2.03× over TFLite-GPU

# **Highlighted results**

Energy consumption under different prompt lengths on Redmi K60 Pro (datasets: Longbench-2wiki-Multi-doc QA) Baselines: MLC-LLM (GPU), Ilama.cpp (CPU), MNN (CPU), PowerInfer-v2 (NPU), TFLite (GPU)



1.9×-59.5× energy reduction compared to baselines

#### Room to improve: eliminate CPU/GPU in end-to-end execution

## Takeaways

- On-device LLM is reinventing the mobile devices
  - -A total paradigm shift of mobile AI ecosystem
  - -The future of LLM is hybrid (device-cloud)

- It calls for full-stack LLM research
  - -OS, runtime, model, and application (agent)