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Some trends
• Edge devices (smartphones, IoTs, etc) are becoming important
computing platforms, not just user equipment [1].
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[1] Mengwei Xu, et al. “A case for camera-as-a-service”, IEEE Pervasive Computing, 2021.
[2] N. Mohan, et al. "Pruning Edge Research with Latency Shears." HotNets, 2020.

Edge is the new field for
emerging techniques like AI[2]
q Preserving privacy
q Low delay
q Personalization
q etc..



My definition of Ubiquitous Learning
• Ubiquitous computing learning is the growing trend of 

embedding computational learning capability (generally in 
the form of microprocessors) into everyday objects to make 
them effectively communicate and perform useful tasks in a 
way that minimizes the end user's need to interact with 
computers as computers.
• Unlike desktop computing datacenter-based learning, 

ubiquitous computing learning can occur with any device, at 
any time, in any place and in any data format across any 
network.
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Why Ubiquitous Learning?
• Rich applications, mostly driven by privacy needs

• Personalization for each device

• Offloading the computation & storage expense to devices
• Workflow simplified: no need to maintain complex, clumsy
datacenter systems (for both training and inference)
• Risk minimized: benefits of decentralization



Some concrete evidences
• FL is widely adopted on billions of phones already.
• Google uses it for input method (Gboard)[1]
• Alibaba uses it for e-commerce recommendations (Taobao)[2]
• Apple uses it for voice assistant (Siri)[3]
• …

• IoT companies are seeking to train and adapt ML models on
IoT devices (smart home scenario).

[1] https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
[2] Chaoyue Niu, et al. "Billion-scale federated learning on mobile clients: A submodel design with tunable privacy." MobiCom, 2020.
[3] https://www.technologyreview.com/2019/12/11/131629/apple-ai-personalizes-siri-federated-learning/



A review of DL system evolution on cloud/edge
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AlexNet, 2012
o With GPU used

Parameter Server, 2014
o Many GPUs Since then…

TensorFlow (Google), PyTorch (FB), PaddlePaddle
(Baidu), Petuum (CMU), MXNet (Apache), DMTK
(MS), Horovod, etc.

TF Serving, 2016
o For deployment

TVM, 2018
o Auto Compilation

… TensorRT (Nvidia), PRETZEL (SNU), Rammer
(MSRA), TorchScript (FB), DeepCPU (MS), etc.
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(Baidu), Petuum (CMU), MXNet (Apache), DMTK
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TF Serving, 2016
o For deployment

TVM, 2018
o Auto Compilation

… TensorRT (Nvidia), PRETZEL (SNU), Rammer
(MSRA), TorchScript (FB), DeepCPU (MS), etc.

DL for mobile sensing, 2015
TensorFlow Lite, 2017
o Rich support for heterogeneous

processors and ML operators
…

Caffe2 (FB), Core ML (Apple), ncnn
(Tencent), Paddle Lite (Baidu), MACE
(Xiaomi), SNPE (Qualcomm), etc.

MNN (Alibaba), Core ML (Apple), 2019
o Preliminary support: only CPU and a

few ML operators & optimizers

Federated Learning (Google), 2017
o A killer usage for on-device training
o A special case of decentralized learning

LONGWAY TO GO
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Our first attempt of on-device training
o Input prediction personalization
o Published at UbiComp’18

Many attemps at on-device inference:
[MobiCom’18] DeepCache, [WWW’19] An empirical
study, [MobiSys’20] Elf, [TMC’19] DeepWear

More to come…

Heterogeneous FL platform
o Published at WWW’21



HW-SW stack for UL
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Hardware

Operating System

Training Middleware

DL Primitives

Learning Protocols

Applications

ARM CPUs, GPUs, DSP, NPU, etc…

Android, iOS, Linux, ROS, etc…

MNN, CoreML, TensorFlow, etc…

Operators, optimizers, BP, etc…

Federated learning, Split learning,
on-device transfer learning, etc…

Input method, voice assistant, etc…
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2 Key research questions in UL
1. Training data is limited, non-IID, or even not labelled
• Model accuracy heavily relies on data!

2. Devices have constrained hardware resources
• Training a ML model is notoriously resource-hungry!
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We need a system-algorithm co-design
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On-device training: a measurement study
• Target library: MNN[1] by Alibaba
• 6 Android devices
• 5 classic CNN models
• LeNet, AlexNet, MobileNetv2,
SqueezeNet, GoogLeNet

• CPU by default
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[1] https://github.com/alibaba/MNN



Training time
• Training takes much more time than inference
• Up to 17.8x gap, much larger than the FLOPs-gap
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Training time
• Training takes much more time than inference
• GPU cannot speedup
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Training time
• Training takes much more time than inference
• GPU cannot speedup
• Op-level breakdown
• Raster: ops with shape transformation
• Conv = 3 x Raster + MatMul
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Training time
• Training takes much more time than inference
• GPU cannot speedup
• Op-level breakdown

• Why?
• The training support of MNN is still at very preliminary stage
• Training is far more complex than inference: much more operators, dynamic
weights update, variable batch size, etc…
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Memory footprint
• Training is very memory-intensive
• 16-32 is typically the max batch size supported by a high-end device (6~8 GBs)
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Memory footprint
• Training is very memory-intensive
• 16-32 is typically the max batch size supported by a high-end device
• Enough for a good convergence? NO!
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Single-machine setting (MobileNet-v2) Federated setting (MobileNet-v2)
[1] Smith, Samuel L., et al. "Don't decay the learning rate, increase the batch size." arXiv preprint arXiv:1711.00489 (2017).



Memory footprint
• Training is very memory-intensive
• 16-32 is typically the max batch size supported by a high-end device
• Enough for a good convergence? NO!
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A ”clean” environment.
In practice? NO!



System parameters
• CPU parameters open rich trade-off among latency and energy
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Lowest
energy

Lowest
latency



Implications and future directions
• Generating efficient training operators
• NN compilers?

•Memory optimizations
Ø The next chapter of this talk

• Tuning system parameters
• Model-level or operator-level?
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Design goals and principles
• Goal: supporting larger batch size training with given upper bound of
peak memory usage

• Principles
1. Don’t sacrifice the accuracy – No quantization & sparsity
2. Sacrifice latency (energy) as less as possible – Making tradeoffs
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Splitting the minibatch
• A technique called microbatch (or virtual batch, ghost batch)
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Minibatch=6 Microbatch=2

Buffered
gradients

Aggregate &
apply the
gradients



Splitting the minibatch
• A technique called microbatch (or virtual batch, ghost batch)
• Why it’s not enough?
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[1] Summers, Cecilia, and Michael J. Dinneen. “Four things everyone should know to improve batch normalization.” ICLR 2020.

Uncertainty from BN layer
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How about another technique
• (✘) Memory swapping?
• Mobile devices have integrated memory for heterogeneous processors
• 40x slower according to our preliminary experiments

• (?) Recompute[1]?
• Under implementation but seems more promising
• An efficient memory pool is needed
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Memory reduced to 𝑂(logn)
Forward latency increased to 𝑂(n logn)

[1] Tianqi Chen, et al. "Training deep nets with sublinear memory cost." arXiv:1604.06174 (2016).



Combining them
• Determining the appropriate ghost batch size and recomputed nodes
to achieve the optimal performance
• Hardware-specific, large search space
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Some on-going research to share
1. DSP-based, integer-only on-device training algorithm and library

2. Adaptive network topology and protocol for cross-silo federated
learning
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Takeaways
• Machine (deep) learning is happening everywhere at anytime

• The system support for such ubiquitous learning is still at very
preliminary stage – so many open problems!

• Open to discussion and collaboration on it
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Our code ⇒ https://github.com/UbiquitousLearning

Outstanding PhD students from BUPT/PKU working on UL⇒


